
Intrusion Detection for Wireless Sensor Network
Using Graph Neural Networks

Vida Gharavian∗1, Rasa Khosrowshahli∗1, Qusay H. Mahmoud1, Masoud Makrehchi1, Shahryar Rahnamayan∗2, SMIEEE
1Department of Electrical, Computer, and Software Engineering, Ontario Tech University, Oshawa, ON, Canada

*Nature-Inspired Computational Intelligence (NICI) Lab
2Engineering Department, Brock University, St. Catharines, ON, Canada

{vida.gharavian, rasa.khosrowshahli}@ontariotechu.net, qusay.mahmoud@ontariotechu.ca

Abstract—Wireless Sensor Networks (WSNs) are rapidly em-
ployed in many applications due to highly demanded autonomous
systems. These networks are of immense importance due to their
ability to collect data from remote and challenging environments,
their impact on various sectors like healthcare, agriculture, indus-
try, environment, and their role in enabling smart technologies for
a sustainable, secure, and connected future. Nevertheless, these
systems can be attacked by adversaries. Usually, the WSNs are
designed with lightweight sensor nodes with limited computation
and memory resources. Therefore, employing a firewall system on
every sensor node is unacceptable. This paper tackled this prob-
lem with a very lightweight Graph Neural Network-based model.
The conducted experiment performed in this work demonstrates
promising attack-type detection by our proposed approach to
the WSN-DS dataset. In this article, our proposed method is
compared with other the-state-of-the-art works, and we could
discover all Blackhole attacks, one of the most common Denial-
of-Service attacks.

Index Terms—Wireless Sensor Network, WSN, Denial of
Service, DoS, Graph Neural Network, GraphSAGE, LEACH,
Intrusion Detection

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are networks of numer-
ous miniature, battery-operated sensors dispersed over a vast
geographic region. These autonomous sensor nodes gather
and transfer data wirelessly to a base station (BS), making
them suitable for various real-world applications such as
environmental monitoring, industrial automation, and health
monitoring [1], [2]. In WSNs, a protocol is specialized to
manage data transmission across the sensor network. Some
external and internal threats can challenge the WSN’s protocol
in a way that can damage the network components and/or
corresponding services.

Sensor nodes in WSNs consist of limited resources, in-
cluding battery capacity, memory size, and processing power
[2]. The batteries that generally power up the sensors in a
WSN have a finite lifespan [3]. As a result, energy manage-
ment is essential for the network’s long-term functionality.
Battery power can be preserved using strategies like duty
cycling and sleep schedule [4]. Low-power microprocessors
with constrained processing power are frequently used in
WSNs. Complex processes like data processing and analysis
on the sensors themselves may be challenging as a result
[5]. A WSN’s range is constrained by the sensitivity of the

receivers and the transmission power of the sensors. In order
to transfer data over long distances, the network might need to
make several hops [6]. Interference from other devices using
the same frequency range as WSNs and background noise
from the surroundings can interfere with the wireless signals
utilized by WSNs [7]. WSNs can be challenging to scale
up or down since adding or deleting sensors; which might
alter the architecture of the network and its performance [8].
Different factors, including hardware problems and battery
depletion, might cause sensor nodes to malfunction [9]. The
network should be built in a way to handle these faults
and maintain continuous functioning smoothly. To this end,
creating a firewall system on each sensor node is not a possible
solution to protect them from external attacks to network
system.

Additionally, since WSNs are required to broadcast packets
on a regular basis, sensor nodes can be dispersed around the
environment at random, making it simple for a malevolent
WSN adversary. [10]. Attack types in WSNs can be cate-
gorized as follows: (1) compromising sensor nodes such as
extracting cryptographic secrets or modifying sensor func-
tionality; (2) eavesdropping messages; (3) injection of fake
messages; (4) modification of data integrity; and (5) waste
network resources. An attacker who compromises a sensor
node may gain access to confidential information and com-
mand over the node’s functions. As a result, the attacker may
be able to listen to messages sent by the node, intercept
them, and possibly utilize the data for bad intentions. The
attacker may also try to trick the network by injecting false
messages, which could lead to malfunctions or problems. The
network may interpret sensor data incorrectly if the integrity
of the data is compromised, producing false or misleading
findings. In crucial applications where the data is utilized
to make decisions that can affect people’s life and safety,
this can have catastrophic repercussions. Wasting network
resources can make the network crowded, making it difficult
for legitimate nodes to send data, and degrading the network’s
overall performance. This can impair the operation of the
entire network and result in delays and data loss.

Another famous attack in WSNs is when several systems
attack to flood the bandwidth or resources of sensor nodes to
interrupt or suspend the services provided by WSNs [11].

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 807

An alternative way to detect unknown and known attacks on
WSN and alert the other nodes in the system is implementing
an Intrusion Detection System (IDS). The IDS is a method for
attack detection, making it one of the essential defense layers.
An IDS allows the detection of anomalous activities to trigger
an emergency call when needed. The IDSs are not usually
implementable on sensor nodes due to the aforementioned
limitations; therefore, it is required to implement them on
the base station, which collects data from WSN. An example
of IDS could be found in work by Mohammed Otair et al.,
where they proposed an improved optimization algorithm,
combining the Grey Wolf Optimizer (GWO) and Particle
Swarm Optimizer (PSO), for enhancing IDS in WSNs [12]. By
this assumption, we are faced with unknown attack challenges
which can be tricky and deceptive when they design similarly
to normal profiles. In addition, the response time from IDS
should be quick in real-time; otherwise, it would be failed to
detect and secure the network against the attack.

Almomani et al. [13] assembled a specialized WSN dataset,
called WSN-DS, to characterize four types of DoS attacks in
addition to a normal state when a node is not attacked. They
challenged themselves based on a routing Low Energy Aware
Cluster Hierarchy (LEACH) protocol which is one of the most
widely used hierarchical protocols used in WSNs. Although
it is simple in design, sensor nodes in this protocol consume
lower energy.

The inherent architecture of WSNs renders them highly
suitable for Graph Networks. As WSNs are fundamentally
structured as graphs, employing Graph Neural Networks
(GNNs) becomes a natural choice to analyze and address
challenges associated with networks. In addition, GNNs offer a
powerful approach to processing graph-based data efficiently;
thus making them well-suited for handling various issues in
WSNs. Xu et al. [14] proposed an approach that aims to
enhance the efficiency and performance of WSN by leverag-
ing GNN’s ability to handle graph-structured data and Deep
reinforcement learning (DRL) capability to learn from the
environment to make better decisions. By integrating these
methodologies, the article addresses optimization challenges in
WSN, potentially leading to improved network configurations,
resource allocation, and overall system performance. Biswas
et al. [15] enhanced intrusion detection in wireless sensor net-
works (WSNs) by combining the capabilities of Graph Neural
Networks (GNNs) and Lyapunov optimization. The proposed
approach leverages the inherent graph structure of WSNs,
enabling efficient representation and analysis of network data
using GNNs. GNNs are adept at handling graph-based data,
making them well-suited for intrusion detection in WSNs.

The rest of this paper is organized as follows. Section II
provides some background information to make the paper self-
contained. The related works are discussed in Section III. The
proposed method and the experimental results are presented
in Section IV. Experimental analyses are discussed in Section
V. Finally, conclusion remarks and future work are presented
in Section VI.

II. BACKGROUND REVIEW

This section provides a background review of the GNN
model concepts, and terminologies used.

A. Graph Neural Networks (GNNs)

A set of connectivity-driven models that have been ad-
dressing the need for deep geometric learning are proposed
as GNNs [16]. They adapt their model to the structure of
an input graph and, through an iterative process, capture the
complex dependencies of the underlying system. This allows
the prediction of properties for specific nodes, connections, or
the graph as a whole, and generalizes to unseen graphs [17].
Consider a graph G = (V,E) is defined where V is a set of
nodes and E is the set of edges. The data is converted into
graph G where each node V represents entities and each edge
provides E relationships between them.

B. GraphSAGE

GraphSAGE is a propagation module based on a con-
volutional operator. This technique effectively creates node
embedding for previously undiscovered material by utilizing
node feature information (e.g., text properties) [18]. This type
of model was used in our proposed GNN model. The method
trains a function that creates embedding by sampling and
aggregating information from a node’s local neighborhood
rather than training distinct embedding for each node. This
algorithm consists of four main components as follows:

• Embedding generation: This step is the forward propa-
gation of the algorithm. They assume that the weights and
parameters are fixed. In each iteration, or search depth,
nodes aggregate information from their local neighbors,
and as this process iterates, nodes incrementally gain
more information.

• Learning the parameters of GraphSAGE: for learning
parameters with the unsupervised setting, they applied a
graph-based loss function to tune weight matrices and
parameters of the aggregator functions via stochastic
gradient descent. The loss function of GraphSage, which
was used to learn the weight of the aggregator and
embedding for two neighbors u and v defined in Eq. 1:

Lε

(
u, v) = − log σ(zTu zv)−NEvn∼Pn(v) log σ(−z

T
u zv)

(1)
where σ is a sigmoid function and N is the number
of negative nodes. While Pn is the negative sampling
distribution, vn is the negative sample. The output repre-
sentation is zu,∀u ∈ v, and zTu is the transposed matrix
of this matrix.

• Aggregator: The aggregator must operate on an un-
ordered set of vectors since the node neighbors have
no natural ordering. They proposed three types of ag-
gregators that can be applied to arbitrarily ordered node
neighborhood feature sets.

• Mean aggregator:. The mean aggregator is similar to the
convolutional propagation rule used in the transductive

808

Fig. 1. Routing schema in LEACH protocol, where the transformation flow
is from cluster nodes to cluster heads and cluster heads to base stations. There
is no direct path from cluster nodes to base stations.

graph convolutional networks (GCN) framework [19].
This aggregator simply takes the element-wise mean
(mean) of the vectors in hk−1

u ,∀u ∈ N(v) which is
formulated in Eq. 2:

hk
v ← σ(W · MEAN({hk−1

u } ∪ hk−1
u ,∀u ∈ N(v)) (2)

Where the node’s previous layer representation is hk−1

with the aggregated neighborhood vector hk
N(v) and W

is the weight matrix.

C. WSNs and the Denial-of-Service Intrusion

WSNs have a large number of distributed sensor nodes that
are responsible for gathering the necessary information and
transmitting them across the network wirelessly. In general,
there are three types of nodes in WSNs, namely, sensor nodes,
Cluster Heads (CH), and Sink or Base Stations (BS). Low
Energy Adaptive Clustering Hierarchy (LEACH) is a protocol
used in wireless sensor networks (WSNs) to reduce node
energy consumption. It is a hierarchical protocol in which
nodes are organized into clusters, and a node is elected as
a cluster head to act as a coordinator for the cluster. Fig.
1 illustrates a simple view of the node-graph in LEACH
protocol.

Many applications use these kinds of networks, for example,
weather predictions crime investigation, forest fire detection
[20], and medical purposes which have crucial impacts on
human life [21]. Because of the importance of data integrity
transmitted through the WSNs, they are always facing po-
tential attacks. Among these kinds of attacks, we can point
to Denial-of-Service (DoS) intrusions. The aim of DoS is to
take control of the network by reducing and eliminating the
network’s capacity. A common point of most attacks in WSN
is to target either the CHs or other sensors to interrupt their
connection. In the following step, the attacks are in detail.

• Flooding attack. Flooding attacks are multi-way attacks
that can occur by sending or receiving a significant
number of advertising CH messages. As this attack has
high transmission power, sensors will be drained due

to spending time and energy on deciding which CH to
join. This attack can be more harmful when it comes to
multiple hops from the attacked CH [13].

• Blackhole attack. This attack is made when the WSN
system tries to initialize CHs by sending advertisement
messages to familiarize itself as CH to the other surround-
ing sensor nodes [13].

• Grayhole attack. The goal of Grayhole attacks is to
randomly avoid some packets from being received by BS
from CH. Once attackers advertise themselves as CH to
the network, they can drop packets that are sent by other
nodes. Therefore, BS would miss those packets and lose
the connection from sensor nodes [13].

• Scheduling (TDMA) attack. This attack usually occurs
in the configuration of the LEACH protocol. Each CH
creates a Time Division Multiple Access (TDMA) sched-
ule due to the number of nodes that are connected to it.
This attack would change the TDMA and set the same
time slot for all connected nodes. Therefore the behavior
of TDMA will be changed from broadcast to unicast, and
it would cause packet collision [13].

III. RELATED WORKS

Wireless sensor network security is a very active area
of research. The first IDS monitoring system was proposed
by Almomani et al. [13] and they introduced the WSN-DS
dataset. They used a multi-layer perceptron neural network
classifier to classify datasets using necessary features to detect
every DoS attack, such as Blackhole, Grayhole, Flooding,
and Scheduling. They evaluated the performance of their
supervised learning work based on several metrics, namely,
accuracy, precision, recall, F1-score, time, etc. Furthermore,
Alsulaiman and Al-Ahmadi [22] published a work that evalu-
ated various machine learning techniques such as Naive Bayes
(NB), Support Vector Machine (SVM), J48 Decision Tree, and
Random Forest (RF) classifier to WSN-DS dataset. Another
similar work compared other classifiers such as k-Nearest
Neighbors (KNN), AdaBoost (AB), Gaussian Naive Bayes
(GNB), and Stochastic Gradient Descent (SGD) classifiers on
different data splits. [23]

Redundant features in a dataset may cause classification to
be inaccurate due to irrelevant information about the charac-
teristics of the attack. In order to select useful features, two
studies applied feature selection algorithms before the classifi-
cation phase. Recently, Ismaeil et al. [24] used Pearson Corre-
lation and Mutual Information feature selectors before KNN,
Gaussian Naive Bayes (GNB), Gradient Boosting (GBM),
Light Gradient Boosting (LGBM), Catboost (CB) algorithms,
and Random Forest classification algorithms. In another work,
Mahbooba et al. [25] used Correlation Matrix algorithm to
select the best features to be evaluated by Decision Tree (DT),
KNN, Random Forest (RF), Naive Bayes (NB), and Deep
Neural Network (DNN) structures which include Long Short-
Term Memory (LSTM) and Gated Recurrent Unit.

809

IV. PROPOSED METHOD

We define our problem as a undirected Graph(V,E). This
problem is a node classification task. For this purpose, we
demonstrate GraghSAGE as our utilised computational mod-
ule, which is responsible for extracting the hidden features
from nodes and edges between them.

Fig. 2 illustrates the model structure. We design a two-layer
GraphSAGE to tackle node classification tasks. The nature of
our problem allows for a simple definition in a graph. This
problem can be addressed in five steps as follows

• Data preprocessing: In this step, rows with missing data
are removed, and categorized data such as attack type
is transformed to numeric form. Also, the unconnected
nodes that are not in any clusters are removed.

• Graph representation: The graph representation is con-
structed, where each node i possesses specific features
denoted as xi, and it is included in the set V within
the graph structure Graph(V,E). When a node joins
a cluster with a cluster head chj , their connection is
recorded as the edge of e(j,i,1) where e is the edge
attributes, indicating the connection type and the corre-
sponding node ids. The graph is designed to be undirected
for this particular problem, and to ensure symmetry, the
reverse form of the graph is also incorporated.

• Sampling and split data: After creating train, test and
validation masks. which indicated which part of the
dataset belongs to the training set, test set, or valida-
tion set. We need to create a data loader that has the
responsibility to make a tairn set and validation set in
different batch sizes. We are using neighbor sampling
for this purpose. For destination node i , a fixed set of
neighborhoods, uk, is sampled in Eq. 4:

u0 = v, k = 0 (3)

uk = ∪v∈uk−1S(Av, N
k), k = 1, 2, ...,K; (4)

where Av is a set of neighboring nodes of V and Nk is
the sample size at depth k, and S(Av, N

k) is the sampler
from a uniform distribution U(1, deg(v)) as a default
setting [26]. For depth k = 0 , fixed set of neighborhoods
is equal to the same node.

• Train GNN model: The details of GNN layers are
presented in Table II. It includes two layers of Graph-
Sage, which is responsible for feature selection or node
embedding. This problem is a node classification task
that tries to categorize nodes into several classes [27],
and labels are the attack type for each node. Since that
is a supervised task, after node embedding we need to
define a loss function, and we used cross entropy for
this purpose. Therefore, for each class, we will have a
probability. The class with a higher probability will be
considered as a label.

• Evaluate GNN model: After training the entire set of
models, we will merge the validation set and test set
to form a combined dataset, which will be used for
evaluating the model. To assess the performance of our

model, we employ the accuracy metric, calculated in Eq.
5:

Accuracy =
(TN + TP)

(TN + TP + FN + FP)
(5)

where true positive is (TP), true negative is (TN), false
negative is (FN), and false positive is (FP). By comparing
the predicted labels with the true labels for each instance
in the combined dataset, we count the number of correctly
classified instances and then determine the accuracy by
dividing this count by the total number of instances in
the dataset. It is important to note that accuracy is just
one of several evaluation metrics, and depending on the
nature of the problem and the data, other metrics may be
more appropriate for assessing the model’s effectiveness,
such as precision, recall, F1 score, AUC-ROC, etc. These
metrics were calculated to offer a more comprehensive
understanding of the model’s performance in various
aspects.

The graph structure and algorithms are implemented using
DGL [28]. This library is a powerful tool for implementing
graph data structure and algorithms related to it. DGL offers
a robust graph object that can be installed on either the CPU
or the GPU. For improved control, it combines structural data
with characteristics. They offer several methods for working
with graph objects, such as practical and programmable prim-
itives for passing messages in Graph Neural Networks.

V. EXPERIMENTAL ANALYSIS

This section presents and discusses the experiments which
are conducted on WSN-DS dataset. This dataset is gathered
from a public dataset initially published by Almomani et al.
[13]. The dataset is constructed using the LEACH protocol. In
order to gather the required data, NS-2 simulation was used
[29]. Table V provides a detailed overview of the simulation
parameters.

A. WSN-DS Dataset

Almomani et al. [13], studied deeply on LEACH routing
protocol to extract 23 features to aid in determining each
network node’s condition as they are described in Table VI

Finally, the last feature is the corresponding label for the
node whether it is in normal mode or otherwise, the attack
type is declared. The dataset is provided with 374,661 sample
nodes where the data is separated into 60% training and 40%
test subsets. The detail of each class distribution is summarized
in Table IV.

B. Numerical Analysis

This algorithm was run over 1000 epochs, and you can
find more about the accuracy and loss of this method over
each epoch in Fig.s 3 and 4. After 300 epochs, the model
has achieved its best F1 score, but the train loss indicates that
higher epochs should also yield better outcomes. Furthermore,
we used a confusion matrix to evaluate the performance of
our proposed classification approach on the test data, which
is illustrated in Fig. 5. The detail of F1-score, precision,

810

Fig. 2. Proposed GNN method structure for node embedding and node classification in attack detection

TABLE I
DETAILED COMPARISON OF TEST RESULTS BETWEEN THE PROPOSED METHOD AGAINST REGRESSION (LR), NAIVE BAYES (NB), K-NEAREST

NEIGHBORS(KNN), DECISION TREE (DT), ADABOOST (AB), RANDOM FOREST (RF), SUPPORT VECTOR MACHINE-RADIAL BASIS FUNCTION
(SVMRBF), AND DEEP NEURAL NETWORK (DNN) WITH DIFFERENT NUMBER OF LAYERS. THE PROPOSED METHOD OUTPERFORMS OTHER MACHINE

LEARNING CLASSIFIERS ON THE MAJORITY OF ATTACKS

Method Normal Blackhole Attack Grayhole Attack Flooding Attack Scheduling Attack
TPR FPR Acc TPR FPR Acc TPR FPR Acc TPR FPR Acc TPR FPR Acc

LR 0.998 0.147 0.934 0.159 0.048 0.844 0.609 0.145 0.807 0.755 0.0 0.988 0.702 0.0 0.973
NB 0.946 0.066 0.946 0.989 0.146 0.87 0.478 0.039 0.875 0.8385 0.017 0.976 0.288 0.0 0.937

KNN 0.992 0.341 0.838 0.485 0.011 0.929 0.387 0.0888 0.809 0.403 0.007 0.969 0.664 0.0 0.96
DT 0.996 0.054 0.97 0.933 0.004 0.98 0.945 0.014 0.981 0.702 0.0 0.986 0.939 0.0 0.996
AB 0.999 0.085 0.964 0.885 0.008 0.977 0.839 0.019 0.957 0.984 0.0 0.999 0.847 0.0 0.98
RF 0.999 0.034 0.98 0.961 0.0 0.991 0.958 0.0 0.986 0.837 0.0 0.998 0.942 0.0 0.997

SVM-rbf 0.999 0.922 0.575 0.0 0.0 0.866 0.142 0.0 0.833 0.014 0.0 0.956 0.075 0.0 0.918
DNN 1 layer 0.998 0.027 0.98 0.965 0.078 0.939 0.616 0.007 0.919 0.978 0.005 0.994 0.917 0.0 0.992
DNN 2 layers 0.999 0.091 0.957 0.754 0.073 0.904 0.538 0.046 0.87 0.754 0.0 0.989 0.937 0.0 0.993
DNN 3 layers 0.999 0.107 0.953 0.883 0.037 0.956 0.666 0.026 0.916 0.776 0.0 0.987 0.916 0.0 0.992
DNN 4 layers 0.998 0.145 0.933 0.862 0.071 0.92 0.474 0.033 0.873 0.648 0.0 0.984 0.796 0.0 0.983
DNN 5 layers 0.994 0.047 0.975 0.946 0.069 0.939 0.676 0.019 0.925 0.819 0.0 0.998 0.879 0.0 0.988

Proposed Method 0.999 0.031 0.996 0.998 0.016 0.984 0.530 0.0 0.982 0.923 0.0 0.999 0.941 0.0 0.999

TABLE II
GNN MODEL PARAMETER SETTINGS

Model Name Type Parameters
Convolution1 SAGEConv In size: 128, Out size: 64
Convolution2 SAGEConv In size: 64, Out size: 5
Optimizer Adam lr: 0.01, α: 0.9, β: 0.999

TABLE III
TEST DATA CLASSIFICATION TABLE INCLUDING PRECISION, RECALL,

AND F1-SCORE. THE MACRO AVERAGE IS CALCULATED USING THE
ARITHMETIC MEAN (A.K.A. UNWEIGHTED MEAN) OF ALL THE PER-CLASS
F1 SCORES, WHEREAS, THE WEIGHTED AVERAGE IS CALCULATED BASED

ON THE SIZE OF EACH CLASS SUPPORT VALUE.

Attack Types Performance Metric
Precision Recall F1-score Support

Blackhole 0.663 0.998 0.796 4635
Flooding 0.963 0.923 0.943 1429
Grayhole 0.957 0.530 0.682 5351
Normal 0.997 0.999 0.998 135539

Scheduling 0.994 0.941 0.967 2911
Accuracy 0.980 0.980 0.980 0.980

Macro Average 0.915 0.878 0.877 149865
Weighted Average 0.985 0.980 0.979 149865

TABLE IV
DATASET SEPARATED 60% TRAINING SET AND 40% TEST SET.

Attack type Training set (60%) Test set (40%)
Blackhole 5,414 4,635
Grayhole 9,245 5,351
Flooding 1,883 1,429

Scheduling 3,727 2,911
Normal 204,527 135,539

Total 224,796 149,865

TABLE V
NS-2 SIMULATION PARAMETER SETTING

Parameter Value
Number of nodes 100 nodes

Number of clusters 5
Network area 100 m × 100 m

Base station location (50, 175)
Size of data packet 500 bytes

Size of packet header 25 bytes
Maximum transmission range 200 m

Routing protocol LEACH
MAC protocol CSMA/TDMA

Simulation time 3600 s
Initial energy (in joule) 5, 50

Attackers’ intensities 10%, 30%, 50%

811

Fig. 3. Model loss on train data convergence plot over 1000 epochs which
is sampled every 50 epochs.

Fig. 4. Model F1-score on test data with 149,865 records, over 1000 epochs
which is sampled every 50 epochs

and recall on the test data are presented in Table III. Our
results were compared with Vinayakumar et al. [30], and the
overall comparison is documented in Table I. As seen from
Table I, we evaluated test data based on TPR, FPR, and Acc
metrics. The column Method shows the nominated methods
that are compared to our proposed work, including Linear
Regression (LR), Naive Bayes (NB), k-Nearest Neighbors
(KNN), Decision Tree (DT), AdaBoost (AB), Random Forest
(RF), Support Vector Machine-radial basis function (SVM-
rbf), and their proposed Deep Neural Network (DNN) model
with 1-5 numbers of hidden layers. The proposed model could
distinguish the sensor nodes from the others presenting in the
Normal state. The difference between our proposed method to
existing works is that we are not only embedding the features
from nodes, but also we are embedding the link between them.
Moreover, we could detect most likely every sensor node that
is attacked by the Blackhole attack type. The FPR metric
shows our work has fewer falsely labeled cases; for example,
the FPR on flooding and scheduling attacks is zero. Looking

Fig. 5. Confusion matrix also known as the error matrix on test data with
five classes. Each row of the matrix represents the instances in an actual class
while each column represents the instances in a predicted class. All correct
predictions are located in the diagonal of the table (highlighted in yellow), so
it is easy to visually inspect the table for prediction errors, as values outside
the diagonal will represent them.

TABLE VI
WSN-DS DATASET FEATURE DESCRIPTION

Feature Description

Node ID Every node has a unique ID
to be distinguished in the network

Time The node’s current simulation period
IsCH A state to show the CH node
WhoCH Node’s related CH

RSSI Strength of received signal
between the node and the related CH

DistToCH The distance value between the node
and the related CH

MaxDistToCH It is the maximum length between CH and
nodes in the related cluster

AverageDistToCH It is the average length between
CH and nodes in the related cluster

CurrentEnergy The energy level of each node

EnergyConsumption The amount of energy consumed
by the node

ADV-CH send / receives The number of advertised messages
sent / received by the node

ADV-SCH send / receives The quantity of TDMA schedule messages
that CHs sent/receives

send / receives The number of join requests sent/received
by the CH node

RANK The TDMA schedule position of the node

DataSent The total number of data packets sent
from a node to the related CH

DataReceived The total number of data packets received
from CH

DataSentToBS The quantity of data packets sent to the BS
from CH

SendCode The related cluster code
DistCHToBS The distance between the CH and BS.

812

at the Grayhole attack column, our proposed method could
not outperform the Random Forest classifier; however, the
difference in accuracy metric is 0.004. The results show that
our proposed method outperforms the majority of Machine
Learning classifiers on the attack types, including Blackhole,
Flooding, and Scheduling.

VI. CONCLUSION AND FUTURE WORK

Wireless Sensor Network (WSN) is vulnerable to exter-
nal and internal intrusions. The structural limitations in this
network are caused by the constrained resources of sensor
nodes, making it easy to be defenseless in front of cyber
attacks. A solution is to conduct a machine-learning-based
intrusion detection system on the base station, which collects
data from cluster heads and alerts the system if an anomaly is
detected. This intrusion detection system has to be dependable
on its prediction. In this paper, we proposed a new machine
learning technique to alleviate the critical DoS attack types
using a proposed small and simple Graph Neural Network
architecture. Based on performance analysis, we could detect
nearly every node that is poisoned by the Blackhole attack
type as well as other attack types, such as Flooding and
Scheduling. In comparison to other previous works, we could
outperform deep neural networks with many hidden layers. As
one of the criteria of WSNs is to be lightweight and quick,
our proposed graph neural network architecture uses smaller
layers and parameters. Due to using the GraphSAGE structure,
our proposed strategy is scalable to the newly expanded parts
of WSN, and it is not required to re-train the whole network.
We are aware of how crucial this problem is; thus, in the
future, we plan to present it as a heterogeneous graph with
a variety of node types and different feature vectors for the
cluster heads and their attached nodes in order to improve the
model to avoid false predictions. Additionally, we have plan
to test it using various datasets and attacks.

REFERENCES

[1] V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges of
wireless sensor networks in smart grid,” IEEE Transactions on Industrial
Electronics, vol. 57, no. 10, pp. 3557–3564, 2010.

[2] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection
systems in wireless sensor networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 1, pp. 266–282, 2014.

[3] W. Guo and W. M. Healy, “Power supply issues in battery reliant
wireless sensor networks: A review,” 2014.

[4] N. Qi, K. Dai, F. Yi, X. Wang, Z. You, and J. Zhao, “An adaptive
energy management strategy to extend battery lifetime of solar powered
wireless sensor nodes,” IEEE Access, vol. 7, pp. 88289–88300, 2019.

[5] P. Mareca and B. Bordel Sánchez, “Robust hardware-supported chaotic
cryptosystems for streaming commutations among reduced computing
power nodes,” Analog Integrated Circuits and Signal Processing, vol. 98,
01 2019.

[6] J. Guo and H. Jafarkhani, “Sensor deployment with limited com-
munication range in homogeneous and heterogeneous wireless sensor
networks,” IEEE Transactions on Wireless Communications, vol. 15,
no. 10, pp. 6771–6784, 2016.

[7] M. Haenggi and R. K. Ganti. 2009.
[8] L. Alazzawi and A. Elkateeb, “Performance evaluation of the wsn

routing protocols scalability,” Journal of Computer Systems, Networks,
and Communications, vol. 2008, 01 2008.

[9] M. Shyama and A. Pillai, Fault-Tolerant Techniques for Wireless Sensor
Network—A Comprehensive Survey, pp. 261–269. 01 2019.

[10] H. Modares, R. Salleh, and A. Moravejosharieh, “Overview of security
issues in wireless sensor networks,” in 2011 Third International Con-
ference on Computational Intelligence, Modelling Simulation, pp. 308–
311, 2011.

[11] Z. Huanan, X. Suping, and W. Jiannan, “Security and application
of wireless sensor network,” Procedia Computer Science, vol. 183,
pp. 486–492, 2021. Proceedings of the 10th International Conference
of Information and Communication Technology.

[12] M. Otair, O. T. Ibrahim, L. Abualigah, M. Altalhi, and P. Sumari,
“An enhanced grey wolf optimizer based particle swarm optimizer
for intrusion detection system in wireless sensor networks,” Wireless
Networks, vol. 28, Feb 2022.

[13] I. Almomani, B. Kasasbeh, and M. AL-Akhras, “Wsn-ds: A dataset
for intrusion detection systems in wireless sensor networks,” Journal of
Sensors, vol. 2016, pp. 1–16, 01 2016.

[14] X. Xu, Y. Lu, and Q. Fu, “Applying graph neural network in deep
reinforcement learning to optimize wireless network routing,” in 2021
Ninth International Conference on Advanced Cloud and Big Data
(CBD), pp. 218–223, 2022.

[15] P. Biswas, T. Samanta, and J. Sanyal, “Intrusion detection using graph
neural network and lyapunov optimization in wireless sensor network,”
Multimedia Tools and Applications, vol. 82, pp. 14123–14134, Apr 2023.

[16] M. Gori, G. Monfardini, and F. Scarselli, “A new model for earning in
raph domains,” vol. 2, pp. 729 – 734 vol. 2, 01 2005.

[17] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón, “Com-
puting graph neural networks: A survey from algorithms to accelerators,”
2021.

[18] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” 2018.

[19] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[20] U. Dampage, L. Bandaranayake, R. Wanasinghe, K. Kottahachchi,
and B. Jayasanka, “Forest fire detection system using wireless sensor
networks and machine learning,” Scientific Reports, vol. 12, p. 46, Jan
2022.

[21] H. Liang, S. Yang, L. Li, and J. Gao, “Research on routing optimization
of wsns based on improved leach protocol,” EURASIP Journal on
Wireless Communications and Networking, vol. 2019, pp. 1–12, 2019.

[22] L. Alsulaiman and S. Al-Ahmadi, “Performance evaluation of machine
learning techniques for dos detection in wireless sensor network,” 2021.

[23] M. Kurtkoti, B. S. Premananda, and K. Vishwavardhan Reddy, “Perfor-
mance analysis of machine learning algorithms in detecting and miti-
gating black and gray hole attacks,” in Innovative Data Communication
Technologies and Application (J. S. Raj, K. Kamel, and P. Lafata, eds.),
(Singapore), pp. 945–961, Springer Nature Singapore, 2022.

[24] S. Ismail, T. T. Khoei, R. Marsh, and N. Kaabouch, “A comparative
study of machine learning models for cyber-attacks detection in wireless
sensor networks,” in 2021 IEEE 12th Annual Ubiquitous Computing,
Electronics Mobile Communication Conference (UEMCON), pp. 0313–
0318, 2021.

[25] B. Mahbooba, R. Sahal, M. Serrano, and W. Alosaimi, “Trust in intrusion
detection systems: An investigation of performance analysis for machine
learning and deep learning models,” Complexity, vol. 2021, p. 23, 03
2021.

[26] J. Oh, K. Cho, and J. Bruna, “Advancing graphsage with a data-driven
node sampling,” arXiv preprint arXiv:1904.12935, 2019.

[27] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[28] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[29] “The network simulator—ns-2.” http://www.isi.edu/nsnam/ns/.
[30] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-

Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” IEEE Access, vol. 7, pp. 41525–41550,
2019.

813

