
Training Data Leakage via Imperceptible Backdoor
Attack

Xiangkai Yang∗, Wenjian Luo∗†, Qi Zhou∗, and Zhijian Chen∗
∗Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies,

School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China
†Peng Cheng Laboratory, Shenzhen 518055, Guangdong, China

Email: 21S151149@stu.hit.edu.cn, luowenjian@hit.edu.cn, 22S051036@stu.hit.edu.cn, 21B951010@stu.hit.edu.cn

Abstract—Recently, deep neural networks (DNNs) have been
widely used and proven successful in many real-world tasks.
There are many third-party DNN services available for data
holders who want to develop custom DNN applications for
their data and tasks. To ensure data privacy, it is crucial to
safeguard the data holder’s training data. This paper explores
a unique attack paradigm where a hostile third-party DNN
model supplier subtly obtains training data from the data
holder. Prior attacks which can steal training data typically
use augmented datasets to memorize the information of the
data that the attacker intends to steal. However, these attacks
are easily identified since the augmented datasets are visually
different from the original dataset and rendered ineffective. In
this attack, we generate an augmented dataset by modifying
a portion of the training data using the DNN-based image
steganography technique. This approach creates an augmented
dataset that is visually identical to the original training dataset,
making it difficult for humans to detect. Through extensive
experiments, we have successfully and quietly accessed the
confidential training data of data holders.

Index Terms—Deep neural networks, data privacy, backdoor
attack, steganography

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have
achieved unprecedented success in many fields, including
image classification [1] and natural language processing
[2], [3]. However, a significant quantity of training data,
growing processing power, and complex networks determine
how effective DNNs are. It is possible that non-expert data
holders cannot create their networks from the ground up.
As a substitute, they would use models that third parties
offered. For instance, they may choose an algorithm model
from an accessible algorithm marketplace that is suitable for
their needs and datasets, and then train the model using the
datasets they had. Even though data holders widely use this
mode, it has resulted in the emergence of new privacy threats.
These threats take the form of models or model-training
algorithms that appear to be authentic, but purposefully leak
information regarding data holders’ training datasets. This
is especially concerning when it comes to privacy datasets

This study is supported by the National Key R&D Program of China
(Grant No. 2022YFB3102100), Shenzhen Fundamental Research Program
(Grant No. JCYJ20220818102414030), the Major Key Project of PCL (Grant
No. PCL2022A03), Shenzhen Science and Technology Program (Grant
No. ZDSYS20210623091809029), Guangdong Provincial Key Laboratory
of Novel Security Intelligence Technologies (Grant No. 2022B1212010005).
(Corresponding author: Wenjian Luo.)

Fig. 1. The comparison of the augmented training dataset (i.e., malicious
samples) in CAA and our attack.

(such as a person’s personal contact information, residence
address, or healthcare records).

Deep neural networks (DNNs) are powerful but can pose
security risks due to their high capacity. During training,
DNNs can inadvertently remember specific details, poten-
tially releasing a vast amount of knowledge about the training
data.

Some examples of these types of attacks include: the
membership inference attack [4], [5], which determines if
a specific example was used during model training; the
model inversion attack [6], [7], which recovers the values
of sensitive attributes of the inputs relying on outputs from
a classifier; and the property inference attack [8], [9] which
draws conclusions about properties based on the fact that
they are valid for a portion of the data that was used for
training. In addition, the work in [10]–[12] demonstrates that
malicious machine learning algorithms can produce models
that fulfill the generally accepted indicators of accuracy
and generalizability while at the same time leaking private
information concerning their training datasets. This is true
even if the adversary has limited access to the model in its
black-box form. To get precise training data, they came up
with the idea of the Capacity Abuse Attack (CAA), which

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1553

Fig. 2. The flow of our attack for stealing one training sample. In the generation stage, the attacker generates some malicious samples which are visually
indistinguishable from the original training samples. However, the labels of those malicious samples encode the information of the training sample the
attacker wants to steal. The union of malicious and original training samples is used to train DNNs in the training stage. In the recovering stage, the
attacker generates some inferring samples by using the same way as generating malicious samples (i.e., the classes of malicious samples and inferring
samples are the same, as well as the order). Since the mapping from the class of malicious sample to the target label was generated in the training stage,
thus after the attacker inputs those inferring samples to the trained DNNs, the target labels, which are the encodings of a training sample, will be obtained.
Thus, the attacker obtains a training sample recovered by the target labels.

adds more synthetic data to the training dataset yet does not
alter the training algorithm in any way. [12] propose a novel
efficient white-box backdoor attack method which leverages
the linear combination of weights to remember the private
data during training.

The fatal flaw of the CAA is that the synthetic aug-
mentation data are substantially distinct from the original
pictures in the training dataset. Despite the fact that CAA
is the most advanced black-box attack technique currently
available, CAA has this fatal flaw. Because of this, CAA
is unable of evading the detection of the training data,
regardless of whether the type of detection being used is an
automated one or a human eye examination. Work in CAAII
[13] addresses the problem which the attackers do not know
the mapping relationship between the form outputted by the
trained model and the label encodings in CAA, however it
does not settle the problem of stealthiness in CAA. And work
[14] proposed a method that the malicious data generated
similar to real and natural images, improves the stealthiness
of CAA, however, the backdoor triggers are still visible and
recognized to human. In this regard, CAA and its existing
improvements are essentially lacking in some degree of
stealth. In this article, we suggest an innovative approach
to the construction of the augmentation data. The following

is a summary of our contributions.
• We propose a novel attack paradigm to steal train-

ing data imperceptibly from a data holder, where the
constructed augmentation data have a high degree of
similarity with the original training data, and the human
eye cannot discern the nearly invisible difference, mak-
ing our attack more covert than CAA. The comparison
between the augmented training dataset in CAA and our
attack is depicted in Figure 1.

• We test our method on the standard datasets MNIST,
Fashion-MNIST, and CIFAR-10 to see how well it
works. Experiments show that our attack could get high-
quality training images with a tiny effect on the model’s
original task for each dataset.

II. RELATED WORK

A. Backdoor Attack

The backdoor attack has recently emerged as a potential
security risk for deep neural networks (DNNs) on image
classification tasks. In this kind of attack, the attacked DNNs
seem to be authentic. Still, they actively misbehave (classify
to target labels that the attacker predefines) on some partic-
ular circumstances of the inputs. (i.e., poison images with
attacker-specified triggers). Existing attacks can be divided

1554

into two distinct categories according to the degree to which
individuals are able to recognize their triggers. If the triggers
of a backdoor attack are concealed, or if poisoned samples
cannot be visually differentiated from benign ones, then the
backdoor attack is invisible. If neither of these conditions is
met, the backdoor attack is visible.

1) Visible Backdoor Attack: In the first backdoor attack
on the task of classifying images, known as BadNets [15],
the attacker introduces a backdoor by labeling benign data
with the attacker’s chosen target label and adding a trigger
(such as a little white-black pattern at particular spots in the
images). When an image with the corresponding backdoor
trigger is supplied, this backdoor can be activated and output
the target label during the inference step. Several further
backdoor attacks have been suggested since then. Typically,
[16] proposed an input-aware backdoor attack, where trig-
gers have diversity and are nonreusable for different inputs
to evade defense. [17] presented an adaptable and covert
backdoor attack that avoids backdoor scanners by leveraging
backdoor triggers made out of pre-existing benign properties
of different labels.

2) Invisible Backdoor Attack: [18] initially emphasized
the need for a backdoor attack to be invisible in order to avoid
human inspection and proposed that the poisoned image
should be very similar to its benign counterpart. Instead of
stamping, a mixed method is employed to create poisoned
images by fusing the backdoor trigger with good images. [19]
recently proposed warping-based triggers which via subtle
image warping achieve undetectable by machine defenders
and humans. Li et al. [20] proposed an invisible backdoor
attack that generates sample-specific invisible additive noises
as backdoor triggers by encoding an attacker-specified string
into benign images through an encoder-decoder network.

B. Capacity Abuse Attack (CAA)

The Capacity Abuse Attack (CAA) was proposed by
Song et al. [10] as a method for extracting precise training
data. In this attack, the attacker is a malicious machine
learning (ML) model provider who is unable to access the
model parameters. Still, it does have access to the prediction
application programming interface (API) that was published
by the data holder. Because deep learning models have such
a vast capacity for memorizing, it is virtually possible for
them to describe any function that is appropriate for any
data. In CAA, the model is fitted not only to the original
training dataset but also to the synthetic data that is labeled
with the encodings of the training images which the attacker
attempts to steal. This is done so that the model can accu-
rately represent the training data. During the inference step,
the attacker feeds the model the same synthetic data used
during the training stage. Based on the associated outputs,
the attacker can reconstruct the images utilized during the
training stage.

C. Steganography

Steganography is a technique for information hiding, it
does not let anyone except the intended recipient know the

event of information transmission (not just the content of the
information). In essence, the information-hiding process in
the steganography system starts with identifying the redun-
dant bits of cover media (those bits that can be modified
without destroying the integrity of the media). StageStamp
[21] is a learned steganography algorithm that can encode
and decode any hyperlink bit string into a photo in a way
close to perceptual invisibility. They hide data in the least
significant bit of the image: subtle color and brightness
changes. In [20], they train the encoder-decoder network
according to the settings in StageStamp and then generate
sample-specific triggers through the trained encoder. Our
method uses steganography to perform a stealthy attack. In
this attack, we use steganography to modify images and use
them to memorize the data holder’s private training data.

III. OVERVIEW

In this section, we first introduce the threat model of our
proposed attack, then briefly demonstrate our attack flow.

A. Threat Model

We focus our work on image classification tasks. Our
threat model is very similar to that of [10]. We assume
the attacker is a dishonest third-party DNNs model provider
who gives the training codes to the data holder. The data
holder, who is not an expert, is going to directly adopt the
training codes in order to generate tailored DNNs for the
private training data, but they do not understand what the
training codes are actually doing. The holder of the data
will accept the modified DNNs as long as they have high
predicted accuracy on the test dataset. The data holder will
then expose the DNNs as an API for public or commercial
services. We are going to assume that the attacker has access
to the application programming interface (API) that, when
fed an image, generates a probability vector that represents
the likelihood that the provided input corresponds to each
class.

The attack’s efficacy and stealthiness are the attacker’s two
primary priorities. The data holder must adopt the resultant
DNNs trained by the attacker’s training codes for this to
be successful. Additionally, the attacker needs to be able to
retrieve the data holder’s recognized training samples after
visiting the public API and doing specific queries in order
to do so. To maintain the stealthiness of the model, the data
holder must detect very few exceptions in the training dataset
while the model is being trained and in the requested inputs
after the model has been published.

B. Attack Flow

The flow of our attack for stealing one image from the
data holder is shown in Figure 2. In the generation stage,
the attacker converts one specified training sample (e.g., the
first sample in the training dataset) to target labels in a
certain way that the attacker can flexibly design. Then the
attacker generates malicious samples with a technique, which
adds triggers to benign samples (i.e., some of the original
training samples), and the added triggers are invisible so that

1555

malicious samples are visually indistinguishable from benign
ones. The attacker labels those malicious samples with target
labels. We refer to the malicious samples generated by the
same kind of trigger as the same class, so that each class of
malicious samples could be used to memorize one label in
target labels.

During the training stage, the data holder trained the DNNs
using the conventional training process on the poisoned
dataset (i.e., the union of malicious samples and the original
training samples). During the recovering stage, the attacker
only needs to find one arbitrary natural image (for example,
one training sample in the MNIST dataset) to use to generate
benign test samples. The attacker must apply the same
triggers that were used during the generation stage in order
to generate malicious test samples. Upon the submission
of malicious test samples to the application programming
interface (API) made public by the owner of the data, the
attacker should be able to retrieve the labels matching the
triggers and, ideally, the target labels. Lastly, the attacker
recovers the training sample by using an inversed process
of converting the training sample to target labels in the
generation stage.

IV. DESIGN

This section presents the proposed techniques in detail
following the attack flow.

A. Generating Invisible Triggers

Inspired by StegaStamp [21] and prompted by [20], [22],
we generate malicious images by adding invisible additive
noises on benign images, the invisible noises embed specific
strings related to the target labels using an encoder-decoder
network. StegaStamp is a learned steganographic algorithm
to enable robust encoding and decoding of arbitrary hyperlink
bit strings into photos in a manner that approaches perceptual
invisibility. The goal of StegaStamp’s encoder training is
to reduce the visual disparities between the original and
encoded versions of a picture. The decoder is an artificial
neural network that has been taught to decode messages from
encoded images. The string can be designed by the attacker,
and we expect the trained model can map different strings
into different target labels rather than mapping different
strings into one target label. In our setting, we refer a
backdoor trigger as the string embedded into the image by
the encoder.

B. Generating Malicious Dataset

The pseudocode for constructing a malicious dataset is
described in the Algorithm 1. In line 2, ImageToLabel(·)
converts the n images in the training dataset Dtrain to
target labels set Ymal, which is the same as the method in
[10], [13], [14]. To be more specific, n is the number of
images in Dtrain that the attacker intends to steal, and the
attacker specifies which n training images to be encoded.
Then ImageToLabel(·) represents these n images in pixels,
each pixel value in the range [0, 256) would be scaled to [0, c)
for the sake of simplicity (pixel value is not necessarily to

Algorithm 1 Generate Malicious Dataset
Input: Training dataset Dtrain, the number of malicious

samples for one backdoor M , the number of stolen
images n.

Output: Malicious dataset Dmal

1: Dmal ← ∅
2: Ymal ← ImageToLabel(Dtrain, n)
3: for each m ∈ [0,M) do
4: for each yi ∈ Ymal do
5: xbenign ← randomly select one image in Dtrain

6: xi ← Encode(xbenign, string(i))
7: Dmal ← Dmal ∪ (xi, yi)
8: end for
9: end for

10: Return Dmal

be scaled, or it would cost several labels to encode), where c
is the number of classes in Dtrain. The scaled pixels are the
target labels Ymal, which are the information the attacker has
encoded and expected to recover after the model is published.

Lines 4-8 of the code generate one malicious image for
each target label in Ymal. Specifically, Encode(·) accepts one
benign image and one string as parameters and then returns
a malicious image that hides string information in it while
having few discernible variations from the benign image. It
is noted that Encode(·) is implemented by a modified version
of StegaStamp [21]. We set up the index i of yi in Ymal as a
string, so each target label in Ymal corresponds to one unique
string. Thus, the mapping from the one-of-a-kind string to the
target label is generated and could be learned during training.

Aside from that, similar to the backdoor attack, learning
the mapping from trigger to target label typically requires
several poisoned samples. We set up M as the number of
malicious samples for each target label. Malicious samples
of different target label corresponds to a different string.
However, it does not matter which benign image is chosen
to generate the malicious image, so we randomly select one
image in Dtrain as a benign image for generating each
malicious image.

Lines 3-9 of the code generate M malicious images for
each target label in Ymal. In general, the greater the value
of M is, the more likely the model learns the relationship
between one string and the target label, which encodes the
training set information. Meanwhile, the increase of M will
also decrease the attack’s stealthiness since the poisoning rate
γ (i.e., the ratio of the size of malicious samples and training
samples) increases, and it might have an unmissable impact
on the benign test accuracy. So the attacker usually has a
trade-off between the attack effectiveness and stealthiness
when setting up M .

C. Recovering Images

Algorithm 2 describes the pseudocode for recovering im-
ages. NumOfInput(·) accepts the quantity of stolen images
n and the attacker’s auxiliary knowledge of the training data
Aux (the size of the training images) as parameters, then

1556

Fig. 3. The comparison of the original images and the recovered images of ten times experiments (stealing different images each time) on three datasets.
The first row contains the original images, while the second row contains the MNIST experiment’s recovered images. The original and recovered images
in the Fshion-MNIST experiment are located in the third and fourth rows, respectively. In the CIFAR-10 experiment, the original images are located in
the fifth row, while the recovered images are located in the sixth row.

Algorithm 2 Recover Images
Input: The auxiliary knowledge of training data Aux,

trained model θ, the number of stolen images n.
Output: Recovered images recoveredImg

1: ntest ← NumOfInput(n,Aux)
2: x←select a random image
3: Ydecode ← ∅
4: for each i ∈ [0, ntest) do
5: xi ← Encode(x, string(i))
6: yi ← θ(xi)
7: Ydecode ← Ydecode ∪ (i, yi)
8: end for
9: recoveredImg ←RecoverImage(Ydecode, Aux)

10: Return recoveredImg

return the quantity of input test images ntest, and ntest
should equal size of Ymal in Algorithm 1. The code in lines
4 through 8 generates ntest malicious test images, each of
which is utilized to infer a target label based on its encoded
string. Given that the mapping from the string to the target
label is created during training, the attacker should ideally be
able to determine the target label associated with the encoded
string when they submit a malicious test image to the trained
model θ. The last step, RecoverImage(·) converts Ydecode
into images according to Aux, which is an inverse process of

ImageToLabel(·) in Algorithm 1. These images are training
images that the attacker intends to steal from the data holder.

V. EXPERIMENTS

In this section, first, we introduce our experimental setting,
including datasets, models, the attack setup, and evalua-
tion metrics. Then we demonstrate experimental results.
The source codes are available at https://github.com/MiLab-
HITSZ/2023YangIBA.

A. Experimental Setting

1) Datasets and Models: We conducted experiments on
three classical image classification datasets MNIST [23],
Fashion-MNIST [24], and CIFAR10 [25]. The MNIST
dataset is comprised of 60,000 training samples and 10,000
test examples. Each sample is a 28-pixel square grayscale
image categorized under one of ten categories, with 6,000
examples per category. Fashion-MNIST, on the other hand,
presents a more formidable challenge for categorization. It
includes 60,000 training samples and 10,000 test samples,
with each instance represented by a grayscale image of 28
by 28 and assigned a label from ten categories. CIFAR-10 is
another dataset used for this purpose, with ten different types
of RGB graphics, each measuring 32 by 32 by 3. There are
6000 images in each class, with 5000 used for training and
1000 for testing.

1557

We utilize the LeNet-5 [23] model to construct the classi-
fier that will be used on the MNIST and Fashion-MNIST
datasets. For CIFAR-10 image categorization, we use the
ResNet-18 [1] model. Every single training classifier is
run through the SGD optimizer, and all of the optimizer’s
hyperparameter settings are the same. The weight loss rate
is 0.0001, the momentum is 0.9, and the learning rate is 0.01.
The maximum epoch and the batch size have been set to 100
and 256, respectively.

2) Attack Setup: We train an encoder-decoder on the
ImageNet [26] dataset and use the encoder as an invisible
malicious samples generator for all of our experiments. We
modify the setting in StegaStamp [21] for our purpose.
Specifically, we get rid of operations that apply image
perturbations between the encoder and decoder for real-
world robustness, and those operations including perspective
warp, motion and defocus blur, color manipulation, noise, and
JPEG compression. Those operations are not necessary in our
attack circumstance. We set the number of target images n as
1. We resize the size of dataset images to 224 × 224 × 3, and
we modify the corresponding models as well. The reasons is
that, for the sake of simplicity, we use pre-trained models
(i.e., LeNet-5 for MNIST and Fashion-MNIST, ResNet-18
for CIFAR-10) which provided by Pytorch as classifiers,
which are commonly trained with image size 224 × 224 × 3,
and we can easily obtain high precision when training models
with size 224 × 224 × 3. However, the size of the target image
we intend to steal is still the original size rather than resized
size (i.e., 28 × 28 for MNIST and Fashion-MNIST, 32 × 32
× 3 for CIFAR10). Besides, for simplicity, we convert the
target image of CIFAR-10 to a gray-scale image. Each pixel
in the target image is scaled and ranges from 0 to 9, and is
encoded with one label. The quantity of malicious samples
for one pixel M is set as 20. So for the MNIST and the
Fashion-MNIST, the size of the malicious dataset is 15680,
and the poisoning rate γ = 26.13%. For CIFAR-10, the size
of the malicious dataset is 20480, and the poisoning rate
γ = 40.96%.

3) Evaluation Metrics: We use the mean absolute pixel
error (MAPE) [10] to measure the quality of the image we
recovered. MAPE is 1

k

∑k
i=1

∣∣∣xi − x′

i

∣∣∣ when given a stolen

image x
′

i and the original image xi with k pixels. It ranges
from 0 to 255. The smaller the value of MPAE, the more
effective the method is. In addition, the impact of introducing
malicious datasets on benign test accuracy is considered to
evaluate the attack’s effectiveness and stealthiness.

B. Experimental Results

1) Attack Effectiveness: The images recovered from all
three datasets, as depicted in Figure 3, are of high quality
and easily recognizable. Our experiment, as shown in Figure
4, demonstrates that our attack is capable of successfully
stealing an image while maintaining a low MAPE. This is
achieved by malicious poisoning only a portion of the train-
ing data (26.13% for MNIST and Fashion-MNIST, 40.96%
for CIFAR-10). Our results indicate that the MAPE consis-
tently converged to 2.6, 7.4, and 14.3 during the MNIST,

Fig. 4. The MAPEs of MNIST, Fashion-MNIST, and CIFAR-10.

Fashion-MNIST, and CIFAR-10 experiments, respectively.
This shows the high stability and robustness of our attack.

2) Attack Stealthiness: As shown in Figure 5, it is evident
that despite being subjected to an attack, the accuracy of the
benign test only marginally decreases upon the introduction
of a malicious dataset. The Fashion-MNIST dataset shows
a reduction of less than 1%, while MNIST and CIFAR-10
exhibit a decline of only 0.5%.

3) Statistical Analysis: Statistical analysis of MAPE
and benign test accuracy on MNIST, Fashion-MNIST, and
CIFAR-10 after conducting 30 independent experiments for
each dataset is shown in Table I. Specifically, first, we
specify which image in the training data is to be stolen,
and we conduct 3 independent experiments without changing
any setup. Then, we specify another image in the training
data to steal and repeat this procedure ten times until we
experiment 30 times. Then we compute the average and
standard deviation of MAPE and benign test accuracy for
each dataset. The results show that our attack is steady on
all datasets we experiment with and have few difference
in MAPE compared with CAA. Although the benign test
accuracy is slightly lower than CAA since we added more
malicious samples (20 times than CAA), we achieved roughly
the same attack effectiveness as CAA.

TABLE I
STATISTICAL ANALYSIS OF MAPE AND BENIGN TEST ACCURACY

Method Dataset MAPE Benign test accuracy (%)

Ours
MNIST 2.55 ± 0.58 98.71 ± 0.16

Fashion-MNIST 7.62 ± 2.25 91.51 ± 0.39
CIFAR-10 14.29 ± 1.04 94.55 ± 0.23

CAA
MNIST 1.78 ± 0.56 98.78 ± 0.13

Fashion-MNIST 7.20 ± 2.16 91.68 ± 0.32
CIFAR-10 13.11 ± 1.02 94.93 ± 0.38

1558

Fig. 5. The benign test accuracy (%) comparison before and after the introduction of malicious datasets.

VI. CONCLUSION

Using augmentation data that are visually identical to the
original training data, we investigated a unique technique
in this research to steal training data surreptitiously from
data holders. In particular, we generate augmentation data by
embedding strings into training images using a DNN-based
steganography encoder; the mapping from attacker-specified
strings to target labels can be produced during training. Thus,
during the inference stage, we can generate malicious test
images by adding known strings to an arbitrary image. Then,
after submitting the malicious images to the API published
by the data holders’, we can obtain target labels, and the
privacy training data of the data holder can be recovered in
accordance with the target labels. Many tests are run, and the
results show that our method can successfully and covertly
get private training data from data owners.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[2] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[3] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in 2013 IEEE international
conference on acoustics, speech and signal processing. Ieee, 2013,
pp. 6645–6649.

[4] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). IEEE, 2017, pp. 3–18.

[5] Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang, H. Tang, C. A.
Gunter, and K. Chen, “Understanding membership inferences on well-
generalized learning models,” arXiv preprint arXiv:1802.04889, 2018.

[6] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[7] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodology
for formalizing model-inversion attacks,” in 2016 IEEE 29th Computer
Security Foundations Symposium (CSF). IEEE, 2016, pp. 355–370.

[8] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici, “Hacking smart machines with smarter ones: How to ex-
tract meaningful data from machine learning classifiers,” International
Journal of Security and Networks, vol. 10, no. 3, pp. 137–150, 2015.

[9] M. P. Parisot, B. Pejo, and D. Spagnuelo, “Property inference attacks
on convolutional neural networks: Influence and implications of target
model’s complexity,” arXiv preprint arXiv:2104.13061, 2021.

[10] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models
that remember too much,” in Proceedings of the 2017 ACM SIGSAC
Conference on computer and communications security, 2017, pp. 587–
601.

[11] N. Xu, Q. Liu, T. Liu, Z. Liu, X. Guo, and W. Wen, “Stealing your data
from compressed machine learning models,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[12] W. Luo, L. Zhang, P. Han, C. Liu, and R. Zhuang, “Taking away both
model and data: Remember training data by parameter combinations,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 6, no. 6, pp. 1427–1437, 2022.

[13] W. Luo, L. Zhang, Y. Wu, C. Liu, P. Han, and R. Zhuang, “Capacity
abuse attack of deep learning models without need of label encodings,”
IEEE Transactions on Artificial Intelligence, pp. 1–13, 2023.

[14] X. Yang, W. Luo, L. Zhang, Z. Chen, and J. Wang, “Data leakage attack
via backdoor misclassification triggers of deep learning models,” in
2022 4th International Conference on Data Intelligence and Security
(ICDIS), 2022, pp. 61–66.

[15] T. Gu, B. Dolan-Gavitt, and S. Garg, “BadNets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[16] T. A. Nguyen and A. Tran, “Input-aware dynamic backdoor attack,”
Advances in Neural Information Processing Systems, vol. 33, pp. 3454–
3464, 2020.

[17] Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A survey,”
IEEE Transactions on Neural Networks and Learning Systems, 2022.

[18] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[19] A. Nguyen and A. Tran, “Wanet–imperceptible warping-based back-
door attack,” arXiv preprint arXiv:2102.10369, 2021.

[20] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Invisible backdoor
attack with sample-specific triggers,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 16 463–
16 472.

[21] M. Tancik, B. Mildenhall, and R. Ng, “Stegastamp: Invisible hyperlinks
in physical photographs,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 2117–2126.

[22] S. Li, M. Xue, B. Z. H. Zhao, H. Zhu, and X. Zhang, “Invisible
backdoor attacks on deep neural networks via steganography and regu-
larization,” IEEE Transactions on Dependable and Secure Computing,
vol. 18, no. 5, pp. 2088–2105, 2020.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[24] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[25] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

1559

