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Abstract—Runtime results of multiobjective evolutionary al-
gorithms in unbounded integer spaces are scarce at present. In
order to advance this research field we consider two versions of
the (1+1)-EA and analyze their runtime to the Pareto front of a
carefully designed biobjective test problem.
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I. INTRODUCTION

The theory of multiobjective evolutionary algorithms
(MOEA) on unbounded integer space can be regarded as a
terra incognita, i.e., almost nothing is known about this case at
present. There are theoretical results for EAs in integer space
(e.g. [1], [2]), but the integer space is mostly bounded and
only the singleobjective case is considered. Typically, the first
step in the theoretical exploration of a new field is the runtime
analysis of a version of the (1+1)-EA for a carefully designed
test problem. This path is also followed here.

After introducing the mathematical background and termi-
nology in section II we design an integer test problem with
two objectives in section III which may be seen as an analogon
to the bi-sphere problem in continuous space which has been
amenable to an analysis in the past [5]. After deriving Pareto
set and front for this problem we define a biobjective (1+1)-
EA that rejects only dominated solutions, and a singleobjective
(1+1)-EA that works on the scalarized objective function in
the sense of the reference point method [6] in section IV.
Both algorithms and their runtime for arbitrary starting points
are theoretically analyzed in 2-dimensional decision space in
section V. Section VI summarizes the results.

II. BACKGROUND AND TERMINOLOGY

In the following we consider unconstrained multiobjective
optimization problems (MOPs) of the form min{f(x) : x ∈
Zn} where f(x) = (f1(x), . . . , fd(x))

′ is a vector-valued
mapping with d ≥ 2 objective functions fi : Zn → R for
i = 1, . . . , d that are to be minimized simultaneously. The
optimality of a MOP is defined by the concept of dominance.

Let u, v ∈ F ⊆ Rd where F is equipped with the partial
order ⪯ defined by u ⪯ v ⇔ ∀i = 1, . . . d : ui ≤ vi. If
u ≺ v ⇔ u ⪯ v ∧ u ̸= v then v is said to be dominated by
u. An element u is termed nondominated relative to V ⊆ F
if there is no v ∈ V that dominates u. The set ND(V,⪯) =

{u ∈ V | ̸ ∃ v ∈ V : v ≺ u} is called the nondominated set
relative to V .

If F = f(X) is the objective space of some MOP with
decision space X ⊆ Zn and objective function f(·) then the set
F ∗ = ND(f(X),⪯) is called the Pareto front (PF). Elements
x ∈ X with f(x) ∈ F ∗ are termed Pareto-optimal and the set
X∗ of all Pareto-optimal points is called the Pareto set (PS).

If we are not interested in finding an approximation of the
entire PF a reference point method [6] can be used to find a
solution that is closest to a so-called reference point gathering
the user-given level of aspiration for each objective.

III. TEST PROBLEM

Consider the biobjective optimization problem f : Zn → N2
0

with

f(x) =

(
∥x− c∥1
∥x+ c∥1

)
→ min! and c ∈ Zn \ {0} (1)

where ∥·∥1 denotes the ℓ1-norm. Setting c = (c1, 0, . . . , 0)
T ̸=

0 ∈ Zn we obtain the special case f : Zn → N2
0 with

f(x) =

(
|x1 − c1|+ |x2|+ . . . |xn|

|x1 + c1|+ |x2|+ . . . |xn|

)
→ min! (2)

Furthermore, we insist on c1 =: a ∈ N and n = 2, so that
problem (1) finally specializes to f : Z2 → N2

0 with

f(x) =

(
|x1 − a|+ |x2|

|x1 + a|+ |x2|

)
→ min! and a ∈ N. (3)

Theorem III.1
The Pareto set of problem (2) is

X∗ = {x ∈ Zn : x = (−|c1|+ k, 0, . . . , 0)T} (4)

with Pareto front F ∗ = f(X∗) =

{(v1, v2)T ∈ Z2 : (v1, v2)
T = (k, 2 · |c1| − k)T} (5)

where k = 0, 1, . . . , 2 · |c1| in (4) and (5).
Proof
Suppose the Pareto set X∗ is as given in (4). Insertion of all
x∗ ∈ X∗ in the objective function (2) reveals that the Pareto
front F ∗ is given by (5).

It remains to prove the validity of (4). First, we show that
X∗ is an antichain (i.e., all distinct elements are mutually
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incomparable). Second, we show that the image of each y ∈
Zn\X∗ is dominated by an element of f(X∗). These facts then
lead to the conclusion that X∗ is complete and nondominated.
Hereinafter, we assume w.l.o.g. that c1 =: a > 0.

Let x, y ∈ X∗ with x ̸= y so that necessarily xi = yi = 0
for i = 2, . . . , n. Two cases must be considered.

1. If x1 < y1 then f1(x) = |x1 − a| > |y1 − a| = f1(y) and
f2(x) = |x1 + a| < |y1 + a| = f2(y).

2. If x1 > y1 then f1(x) = |x1 − a| < |y1 − a| = f1(y) and
f2(x) = |x1 + a| > |y1 + a| = f2(y).

Thus, we have shown that f(x) ∥ f(y) for each pair of distinct
elements of X∗. This proves that X∗ is an antichain.

Let y ∈ Zn \X∗ and x∗ ∈ X∗. We partition Zn \X∗ into
three sets:
1. |y1| > a and ∀i = 2, . . . , n : yi = 0.

If y1 > a then f1(y) = |y1 − a| = y1 − a > 0 and
f2(y) = |y1 + a| = y1 + a > 2 a.
Those points are dominated by f(x∗) =
f((a, 0, . . . , 0)T) = (0, 2 a)T ≺ f(y).
If y1 < −a then f1(y) = |y1 − a| = a − y1 > 2 a and
f2(y) = |y1 + a| = −y1 − a > 0.
Those points are dominated by f(x∗) =
f((−a, 0, . . . , 0)T) = (2 a, 0)T ≺ f(y).

2. |y1| > a and ∃i = 2, . . . , n : |yi| > 0.
If y1 > a then f1(y) = |y1 − a|︸ ︷︷ ︸

> 0

+ |y2|+ . . .+ |yn|︸ ︷︷ ︸
> 0

> 0

and f2(y) = |y1 + a|︸ ︷︷ ︸
> 2 a

+ |y2|+ . . .+ |yn|︸ ︷︷ ︸
> 0

> 2 a.

Those points are dominated by f(x∗) =
f((a, 0, . . . , 0)T) = (0, 2 a)T ≺ f(y).
If y1 < −a then f1(y) = |y1 − a|︸ ︷︷ ︸

>2 a

+ |y2|+ . . .+ |yn|︸ ︷︷ ︸
>0

> 2 a

and f2(y) = |y1 + a|︸ ︷︷ ︸
>0

+ |y2|+ . . .+ |yn|︸ ︷︷ ︸
>0

> 0.

Those points are dominated by f(x∗) =
f((−a, 0, . . . , 0)T) = (2 a, 0)T ≺ f(y).

3. |y1| ≤ a and ∃i = 2, . . . , n : |yi| > 0.
Note that in this case (y1, 0, . . . , 0)

T ∈ X∗. As a conse-
quence,
f1(y) = |y1 − a| + |y2|+ . . .+ |yn|︸ ︷︷ ︸

> 0

> |y1 − a| =

f1((y1, 0, . . . , 0)
T) and

f2(y) = |y1 + a| + |y2|+ . . .+ |yn|︸ ︷︷ ︸
> 0

> |y1 + a| =

f2((y1, 0, . . . , 0)
T).

Thus, those points are dominated by f(x∗) =
f((y1, 0, . . . , 0)

T) ≺ f(y). □

IV. ALGORITHMS

A. (1+1)-Pareto-EA

This dominance-based EA accepts the offspring if it is
not dominated by its parent. Thus, an offspring being in-
comparable to its parent is also accepted. The offspring is
generated by a local mutation operation: draw any dimension

k uniformly at random and increment or decrement xk with
equal probability. Effectively, we add a mutation vector with
a specific distribution to the parent.

The notation Un(k, V ; v) with n ∈ N, k ∈ {1, . . . , n}, V ⊂
Z with |V | < ∞, and v ∈ Z denotes a discrete n-dimensional
distribution, whose realizations are generated by drawing k
distinct indices uniformly distributed from {1, . . . , n}, before
drawing the values for these k index positions independently
and uniformly distributed from V ; the remaining values are
set to v. Thus, mutation vector Z ∼ Un(1, {−1,+1}; 0) is a
zero vector where a single uniformly distributed position in
the vector is set either to −1 or to +1.

Algorithm 1 (1 + 1)-Pareto-EA

1: choose X(0) ∈ Zn at random; set t = 0
2: repeat
3: draw Z ∼ Un(1, {−1,+1}; 0)
4: Y = X(t) + Z
5: if f(X(t)) ≺ f(Y ) then
6: X(t+1) = X(t)

7: else
8: X(t+1) = Y
9: end if

10: t = t+ 1
11: until stopping criterion fulfilled

B. (1+1)-RefPoint-EA

The reference point method is related to the goal program-
ming approach and they share the psychologically appealing
idea that the decision maker should set a reference point (or
goal) in objective space and then some algorithm tries to come
close to it. Coming close to a goal is typically realized by
minimizing a distance measure between an attainable objective
vector and the goal vector.

Algorithm 2 (1 + 1)-RefPoint-EA

1: choose X(0) ∈ Zn at random; set t = 0
2: choose a reference point r ∈ Zd

3: repeat
4: draw Z ∼ Un(1, {−1,+1}; 0)
5: Y = X(t) + Z
6: if f̃r(X

(t)) < f̃r(Y ) then
7: X(t+1) = X(t)

8: else
9: X(t+1) = Y

10: end if
11: t = t+ 1
12: until stopping criterion fulfilled

Here, the scalarized objective function to be minimized is
given by

f̃r(x) = ρ(f(x), r)

where r ∈ Zd is the reference point and ρ : Zd × Zd → R+
0

is any metric on d-dimensional integers.
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The mutation is identical to that of the dominance-based
EA, but the selection method now accepts every offspring that
is not more distant to the reference point than its parent.

V. THEORY

A. (1+1)-Pareto-ES

1) Local behavior: Suppose x ̸∈ X∗. We like to know how
the objective function values alter for each possible mutation.
Here, we consider the special case n = 2. In this case four
different mutations are possible:

1. Z = (0,+1)T

f(x+ Z) =

{
f(x) + (+1,+1)T if x2 ≥ 0
f(x) + (−1,−1)T if x2 < 0

2. Z = (0,−1)T

f(x+ Z) =

{
f(x) + (−1,−1)T if x2 > 0
f(x) + (+1,+1)T if x2 ≤ 0

3. Z = (+1, 0)T

f(x+ Z) =

 f(x) + (+1,+1)T if x1 ≥ a
f(x) + (−1,+1)T if − a ≤ x1 < a
f(x) + (−1,−1)T if x1 < −a

4. Z = (−1, 0)T

f(x+ Z) =

 f(x) + (−1,−1)T if x1 > a
f(x) + (+1,−1)T if − a < x1 ≤ a
f(x) + (+1,+1)T if x1 ≤ −a

Due to symmetries in the problem (see fig. 1) it suffices to
consider starting points in the region {x ∈ Z2 : x1 > a∧x2 >
0} to analyze the behavior also for other regions.

x1 > +a ⇔ x1 > +a
x2 > 0 x2 < 0

⇕ ⇕

x1 < −a x1 < −a
x2 > 0 ⇔ x2 < 0

Fig. 1. Dominance symmetries in the test problem if n = 2.

While x1 > a and x2 > 0 the EA makes successful
mutations with probability 1/2, because it may go either to
the left with probability 1/4 or down with probability 1/4.
In this case both fitness functions will be decreased by 1.
Otherwise the EA stays at the current position.

As soon as either x1 = a or x2 = 0 the behavior changes.
If x1 = a only moves down are successful which happens

with probability 1/4. It is also possible to move to the left
(with probability 1/4), but this leads to an incomparable
solution which is accepted. If this has happened (x1 < a) the
EA may go to left or right to incomparable solutions but it will

never leave {−a ≤ x2 ≤ a}. Repeated downward mutations
will finally end at the Pareto set with x2 = 0.

If x2 = 0 only moves to the left are successful which hap-
pend with probability 1/4. Other mutations lead to dominated
solutions which are rejected. Repeated leftward mutations will
finally end at the Pareto set with x1 = a.

2) Runtime: Suppose the EA is started in x ∈ Z2 with
x1 > a and x2 > 0. We first distinguish how many FEs are
necessary to reach a positions with either x1 = a or x2 = 0.
Next, we consider then runtime to the Pareto set once either
of both positions is reached.

1. Arrival at (k, 0)T with a < k ≤ x1

This is only possible via (k, 1)T. Regardless which path
has been realized to end up in (k, 1)T, the EA must have
taken x2 − 1 downward and x1 − k leftward steps. On
average the EA leaves its current position in the 2nd trial.
Therefore, 2 (x1+x2−k−1) trials are required on average
to reach (k, 1)T. Finally, it must do the downward move
which probability 1/2 which adds 2 trials on average.

2. Arrival at (a, k)T with k > 0
This is only possible via (a + 1, k)T. Again, regardless of
the realized path, the EA must have taken x1 − (a + 1)
leftward and x2 − k downward steps. As the EA leaves its
current position by a successful mutation in the 2nd trial
on average as well, now 2 (x1 + x2 − k− a− 1) trials are
required on average to reach (a + 1, k)T. Finally, it must
do the leftward move which probability 1/2 which adds 2
trials on average.

3. Path from (k, 0)T

Now only leftward mutations are possible which happen
with probability 1/4. A successful move therefore happens
after 4 trials on average and the EA needs k − a of them
to reach the Pareto set at (a, 0)T. Therefore, 4 (k−a) trials
are necessary on average.

4. Path from (a, k)T

Now only downward mutations are successful which hap-
pen with probability 1/4. Moves to the left and right
are accepted as long as the constraint |x1| ≤ a is valid.
Repeated left- and rightward moves lead to a random walk
(with reflecting barriers) of variable x1 and they do not
change the runtime (because they count effectively like
unsuccessful moves without progress). Since the EA needs
k downward steps to reach the Pareto set, 4 k trials are
necessary on average.

So far we have derived

E[T | path through (k, 0)T ] =

2 (x1+x2−k−1)+4 (k−a)+2 = 2 (x1+x2+k)−4 a and
(6)

E[T | path through (a, k)T ] =

2 (x1+x2−k−a−1)+4 k+2 = 2 (x1+x2+k)−2 a (7)

It remains to specify with which probability either of the both
cases occur. To that end we regard both points as absorbing
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states of a Markov chain. Please notice that the disregard of
the waiting times on transient states (i.e., positions that are
left after an accepted mutation) do not affect the absorption
probabilities of a Markov chain if we reformulate the transition
probabilities for a modified, new process:

P{move downward in new process } =

P{move downward in original process }
P{ stay at position in original process }

=
1

4
:
1

2
=

1

2

and analogous for the leftward move. Therefore we obtain:

1. Absorption to (k, 0)T

We know that the EA must do x2−1 downward and x1−k
leftward steps each with (new) probability 1/2 and finally
a downward move with probability 1/2. This happens with
probability

P{ (k, 0)T }= 1

2

(
x1 + x2 − k − 1

x1 − k

)
2−(x1+x2−k−1) (8)

where the binomial term describes the number of possible
paths.

2. Absorption to (a, k)T

We know that the EA must do x2 − k downward and x1 −
(a+1) leftward steps each with (new) probability 1/2 and
finally a leftward move with probability 1/2. This happens
with probability

P{ (a, k)T }= 1

2

(
x1 + x2 − k − a− 1

x2 − k

)
2−(x1+x2−k−a−1)

(9)
where the binomial term describes the number of possible
paths.

Finally, we have to sum over all possible values of k

E[T ] =

x1∑
k=a+1

E[T | path through (k, 0)T ] · P{ (k, 0)T }+

x2∑
k=1

E[T | path through (a, k)T ] · P{ (a, k)T }.

inserting the expressions given in (6) - (9). Table I compares
our findings with empirical results (100 runs) for some starting
points for the test problem with a = 50. Figure 2 provides
a graphical illustration and an impression about the runtime
variability.

TABLE I
COMPARISION OF EXACT, EMPIRICAL AND APPROXIMATED EXPECTED

RUNTIMES FOR DIFFERENT STARTING POINTS X(0) IN CASE OF a = 50.
EMPIRICAL RESULTS ARE BASED ON 100 RUNS.

experiment X(0) E[T ] median mean meanfield
E1 (0, 1000)T 4000 3994 4001 4000
E2 (100, 900)T 3600 3577 3591 3600
E3 (300, 700)T 2800 2807 2802 2800
E4 (500, 500)T 2003 2003 2011 2000
E5 (700, 300)T 2600 2589 2586 2600
E6 (900, 100)T 3400 3400 3405 3400
E7 (1000, 0)T 3800 3795 3805 3800

l

ll

l

l
l

l
l

l

l

l

E1 E2 E3 E4 E5 E6 E7

20
00

25
00

30
00

35
00

40
00

experiment

#F
E

Fig. 2. Number of function evaluations until Pareto front reached.

Taking a meanfield point of view, i.e., we average over
the stochastic fluctuations and follow the “expected path”,
the runtime can be estimated as follows: When starting from
x1 > a and x2 > 0 the EA either goes a step down or a step
to the left in the second trial.

1. x1 − a ≥ x2:
After 4 trials it has made a move down and to the left. This
is repeated until it hits (x1 − x2, 0)

T after 4x2 trials. Then
the EA can only move to the left every 4th trial, so that it
ends in (0, a)T after 4 (x1 − x2 − a) trials. In total it needs
4x2 + 4 (x1 − x2 − a) = 4 (x1 − a) trials on average.

2. x1 − a < x2:
After 4 trials it has made a move down and to the left. This
is repeated until it hits (a, x2−(x1−a), 0)T after 4 (x1−a)
trials. Then the EA can only move downwards every 4th
trial, so that it ends in (0, a)T after 4 (x2 − x1 + a) trials.
In total it needs 4 (x1 − a) + 4 (x2 − x1 + a) = 4x2 trials
on average.

The above expressions for the trials on average have been
used to calculate the values given in the rightmost column of
table I. The agreement with the exact values for E[T ] and the
experimental results in table I is intriguing. The expressions
lead to the conjecture that the expected runtime is roughly
4 ∥X(0) − c∥∞ or O(∥X(0)∥∞), where c = (a, 0)T.

B. (1+1)-RefPoint-EA
Let the reference point r = (a, a)T be located on the Pareto

front with f−1(r) = (0, . . . , 0)T. In principle, every metric or
norm may be used to express the distance of a solution to the
reference point. In integer decision and objective space the ℓ1-
norm seems most natural. In this case, the scalarized objective
function is f̃r(x) = ∥f(x)− r∥1. If n = 2 then

f̃r(x) = ∥f(x)− r∥1 = |f1(x)− a|+ |f2(x)− a|

=
∣∣∣|x1 − a|+ |x2| − a

∣∣∣+ ∣∣∣|x1 + a|+ |x2| − a
∣∣∣. (10)
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For the runtime analysis one needs to know which mutations
are improving, neutral or worsening. This information is
available from the level sets (= elements in decision space
with equal fitness value). The absolute values require a case-
by-case analysis.

1. Let x1 ≥ a and x2 ≥ 0. Then (10) simplifies to

f̃r(x) = |(x1 − a) + x2 − a|+ |(x1 + a) + x2 + a|
= |x1 + x2 − 2 a|+ x1 + x2. (11)

If additionally x1 + x2 ≥ 2 a equation (11) reduces to

f̃r(x) = x1 + x2 − 2 a+ x1 + x2 = 2 ( [x1 − a] + x2 )

and otherwise to

f̃r(x) = 2 a− x1 − x2 + x1 + x2 = 2 a.

2. Let x1 ≤ −a and x2 ≥ 0. Due to symmetry we obtain
(analogous to case 1 above) that (10) finally simplifies to

f̃r(x) =

{
2 ( [−x1 − a] + x2 ) if x2 ≥ x1 + 2 a

2 a otherwise.

3. Let −a < x1 < a and x2 ≥ 0. In this case equation (10)
simplifies to

f̃r(x) =
∣∣∣|x1 − a|+ x2 − a|

∣∣∣+ |x1 + x2|

= |(a− x1) + x2 − a|+ |x1 + x2|
= |x2 − x1|+ |x1 + x2|. (12)

If additionally x1 ≥ 0 equation (12) reduces to

f̃r(x) = |x2 − x1|+ x1 + x2 =

{
2x2 if x2 ≥ x1

2x1 if x2 < x1.

The case with additional constraint x1 < 0 leads to

f̃r(x) = x2−x1+|x1+x2| =
{

2x2 if x1 + x2 ≥ 0
−2x1 if x1 + x2 < 0.

4. Due to symmetries of the problem one obtains analogue
expressions for the preceding cases if x2 < 0.

This analysis has shown that there exists plateaus in the
fitness landscape with f(x) = 2 a. Although the size of the
plateaus is finite this fact may slow down the algorithm’s
approach to the optimum as it behaves like a random walk on
a lattice until it reaches the border of the plateau with better
fitness values. If there are worse fitness values at the rim of
the plateau the random walk is reflected by this barrier. Figure
3 illustrates the resulting fitness landscape for r = (a, a)T with
a = 4.

From a theoretician’s point of view the situation becomes
even worse, since the size and values of the plateaus vary
depending on the location of the reference point—even if it is
placed on the Pareto front.

If the reference point is placed in the utopian region ’behind’
the Pareto front, then there are still plateaus and, additionally,
several points have the same minimal attainable distance to the
reference point. For example, setting r = (2, 2)T in case a = 4,

2
4

6
8

10
12
14
16
18
20

Fig. 3. Kind of contour plot of the scalarized objective function with reference
point r = (a, a)T = (4, 4)T in n = 2. Lattice points lying on the a connected
solid line or on a black area have the same objective function value. Black
areas indicate plateaus. Numbers next to the contour lines refer to the objective
function value. The red dot in the center marks the position of the optimum
at x∗ = (0, 0)T with f̃(x∗) = 0.

the Pareto-optimal solutions (6, 2)T, (5, 3)T, (4, 4)T, (3, 5)T and
(2, 6)T have the same ℓ1-distance to r. Even worse, if r =
(0, 0)T then the entire Pareto front has the same distance to
the reference point.

Another extreme case is caused when using the discrete
metric with ρ(x, y) = 0 if x = y, and ρ(x, y) = 1 if x ̸= y. In
this case only the reference point has distance zero whereas
all other points are on a plateau with value 1. Evidently, a
useful distance measure must provide some guidance to better
solutions.

Recommendation:
The metric used for expressing ’closeness’ to a solution in
objective space should be chosen with prudent consideration.
The ostensibly obvious ℓ1-metric in integer objective spaces
can lead to optimality results that are quite counter-intuitive
to the DM’s perception. In addition, this metric can cause
the emergence of plateaus which may hamper the algorithm’s
approach of the optimum and the theoretician’s efforts of
deriving runtime bounds. □

Most likely, the concept of ’closeness’ for humans is more
naturally represented by the Euclidean ℓ2-norm. As table II
reveals there are no plateaus any longer. After this finding, we
restrict the analysis to distances in ℓ2-norm. Using the squared
norm does not change the problem in ordinal sense and the
objective function values remain in N0. Thus,

fr(x) = ∥f(x)− r∥22 = (f1(x)− r1)
2 + (f2(x)− r2)

2

in general, and with r = (a, a)T and a = 4 in the following.
With this choice we can revert to table II as a starting point
for our runtime analysis.

As can be seen from table II the problem is symmetric to
x1- and x2-axis. Since the EA only makes steps either in x1-
direction or in x2-direction and cannot cross either of both
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TABLE II
OBJECTIVE FUNCTION VALUES f̃r(x) USING ℓ2-DISTANCE WITH r = (a, a)T AND a = 4 FOR x ∈ [−10, 10]2 ∩ Z2 .

10 544 482 424 370 320 274 232 218 208 202 200 202 208 218 232 274 320 370 424 482 544
9 482 424 370 320 274 232 194 180 170 164 162 164 170 180 194 232 274 320 370 424 482
8 424 370 320 274 232 194 160 146 136 130 128 130 136 146 160 194 232 274 320 370 424
7 370 320 274 232 194 160 130 116 106 100 98 100 106 116 130 160 194 232 274 320 370
6 320 274 232 194 160 130 104 90 80 74 72 74 80 90 104 130 160 194 232 274 320
5 274 232 194 160 130 104 82 68 58 52 50 52 58 68 82 104 130 160 194 232 274
4 232 194 160 130 104 82 64 50 40 34 32 34 40 50 64 82 104 130 160 194 232
3 194 160 130 104 82 64 50 36 26 20 18 20 26 36 50 64 82 104 130 160 194
2 160 130 104 82 64 50 40 26 16 10 8 10 16 26 40 50 64 82 104 130 160
1 130 104 82 64 50 40 34 20 10 4 2 4 10 20 34 40 50 64 82 104 130
0 104 82 64 50 40 34 32 18 8 2 0 2 8 18 32 34 40 50 64 82 104

-1 130 104 82 64 50 40 34 20 10 4 2 4 10 20 34 40 50 64 82 104 130
-2 160 130 104 82 64 50 40 26 16 10 8 10 16 26 40 50 64 82 104 130 160
-3 194 160 130 104 82 64 50 36 26 20 18 20 26 36 50 64 82 104 130 160 194
-4 232 194 160 130 104 82 64 50 40 34 32 34 40 50 64 82 104 130 160 194 232
-5 274 232 194 160 130 104 82 68 58 52 50 52 58 68 82 104 130 160 194 232 274
-6 320 274 232 194 160 130 104 90 80 74 72 74 80 90 104 130 160 194 232 274 320
-7 370 320 274 232 194 160 130 116 106 100 98 100 106 116 130 160 194 232 274 320 370
-8 424 370 320 274 232 194 160 146 136 130 128 130 136 146 160 194 232 274 320 370 424
-9 482 424 370 320 274 232 194 180 170 164 162 164 170 180 194 232 274 320 370 424 482

-10 544 482 424 370 320 274 232 218 208 202 200 202 208 218 232 274 320 370 424 482 544
x -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

axes, it suffices to consider the nonnegative quadrant with
x1 ≥ 0 and x2 ≥ 0.

If the EA is somewhere in the positive quadrant with
x1 > 0 and x2 > 0 then it must do x1 moves to the
left and x2 downward moves to reach the optimum in the
origin. It can move to the left or downwards in each case
with equal probability 1

4 , and it stays at the current position
with probability 1

2 . If the EA has reached one of the axes then
improvements can be achieved only in a single direction along
the axis with probability 1

4 .
Since we consider effectively a singleobjective problem, we

can apply all the techniques that have been developed so far
for this case. Let random variable Dt denote the number of
steps required to reach the optimum for the EA at position
X(t) at step t ≥ 0. The above argumentation reveals that
E[Dt − Dt+1 ] ≥ 1

4 so that the additive drift theorem [3]
asserts E[T |D0 ] ≤ 4D0 where D0 = ∥X(0)∥1. Thus, we
have proven:

Theorem V.1
The (1+1)-Refpoint-EA with local mutations and starting point
X(0) requires O(∥X(0)∥1) many steps to reach the reference
point r = (a, a)T with a = 4 of test problem (3) when using
the squared ℓ2-metric as distance measure. □

We dare to claim that this result also holds for arbitrary choices
of a > 0 and that another reference point on the Pareto front
will not change the order of the runtime.

VI. CONCLUSIONS

We have introduced two versions of (1+1)-EAs and ap-
plied them to a simple biobjective optimization problem in
unbounded integer search space. Both EAs employ local
mutations (i.e., adding ±1 with equal probability to the parent
vector at an arbitrary index). The first version accepts the
offspring if it is not dominated by its parent, whereas the
second version accepts the offspring if it is not more distant to
some reference point than its parent. The formal analysis for

the latter case revealed that the choice of the distance measure
can have significant impact on the structure of the landscape
(existence and size of fitness plateaus). The runtime analysis
yields the result that both EA versions reach the Pareto set
or front (1st version) and the reference point (2nd version) in
O(∥X(0)∥∞) expected number of steps in dimension n = 2.

These results can be extended in various ways. The next
steps should be a generalization for n > 2 and more realistic
mutation operators like the maximum entropy distribution with
unbounded support in Zn, that can also be coupled with self-
adaptive step size control [4].
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