


Abstract—The trajectory prediction of heavy heavy trains
(HHTs) is crucial for ensuring the safe and automatic operation.
It is inevitable to design a train model for predicting train
operation trajectory of the HHTs. However, large capacity and
the existence of unmodeled dynamics in the operation process
caused by air resistance, working condition switching, and
external environment make it difficult to establish accurate
speed trajectory prediction models (STPMs) using traditional
mechanism-driven methods. Most recent research considers
using data-driven model to learn information from data, but
they have no information about the physical characteristic of the
STMP model. This makes it difficult to accurately describe the
relationship between the control force and the running speed
during the train operation. To overcome these issues, this study
combines the mechanism-driven model with the deep learning
model to establish a new long and short-term memory
mechanism hybrid (LSTMMH) model. Specifically, the
mechanism model describes the change of control force, while
the LSTM captures the unmodeled dynamics of long time series
of running process. The effectiveness of the proposed method is
demonstrated while the performance is compared with the
traditional LSTM and mechanism models using the real data.

I. INTRODUCTION

It is an important task to establish an accurate speed
trajectory prediction model (STPM) to predict train trajectory
and guide drivers for operation safety and stability of the
heavy haul trains (HHTs). This model predict the subsequent
speed trajectory according to the existing running state
characterized by speed, mileage, and control force. However,
large capacity of the HHTs leads to uncertainties of its force.
Also there are significant unmodeled dynamics in complex
track conditions including ramp, curve rate, speed limit, etc.
The research on STPM modeling has attracted much attention
in the academia and industry.

Some scholars have made efforts to establish STPMs for
HHTs. Overall, the existing work can be classified into three
categories: mechanism-driven models, data-driven models,
and mechanism-data hybrid models. Some of these studies are
devoted to establishing mechanism-driven models [1],[2], but
there are significant unmodeled dynamics caused by track
conditions, external environment and internal wear of
equipment. Recent work has focused on the time-varying,
nonlinear, and time-delay of control force transmission during
train running [3]. For example, taking into account the train
motion dynamics containing nonlinearity and parameter
uncertainty, the variable with time delay is integrated into the
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analysis of velocity delay by the Lyapunov-Krasovskii
function [4]. Literatures [5-7] use state-space models to
establish the dynamic model of HHTs. The linearizing
nonlinear forces, however, cannot be described by the
mechanism-driven model. In addition, the dynamics of train
force transmission are omitted in the existing work. Although
the mechanism model is established based on physical
characteristics, ignoring the unmodeled dynamics may greatly
decrease the STPM accuracy in the complex environment.
Moreover, it requires iterative verification by drivers with
extensive experience in field experiments [8].

Data-driven models learn from a plurality of historical data
and have a wide range of applications in solving practical
engineering problems. The STPM data come from speed
sensors installed on the locomotive and carriage, which record
a large number of historical data during the round-trip running
of the HHTs. Aiming at the prediction of train delay, a wavelet
neural network model is established [9]. An intelligent
prediction and feature recognition method for the large area
joint train delay is proposed. Reference [10] takes into account
the energy consumption of high-speed trains and proposes the
back-propagation model. Although these data-driven models
achieve higher accuracy than mechanism-driven models, the
structure relies entirely on training data. The physical
characteristics of the control force during running for the
HHTs cannot be effectively extracted. To capture the time
dynamics of the trajectory, reference [11] proposes a recurrent
neural network (RNN)-based STPM. The STPM is even more
difficult for the HHTs than the ones for high-speed railways
and urban railways with dispersed power and short bodies.

References [12-14] propose data-driven models, while the key
parameters cannot be used for online strategies. The
mechanism model is used to construct the physical
characteristics. However, the above methods are to identify
the mechanism-driven models, while and data-driven model
alternately apply traditional neural networks to improve the
prediction accuracy. Reference [15] proposes a gas leakage
diagnosis strategy based on a two states mechanism model,
and the unscented kalman filter method is developed to
diagnose. Reference [16] proposes a mechanism model but
that would lead to large errors. Therefore, a data-driven error
compensation model is beneficial to speed trajectory
prediction. More practial aspects should be taken into account
while establishing the data-driven model: 1) the large capacity
of HHTs leads to uncertainties in the control force; 2) in
complex lines, there are unmodeled dynamics and
time-varying characteristics in long time series that may
significantly affect the train running trajectory. We thus
develop a mechanism-driven and data-driven deep learning
model for STPM. The mechanism model establishes the
longitudinal dynamic relation and captures the force
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characteristics. Data-driven model learns the estimation
deviation caused by unmodeled dynamics and predicts the
subsequent running state to compensate the mechanism model.
Compared with other traditional mechanism-data hybrid
modeling methods, this paper considers the effect of the
disturbance dynamics of the operation environment and the
complex physical characteristics in uncertainty force during
the train running.

The remainder of this paper is organized as follows.
Section II describes the longitudinal dynamics model of HHT.
Section III analyzes the structure of the sliding window LSTM
neural network and present the structure of the long and
short-term memory mechanism hybrid model (LSTMMH)
model. Section IV describes the experimental simulation. In
the end, section V sets out the conclusions and briefly reviews
the scope of future work.

II. LONGITUDINAL DYNAMIC MODEL OF HHTS

During the running of HHTs, due to the line gradient,
curve, train body, etc., the train is subjected to various forces.
Among them, the force perpendicular to the direction of train
movement is called transverse force, and the one parallel to the
direction of train movement is called longitudinal force. This
section focuses on the kinetic analysis of the longitudinal
forces and establishes the longitudinal kinetic model of the
HHT in combination with the regulations on railway train
traction calculation.

Refer to literature [17], mechanism model of HHT is
established. The traction force, braking force, and resistance
are considered. The corresponding differential equation is
constructed according to the second law of Newtonian
mechanics to reflect the force.

Figure 1. Force analysis of HHT.

The differential equation of the longitudinal dynamics of
the HHT is as follows:

mv B C D E f      (1)

where a denotes the slope angle of the line section. m is the
train mass. v refers to the acceleration of the train. B refers to
the resistance of the HHT. C is the traction force. D is the
braking force. f represents the air resistance, wind resistance,
adhesive force and unmodeled factors caused by the external
environment on the train force during HHT running. B , C ,
and D can be calculated by the mechanism model to capture
accurate force characteristics, while f needs to learn the
environmental disturbance dynamics through the data-driven
model.

III. METHODOLOGY

A. HHT mechanism-data hybrid model strategy
In order to derive the advantages of the

mechanism-driven model containing explicit physical
characteristics and the adaptability of the data-driven model,
a LSTMMH modeling method is proposed. The LSTMMH
model is shown in Figure 2. The train running data input is
composed of a long time serie, and the length of the sliding
window. The predicted values of the data-driven model are
used as inputs to the mechanism model. The output of the
mechanistic model and the predicted values compose the
input of the LSTMMH model into the sliding window for the
next moment.

Figure 2. HHT mechanism-data hybrid model strategy.

We use the LSTMMH to predict the train running speed at
the next moment. The mechanism model is used to analyze
the train forces in detail and reflect the real-time control force
performance. We consider a time step t, the
three-dimensional matrix , ,u s v of actual driver running data
is used as the input of the LSTM model. v is the running
speed of HHT, s is the running mileage, and u is the control
force. The LSTM model is to obtain the predicted values of
the speed and mileage at the next moment. The predicted
value 1tu  is obtained at the next moment through the
mechanism model, and then the inputs of the LSTM model
are formed with ! 1ˆ ˆ,t ts v  . Also the outputs of the model are

!t̂s  and 1t̂v  at the next moment.

B. Sliding window LSTM-based trajectory prediction
Recurrent neural networks (RNNs) are used for time serie

prediction. The connections between nodes form a directed
graph along a time series. This makes it a time-dynamic
behavior. However, it is only suitable to short time serie, and
can not process the effective information of long time serie,
resulting in a decrease in accuracy.

As a variant of RNN, LSTM can overcome the problem
that RNN cannot handle long distance dependencies [18]. The
key to LSTM is the memory unit, also known as the cell state.
Cell states can transmit information throughout the sequence
and decide when to discard and update information. Through
the gating mechanism, LSTM can control the flow of
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information. The main doors of the LSTM include the
memory gate, the input gate, and the output gate.

Figure 3. LSTM neural network structure.

In this paper, the LSTM neural network is chosen as the
data-driven model whose basic structure is shown in Figure 3.
For the convenience of description, we consider one time step
t. Let 1: 1: 1:[ , , ]t t t tv s u  be the current state vector. Let

ˆ ˆ[ , ]t t th v s be the output of the next moment. We adopt the
LSTM structure, which is composed of three layers. The first
is used to receive the running speed, mileage and control
force as input characteristics t . The second is the recurrent
hidden layer composed of memory blocks involving memory
cells and adaptive gating units, and the last layer is the output
layer to obtain ,t tv s .

Single-step forecasting inputs all actual values and predicts
only one subsequent value. Multi-step prediction predicts
multiple subsequent values, but the prediction error of
multi-step prediction accumulates with the number of steps
increases. In this paper, multi-step-ahead prediction (MSP) is
conducted to obtain a long-term prediction sequence.
Multi-step-ahead prediction is realized by performing the
one-step-ahead prediction iteratively. One-step-ahead
prediction means that the LSTMMH model only predicts one
set of data at a time, and combines it with the output of the
mechanism model to form the input data of the LSTMMH
model at the next time. The sliding window length is set to L.
The prediction is iteratively achieved to obtain long-term
time serie. We assume the current period is i predicted from

1i  .
The extracted HHT running data are divided into two parts:

the measurement sequence 1: 1 2[ , , , ]i i i i nHI h h h    , and
the prediction sequence 1: 1 2

ˆ ˆ ˆˆ ( , , , )i i i i nH h h h    .

1 1 2
ˆ ˆ ˆ ˆ( , , , )i i L i L ih g h h h      (2)

( )g  is a nonlinear function. The 2îh  is predicted using the
same method, but using the output of Eq. (2) as the input:

2 2 3 1
ˆ ˆ ˆ ˆ( , , , )Ti i L i L ih g h h h       (3)

where 1îh  is the predicted value of measurement sequence at
cycle 1i  . It is worth noting that in the sliding window input
module, to capture the dynamic characteristics of the time
series, the length of the sliding window needs to be
continuously filled to the maximum length L. The processing
of performing pre-padding operation on the input sequence is
shown in Figure 4.

Figure 4. Slide-window pre-fill operation of input sequences.

C. LSTM mechanism hybrid module
Based on the standard LSTM, our LSTMMH considers

the unique nature of the STPM and makes a number of
improvements. Specifically, the LSTMMH model includes a
mechanism module, a data-driven module, a sliding window
input module, and a LSTM mechanism hybrid module. The
LSTM mechanism hybrid module captures the input
characteristics of the control commands through the collected
line operation data. The three-dimensional matrix , ,u s v
extracted from the running state is used as the input to the
LSTM model processed through hidden layers of forgetting
gates, input gates, and output gates to obtain ˆ ˆ,s v .

Figure 5. LSTMMH neural input and output structure.

The calculation of the locomotive traction is as follows:
760                              [0,5]
760-(v-5) 228 / 65      (5,65]           
9600 3.6 /                (65,100]       

T

v
C v

v v


  
  

(5)

The calculation of the locomotive braking force is as
follows:

461 / 5         [0,3]
461                  (3,75]      
9600 3.6/      (75,100]

T

v v
D v

v v

 
 
  

(6)

where TC is the locomotive traction, kN. TD is the
locomotive braking force, kN. v refers to locomotive running
speed, km/h.

The calculation of locomotive operation resistance is:
2

1 1.2 0.0065 0.000279w v v   (7)
2

11 0.92 0.0048 0.000125w v v   (8)

where 1w is the basic resistance per unit of the locomotive,
N/kN. 11w is the basic resistance per unit of carriages, N/kN.
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The calculation of basic train running resistance is:

1 1 110.001 ( )W w w mg   (9)

where 1W is the basic resistance of train running, kN. 0. 001 is
the unit conversion coefficient.

Due to the long formation of HHTs, the length of the train
needs to be considered. The calculation formula of the
additional resistance per unit running is:

2
1

1 ) 600 ri
i ii

i

l
w i l

L R
 

  
 
 （ (10)

where 2w is the additional resistance per unit running, N/kN.
600 is the resistance coefficient of the calculated curve. 1L is
the length of HHT, m. ii is the slope of the first ramp covered
by the train (0.1%). iil is the length of the first ramp covered
by the train, m. iR is the radius of the first curve covered by
the train, m. ril is the length of the i th curve covered by the
train, m.

The additional resistance during train running is：

2 20.001W w mg  (11)

1 2TB W W  (12)
where TB is the resistance force, kN. 2W is the additional
resistance, kN. 2w is the additional resistance per unit running
of the train, N/kN. g is the gravitational acceleration, 9.8
N/kg.

1 1 1ˆ ˆ, ,t t tu s v   can similarly form the three-dimensional
matrix and as the input of LSTM through the sliding window.

IV. EXPERIMENTAL STUDY

A. Comparison of prediction results
To verify the effectiveness of the LSTMMH-based speed

trajectory prediction method, we uses actual data to simulate.
In this paper, the sliding window length of the train dataset is
90 and the test dataset is 10. The test running dataset of HHT
speed, mileage and control force on locomotive are collected
per second to form a input matrix of 3390  3. The
experimental HHT departed from kilometer mark 107km, ran
57km, and ended the running experiment at kilometer mark
164km.

Figures 6-8 show the speed trajectory predictions of the
mechanistic model in reference [19], LSTM in reference [20],
and LSTMMH, respectively. The black line is the actual
running trajectory, and the red one is the model prediction
trajectory. Figures 9-11 show the speed prediction errors of
these models. As seen from these figures, the prediction
performance of the mechanism model is the worst. The
prediction is significantly degraded. The prediction error of
the LSTM model ranges between [-2, 2], while the error of the
LSTMMH model ranges between [-1.5,1].

In addition, the trajectory predicted by the LSTM has a
small amplitude of oscillation. In particular, it is more likely to
lead to a larger prediction error when the train changes at the
operation condition switch point (for example, when the train
changes from the traction condition to the coasting condition
or from the traction condition to the braking condition). From
a detailed analysis, the reason is that there is a time delay in air
brake wave transmission in the train braking process, while the

the ordinary LSTM model cannot learn these physical
characteristics. Therefore, our LSTMMH model can
overcome the above shortcomings by calculating the control
force to decide the operation condition.

Moreover, to demonstrate the effectiveness of the
proposed LSTMMH, four common metrics including root
mean squared error (RMSE), mean absolute error (MAE),
mean squared error (MSE), and R-square (R2), are adopted to
evaluate the performance. The results are as shown in TABLE
I. The four columns on the left are four metrics of the predicted
mileage s , and the right ones are the four metrics predicted
speed v . The following conclusions can be drawn. The
metrics of the mechanistic model still perform the worst
compared with the LSTM and LSTMMH models. Compared
with LSTM and LSTMMH, there is a large gap between
RMSE, and MAE, MSE and R2 also have deviations. It can be
seen that the prediction of LSTM is easily affected by outliers,
and the prediction performance will be affected due to the lack
of physical characteristics during the operation condition
transformation. In summary, the LSTMMH significantly
outperforms the other models in these four performance
metrics.

Figure 6. Speed trajectory prediction of the mechanistic model.

Figure 7. Speed trajectory prediction of the LSTM model.
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Figure 8. Speed trajectory prediction of the LSTMMH model.

Figure 9. Mechanism model prediction error.

Figure 10. LSTM-based model prediction error.

Figure 11. LSTMMH-based model prediction error.

TABLE I. COMPARISON OF PREDICTION PERFORMANCE RESULTS OF MECHANISTIC, LSTM, AND LSTMMH MODELS.

Method RMSES MAES MSES R2S RMSEV MAEV MSEV R2V

Mechanism model [19] 30.0853 5.7772 46.6385 0.8361 60.3461 8.1485 56.0676 0.5495

LSTM [20] 6.9293 0.0912 0.0254 0.9996 16.9974 0.2413 0.1259 0.9997

LSTMMH 3.2024 0.0342 0.0054 0.9998 7.3390 0.0939 0.0277 0.9999

V. CONCLUSIONS

In order to establish an accurate STPM for HHTs to predict
the speed trajectory over a long running time serie, this study
proposes a new LSTMMH model. We combine a
mechanism-driven model and a data-driven deep learning
model (LSTM) into a hybrid model. While the
mechanism-driven model can predict the force of HHTs, the
data-driven model can obtain the unmodeled dynamics during
running. The actual data verify that the LSTMMH has higher
accuracy in trajectory prediction and robustness compared to
traditional LSTM and mechanism-driven model.
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