
Enhancing Gesture Recognition for Musical Conducting: A Study on
Diverse Data Classification and Stacked Neural Network Architectures

Gideon Woo, Faith Tan, and Herbert H. Tsang
Applied Research Lab, Trinity Western University, Langley, British Columbia, Canada

Abstract— This study addresses the limitations of many
gesture recognition algorithms, which predominantly employ
machine learning-based approaches tailored to specific types
of gestures, leaving niche gestures such as musical conducting
gestures largely unexplored. To advance the research in musical
conducting gesture recognition, we focus on two key aspects:
(1) broadening the dataset to encompass various conducting
speeds and investigating its impact on performance, and (2)
introducing a stacked neural network architecture to explore
performance improvements beyond conventional node increase.
The study demonstrates that incorporating diverse data signifi-
cantly enhances performance and that stacking neural network
layers yields notable performance gains.

I. INTRODUCTION

In the context of musical conducting, conducting ges-
ture are the specific movements and gestures made by a
conductor to convey essential information to the musicians
during a performance. These gestures serve as a non-verbal
communication method, guiding the ensemble on aspects of
tempo, dynamics, phrasing, articulation, entrances, and other
musical elements.

Using advanced technologies, researchers began to explore
complex and nuanced gestures using machine learning meth-
ods. Recently, our research has addressed timing and articula-
tion aspects of the gesture with some successes [1] [2] [3]. In
this paper, we will explore the use of stacked neural network
architecture for this special type of gesture recognition.

II. LITERATURE REVIEW

In general, there are two approaches in gesture recognition
using machine learning: vision-based and sensor-based.

A. Machine Learning for Gesture Recognition

1) Vision-Based: Munasinghe et al. had used a feed-
forward neural network (NN) and implemented a real-time,
computer-vision-based gesture recognition workload [4].
This NN consisted of three hidden layers, with 100 nodes per
layer. The maximum accuracy he achieved with this method,
even with “better” lighting, was 85% [4].

Cristina Mata tested two methods for hand pose estimation
using image recognition [5]. She implemented Conditional
Random Field (CRF) for fine parts segmentation in two
different ways, one using a convolutional neural network
(CNN), and the second using a recurrent neural network
(RNN). When Mata implemented the CNN, efficiency was
an evident problem, but in conjunction with the RNN, the
efficiency improved. However, implementing the CNN with
the RNN created an issue with memory [5].

A comparison between four different machine learning
algorithms for hand gesture recognition was performed by
Triguerios, et al. [6] (k-Nearest Neighbour (kNN), Naive
Bayes (NB), Support Vector Machines (SVM), and Ar-
tificial Neural Networks (ANNs)). Data was collected as
low-resolution depth images and pre-processed by feature
extraction and hand segmentation. Of the four algorithms,
the ANN returned the highest accuracy at 96.99%, though it
was noted that it took the longest time to train. Following the
ANN was the k-NN method, with an accuracy of 95.45% [6].

Kim, et al. developed a new hand gesture recognition
method using a restricted column energy (RCE) neural
network with dynamic time warping (DTW) [7]. DTW is
a popular algorithm used in gesture recognition, but has
drawbacks that mainly include time especially with large data
sets. RCE neural networks use Euclidean distance in distance
measurements; to solve this issue, the researchers have used
DTW distance in place of it. Using an IMU sensor, they got
3-axis gyroscope data and 3-axis accelerometer data, which
was preprocessed by Arduino to standardize the length of the
data. This combined method of DTW + RCENN returned
a maximum accuracy of 98.6%, which is at minimum 4%
higher than either of those methods on their own [7].

2) Sensor-based: Chistyakov and Chepin went with a
different approach using a Microsoft Kinect to collect gesture
data in three dimensions [8]. All of this data was then
converted into a bit matrix through the mapping of the
hand trajectories and subsequently fed into a convolutional
neural network model that consisted of two convolution
layers with a kernel size of 5 x 5. This system was designed
with continuous motions in mind where there are no clear
starting or end points to the gesture. Although accuracy
numbers were not published, this is still a solid framework to
refer to when conducting any type of research with gesture
recognition.

Sign language recognition represents one of the more in-
tricate hand gesture applications that has garnered significant
attention. Mekala et al. conducted comprehensive research in
this domain, developing a system capable of discerning the
signed letters [9]. Their approach involved image processing
techniques with substantial computational load to isolate
the hand from the background. Subsequently, this processed
information was fed into a convolutional neural network
comprising three layers.

Remarkably, the algorithm achieved a remarkable 100%
accuracy in classifying all the letters of the alphabet. How-
ever, when introducing noise into the images, the overall

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 677

accuracy diminished. This exposed the system’s vulnerability
to noise, with an average noise immunity of 48% [9].

B. Neural Networks

Once the data are collected, we will employ a classification
framework to analyse our data. In our previous studies, we
have found Recurrent Neural Network (RNN), Long-Short
Term Memory (LSTM), and Gated Recurrent Unit (GRU) to
be most accurate [1] [2]. At that time, we only tested using
data that were collected with one speed, 80 BPM.

1) Recurrent Neural Network (RNN): The recurrent neu-
ral network (RNN) represents an enhanced version of the
feed-forward neural network. This improvement is achieved
by enabling each node to access data from prior time steps,
thereby incorporating contextual information and leading to
improved overall performance. RNNs demonstrate height-
ened proficiency in recognizing patterns and features within
time series data, such as conducting gestures. Although not
the highest-performing algorithm, RNNs are included as
a baseline for comparison against more advanced neural
networks in our study.

2) Long-Short Term Memory (LSTM): The long-short
term memory (LSTM) neural network represents an advance-
ment over the recurrent neural network (RNN) model. Each
LSTM node possesses a memory component. The memory
capability of LSTM nodes allows them to retain crucial in-
formation, impacting their future outputs. This enhancement
in comparison to a conventional RNN mirrors how past in-
formation influences decision-making in the present, proving
particularly valuable in longer sequences where RNNs often
encounter challenges due to the vanishing gradient problem.

The project leverages NVIDIA’s CUDA Deep Neural Net-
work (cuDNN) optimized implementation of LSTM within
the Keras library, significantly reducing training time [10].

3) Gated Recurrent Unit (GRU): The gated recurrent unit
(GRU) represents another advancement in recurrent neural
networks. Similar to LSTM, GRU allows each node to
access memory, but with a streamlined approach using only
two gates: update and reset. The update gate governs the
utilization of incoming data, selectively storing useful and
relevant information in memory while discarding the rest. On
the other hand, the reset gate is responsible for maintaining
existing memory by clearing away less relevant portions.

Due to the reduced number of gates compared to LSTM,
GRU is expected to offer faster training performance. Addi-
tionally, an optimized version of GRU, tailored for efficiency,
is available in the Keras library, which was employed in this
project.

C. Stacking Neural Networks

In the image recognition world with their use of convo-
lutional neural networks (CNN), getting extra performance
out of training the neural network can be difficult. As
discussed in Stanford’s convolutional neural network class,
the overall structure of a CNN is three-dimensional [11].
Typical variables to increase include the kernel size and filter
size of a specific neural network layer which increases the

complexity in hopes of the algorithm learning more. With
the 3-D structure of the convolutional neural network, any
increase of complexity will also require a quadratic increase
of computational power to compensate. This can quickly get
out of hand as there is only so much the algorithm can learn,
which means that increasing complexity is subject to the
principle of diminishing returns. Another option would be
to stack multiple simple convolutional neural network layers
on top of one another to improve performance.

Simonyan and Zisserman suggested an alternative ap-
proach based on a stack of convolutional neural net-
works [12]. The images were passed through a stack of
convolutional neural network layers with 3 x 3 filter size,
which is the smallest size to capture information around
a given pixel. They were able to show that adding more
“depth” to the neural network structure was more effective
than fewer layers with more complex parameters. They
demonstrated by one model with half the number of layers
with a filter size of 5 x 5 being outperformed by their 3 x 3
filter size model [12].

Another excellent stacking technique example comes from
Adavanne et al. where it was used for bird audio de-
tection [13]. Their neural network structure used 16 2-D
convolutional layers, each with a 3 x 3 filter size. This data
was then fed into a GRU layer before the final output. Results
were respectable, the algorithm identify the presence of a
bird call/tweet within an audio clip with a validation accuracy
of 88.1% and a training accuracy of 95.1%.

A good indication that the same technique of deepening
the neural network would prove useful outside of just image
recognition with convolutional neural networks comes from
Chen et al. [14]. They combined the use of one-dimensional
convolutional neural networks with Surface Electromyogra-
phy signals (the electrical signals that the brain sends to
muscles to control them) from sensors on the wrist to test
gesture recognition. They were able to show how stacking
multiple layers of simple CNNs produced the best results
even when compared to a model combining LSTM and
convolutional layers [14]. This is a great sign that the same
principle of simplifying could apply to stacking multiple
layers of other neural networks like LSTM and GRU to get
increased performance on gesture recognition workloads.

The objectives of this paper are as follows:
• To evaluate the performance differences caused by

implementing a stacked neural network structure on the
musical conducting gesture workload.

• To look at the effects from expanding the data set to
include conducting gestures of various speeds.

III. METHODS

A. Data Collection

We are using an mobile phone to capture our data. This
phone gyroscope and accelerometer. An app was built that
could be easily shared between users for easy data collection.

This enabled easier scaling for data collection due to
circumstances that require everything be done remotely (e.g.,

678

COVID-19 pandemic). A metronome was used to help keep
the gesture speed consistent with the android phone in the
right hand recording the sensor data using the app that was
developed.

Previously, we have collected beating patterns at 80 beats
per minute (BPM) [1] [2]. Then we collected new data by
varying the BPM. In this study, we have collected data
at 60, 70, 80, 90, and 100 bpm. Also, these data contain
different beat patterns (e.g., two, three, and four beats) and
articulations (e.g., legato, normal, and staccato).

B. Neural Network Implementations

We employ a neural network that can be trained on a single
graphics processing unit (GPU) and requires less than four
gigabytes of video RAM. This ensures that the experiments
can be realistically conducted on typical consumer hardware.
All of the neural networks had 4,096 internal nodes and were
given 500 epochs to give achieve the best results from a
60, 20, 20 split of all the data: 60% for training, 20% for
testing, and 20% for validation. The models that gave the
best validation accuracy were kept and evaluated for our final
results. There are two other implementations that were tested
in the experiments to see if there were any improvements
to be had without increasing the number of internal nodes
drastically.

1) Bi-directional Implementation: This implementation
requires the recurrent neural network layer be duplicated
where one is being fed data starting from the past and into
the future while the other is fed data starting from the future
and into past. The output of the node and its corresponding
duplicate are then combined.

2) Stacking Recurrent Layers: This is a commonly em-
ployed technique in the field of image recognition. For
convolutional neural networks (CNNs), utilizing multiple
simpler layers with lower filter sizes (analogous to internal
nodes in our context) yields superior accuracy while being
computationally efficient and requiring less training time
compared to using a single complex layer.

The advantage of layer stacking lies in promoting deeper
learning, as information learned from one layer is passed
down to subsequent layers, enabling the extraction of more
detailed and abstract features. The same principle holds
potential for time-series data and other neural network struc-
tures, as observed in this project. To investigate this, the
neural network implementations include a stacked counter-
part with four recurrent neural network (RNN) layers instead
of one.

The internal nodes of the first two layers were set at 1,024
respectively, the third layer having 512, and the fourth layer
having 256 internal nodes resulting in a total of 2,816 internal
nodes while the single-layered implementations have the full
4,096 internal nodes. Figure 1 shows the visualization of this
stacked structure.

IV. RESULTS AND DISCUSSION

In order to test the stacked structure’s improvement over
a single layer implementation of neural networks, a direct

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Fig. 1. Visualization of the stacked LSTM layers

comparison is done by training two sets of neural networks:
one with the stacked implementation and one without.

To test the influence of more diverse gesture data at
different speeds, every algorithm is trained on 4 different
sets of data (60 and 80 BPM; 80 and 100 BPM; 60, 80
and 100 BPM; and all the data available). All of the models
trained, without the inclusion of 70 and 90 BPM gesture
data, reveal how an algorithm might respond to the inclusion
of just slower data, just faster data, and both slower and
faster data. The models produced using all the data available
(including 70 and 90 BPM) is used to evaluate overall
algorithm performance when given even more data to work
with. Table I shows all the different experiments that were
run as part of this study.

TABLE I
THIS TABLE SUMMARIZED THE DATA SETS AND THEIR CORRESPONDING

CONDUCTING SPEED USED IN THIS STUDY.

Experiments Beats Per Minute
60 70 80 90 100

Stacked vs. Single Layer X
Slower Data X X
Faster Data X X
Slower and Faster Data X X X
All Data X X X X X

A. Stacked Layer vs. Single Layer

In our testing, adding stacked layers only resulted in a
marginal performance increase for models trained with 80
BPM gesture data when classifying beat patterns, as depicted
in Table II. A standard RNN, on the other hand, not only
failed to show improvement but also exhibited a performance
decline with the stacked structure. Considering the overall
subpar performance of both RNN implementations in beat
pattern recognition, it’s possible that recurrent neural net-
works are not well-suited for this specific classification task.
LSTM did show a slight increase in accuracy, while GRU
maintained its performance but demonstrated improved stan-
dard deviation, indicating greater consistency across multiple
runs. One potential reason for this modest improvement in
performance could be attributed to the strong performance
of the single-layer implementation. When occasional subpar
input data is taken into account, there is limited scope for
substantial enhancements with the addition of stacked layers.

679

TABLE II
RESULTS FOR BEAT PATTERN AND ARTICULATION FOR 80 BPM, WHERE S.D. = STANDARD DEVIATION

Algorithms Single Layer
Accuracy %

Stacked Layers
Accuracy %

Single Layer
Cohen’s Kappa

Stacked Layers
Cohen’s Kappa

Single Layer
S.D.

Stacked Layers
S.D.

Beat Pattern (Two, three and four beats)
RNN 45.90 44.14 0.188 0.162 0.0010485 0.0008627

LSTM 99.80 99.84 0.997 0.998 0.0000073 0.0000103
GRU 99.80 99.80 0.997 0.997 0.0000137 0.0000073

Articulation (e.g., legato, normal, and staccato)
RNN 62.82 71.84 0.442 0.578 0.0022447 0.0064769

LSTM 98.82 99.29 0.982 0.989 0.0000308 0.0000178
GRU 99.21 99.25 0.988 0.989 0.0000338 0.0000198

On the articulation recognition side, the stacked imple-
mentations all gave improved performance compared to
the single-layered ones. The improvement for RNN is the
most obvious with a 9.02% increase in overall accuracy.
Improvement was small in the case of GRU while LSTM
showed a larger increase in performance when moving to a
stacked neural network architecture. The same reduction in
the standard deviation as seen in the beat pattern recognition
is also present here and is a good sign that the stacked
structure improves consistency of performance.

The overall positive effects of the stacked neural network
architecture shown in this part of the study meant that it made
sense to continue with the stacked structure going forward.
The poor performance exhibited by the basic RNN in this
portion of the study suggested that it is not a good fit for
musical conducting gesture classification with data collected
from a smartphone. This is why it was removed from further
experimentation with the expanded data set.

B. Expanded Data Set

Working with an expanded data set, one intuitively would
assume that the overall accuracy of the algorithms would
decrease since there is more variety in the data for the
algorithms to learn from causing more confusion. However,
Table III, Table IV, Table V, and Table VI show that it was
not necessarily the case. In the following sections, we will
examine the results in more detail.

1) Performance with Slower Data: Table III displays the
outcomes of neural networks trained on data at 60 and 80
BPM. The performance differences, when compared to the
exclusively 80 BPM results, exhibit a varied pattern.

The overall accuracy for beat pattern recognition showed
a slight decline, which was anticipated due to the increased
data variety and corresponding complexity for the algorithms
to analyze. Notably, the implementation of bi-directional
neural networks demonstrated a significant improvement,
surpassing the results achieved solely with 80 BPM data.

The articulation recognition performance demonstrates im-
provement for both LSTM and GRU models, indicating that
the inclusion of slower data contributed to better general-
ization in distinguishing between different articulations in
the gesture. However, it is noteworthy that the bi-directional
implementations had no notable impact on LSTM, while
GRU exhibited a slight improvement in performance.

2) Performance with Faster Data: Table IV shows the
results from the neural networks being trained on 80 and
100 BPM data tell a different story when compared to the
models trained on 60 and 80 BPM.

Using the 80 BPM results as a baseline, beat pattern
recognition barely fell in the case of GRU while LSTM
performed better. These results suggest that the faster data
was easier to handle showing better results compared to the
slower data models. This could be due to the window size.
Since all training was done with the same window size, the
slower 60 BPM data meant that there is less of the gesture
in each window, which could contribute to the lower perfor-
mance with slower data. The higher speed 100 BPM data
meant that more of the gesture is within the same window
size, which could explain the better results. The difference
between bi-directional and uni-directional implementations
was non-existent with LSTM and only slightly better with
GRU. This can also be the result of the easier workload due
to the window size limitation.

BiGRU here did outperform GRU by a sizable amount,
but BiLSTM actually performed worse compared to LSTM.

Articulation recognition performance exhibited a slight
improvement compared to the original 80 BPM models.
Surprisingly, the slower data models outperformed the faster
data models. This observation may be attributed to the nature
of the gesture classification in this study. In musical con-
ducting, the distinctions between articulations become more
discernible at lower speeds, allowing more time for each beat
to occur. Conversely, at faster speeds, the differences between
articulations diminish, as there is less time available for each
articulation to be expressed during each beat.

Notably, BiGRU outperformed GRU significantly, while
BiLSTM performed worse compared to LSTM.

3) Performance with Faster and Slower Data : Table V
shows the results where each dataset contain all speeds.
In beat pattern recognition, both GRU and LSTM models
yielded overall inferior results compared to the original 80
BPM models, as anticipated. However, BiGRU showed a
remarkable improvement, achieving an impressive overall
accuracy of 99.92%. BiLSTM also provided a performance
boost compared to LSTM, though not as substantial as the
improvement seen with BiGRU over GRU. This is the only
scenario where a GRU algorithm outperformed LSTM and
BiLSTM.

In the context of articulation recognition, all models con-

680

TABLE III
RESULTS OF EXAMINING THE PERFORMANCE WITH SLOWER DATA (60 AND 80 BPM)

Beat Pattern Articulation

Algorithm Overall Accuracy Cohen’s Kappa Standard Deviation Overall Accuracy Cohen’s Kappa Standard Deviation

BiGRU 99.84% 0.9976 0.0000044 99.37% 0.9905 0.0000114

BiLSTM 99.89% 0.9984 0.0000044 99.55% 0.9933 0.0000042

GRU 99.66% 0.9949 0.0000070 99.34% 0.9901 0.0000170

LSTM 99.79% 0.9969 0.0000039 99.55% 0.9933 0.0000070

TABLE IV
RESULTS OF EXAMINING THE PERFORMANCE WITH SLOWER DATA (80 AND 100 BPM)

Beat Pattern Articulation

Algorithm Overall Accuracy Cohen’s Kappa Standard Deviation Overall Accuracy Cohen’s Kappa Standard Deviation

BiGRU 99.78% 0.9968 0.0000012 99.36% 0.9904 0.0000173

BiLSTM 99.89% 0.9984 0.0000047 99.12% 0.9868 0.0000354

GRU 99.76% 0.9964 0.0000036 99.28% 0.9892 0.0000100

LSTM 99.89% 0.9984 0.0000032 99.47% 0.9920 0.0000240

TABLE V
RESULTS OF EXAMINING THE PERFORMANCE WITH A MIXED OF FASTER AND SLOWER DATA (60, 80, AND 100 BPM)

Beat Pattern Articulation

Algorithm Overall Accuracy Cohen’s Kappa Standard Deviation Overall Accuracy Cohen’s Kappa Standard Deviation

BiGRU 99.92% 0.9988 0.0000009 99.46% 0.9919 0.0000089

BiLSTM 99.82% 0.9973 0.0000035 99.58% 0.9937 0.0000068

GRU 99.76% 0.9964 0.0000030 99.35% 0.9904 0.0000127

LSTM 99.78% 0.9967 0.0000051 99.42% 0.9913 0.0000124

TABLE VI
OVERALL BEAT RECOGNITION PERFORMANCE RESULTS (60 - 100 BPM).

Beat Pattern Articulation

Algorithm Overall Accuracy Cohen’s Kappa Standard Deviation Overall Accuracy Cohen’s Kappa Standard Deviation

BiGRU 99.91% 0.9986 0.0000018 99.59% 0.9938 0.0000044

BiLSTM 99.93% 0.9990 0.0000008 99.62% 0.9942 0.0000096

GRU 99.83% 0.9974 0.0000025 99.60% 0.9940 0.0000045

LSTM 99.83% 0.9974 0.0000025 99.64% 0.9946 0.0000025

tinued to surpass the 80 BPM models. When compared to
models trained solely on slower or faster data, the perfor-
mance was slightly better for most cases, except for LSTM.
This indicates that with both slower and faster data, the
algorithms demonstrated better ability to identify significant
commonalities between the speed-variable gestures, leading
to improved generalization, albeit moderately for this data
combination. Notably, both bi-directional models outper-
formed their uni-directional counterparts in this context.

4) Performance with All Data Available: The most com-
pelling results arise from the models generated using the
entire available dataset (Table VI). Contrary to the initial
hypothesis, introducing greater data variety does not lead to
poorer algorithm performance.

Overall, beat recognition performance is commendable,
with LSTM and GRU models surpassing their 80 BPM coun-

terparts. Notably, the BiLSTM model outshines all others,
achieving an unprecedented 99.93% overall accuracy. Addi-
tionally, the GRU model demonstrates superior performance
compared to all other GRU models trained in this study.

Articulation recognition performance is consistently
strong. All models trained on this dataset outperformed
models trained with any combination of the 60, 80, and 100
BPM data.

Notably, GRU and LSTM surpassed the original 80 BPM
models in beat recognition, and all algorithms excelled in
articulation recognition. This suggests that the classification
algorithms have reached a tipping point where increasing
data variety improves performance rather than diminishing
it.

One plausible explanation for these results lies in the
neural networks’ ability to extract common features. The in-

681

clusion of 70 and 90 BPM data expanded the dataset, thereby
increasing the differences between gestures. Consequently,
there are fewer shared features among the various gestures,
making it easier for algorithms to identify distinctive patterns
and characteristics for beat patterns and articulation. This
enhanced model generalization leads to improved algorithm
performance.

V. CONCLUSION

The art of musical conducting involves intricate gestures
that possess the ability to convey a wealth of information
when executed with skill. Each of these gestures serves
the purpose of communicating crucial aspects such as the
time signature, articulation, and tempo of the musical piece.
Extracting this information presents a daunting challenge for
computational intelligence methods to grapple with.

In this research, we sought to move the computational
intelligence paradigm forward by improving gesture recog-
nition specific for musical conducting gestures. Drawing
influence from convolutional neural networks used in im-
age recognition, a stacked neural network architecture was
implemented in hopes of improving performance without
increasing the number of internal nodes. One additional facet
of the musical conducting gesture, speed, was also added as
a variable to see how effective the neural network algorithms
can be in a previously untested way. By looking at the results
of these experiments, several important conclusions can be
made.

Firstly, the basic recurrent neural network (RNN) proves
unsuitable for classifying musical conducting gestures. It
falls short in comparison to LSTM and GRU, particularly
when implemented in a stacked manner. As computing
hardware advances, the advantage of faster training times
with simple RNNs becomes less relevant, especially as more
complex gestures emerge.

Secondly, stacked neural network structures do indeed
offer a performance benefit when compared to their conven-
tional single layer counterparts when it comes to classifying
the musical conducting gesture. This can be seen by an
improvement in overall accuracy in most situations and a
reduction of standard deviation pointing to increased perfor-
mance consistency. Other than the improvement of LSTM
classifying articulation, the improvement from single layer
to stacked layers was slight. This can be attributed to the
fact that the single layer implementations performed very
well already achieving overall accuracy of no lower than
98.82% in any workload. An increase in data variety might
have caused a wider gap in performance between the single
layer implementation and the stacked architecture, but that
was not tested in this study and is a further step that can be
taken in future research.

Thirdly, experiments with an expanded dataset reveal that
algorithm performance deteriorates when exposed to one or
two additional varying-speed datasets for beat pattern clas-
sification in conducting gestures. Beyond that, introducing
more than two varying-speed datasets pushes the algorithms
to perform better compared to training on just one speed.

Fourthly, articulation recognition does not suffer any drop
in performance when different speeds of the same gesture
are introduced. This shows that the differences and features
distinguishing one articulation from another is easier for
neural networks to pick out consistently compared to beat
pattern.

As gesture recognition evolves, techniques must adapt to
handle increasingly complex gestures. This study demon-
strated the efficacy of a layered approach with neural net-
works, stacking multiple simple layers. These insights can
enhance future machine learning models. Additionally, the
experiments highlighted the impact of varied gesture speeds
on algorithm performance, offering valuable knowledge for
future research in time-series data classification and dataset
creation strategies.

REFERENCES

[1] J. van Heek, G. Woo, J. Park, and H. H. Tsang, “Analysis and selection
of classifiers for gesture characteristics recognition based on MGRS
framework,” in 2019 IEEE Symposium Series on Computational In-
telligence (SSCI), 2019, pp. 2972–2980.

[2] J. van Heek, G. Woo, J. Park, and H. H. Tsang, “A comparison of com-
putational intelligence techniques for real-time discrete multivariate
time series classification of conducting gestures,” in Computer Vision
Systems, D. Tzovaras, D. Giakoumis, M. Vincze, and A. Argyros, Eds.
Cham: Springer International Publishing, 2019, pp. 573–585.

[3] F. Tan, G. Woo, and H. H. Tsang, “CGLER: Laban effort framework
analysis with conducting gestures using neural networks,” in IEEE
Symposium Series on Computational Intelligence (SSCI), 2020, pp.
1452–1459.

[4] M. I. N. P. Munasinghe, “Dynamic hand gesture recognition using
computer vision and neural networks,” in 2018 3rd International
Conference for Convergence in Technology (I2CT), 2018, pp. 1–5.

[5] C. Mata, “Two approaches to robust hand pose estimation: Generative
modeling and semantic relations,” Master’s thesis, Massachusetts
Institute of Technology, Cambridge, MA, 2019.

[6] P. Trigueiros, F. Ribeiro, and L. P. Reis, “A comparison of machine
learning algorithms applied to hand gesture recognition,” in 7th Iberian
Conference on Information Systems and Technologies (CISTI 2012),
2012, pp. 1–6.

[7] M. Kim, J. Cho, S. Lee, and Y. Jung, “IMU sensor-based
hand gesture recognition for human-machine interfaces,” Sensors,
vol. 19, no. 18, p. 3827, Sep 2019. [Online]. Available:
http://dx.doi.org/10.3390/s19183827

[8] I. S. Chistyakov and E. V. Chepin, “Gesture recognition system
based on convolutional neural networks,” IOP Conference Series:
Materials Science and Engineering, vol. 498, p. 012023,
apr 2019. [Online]. Available: https://doi.org/10.1088%2F1757-
899x%2F498%2F1%2F012023

[9] P. Mekala, Y. Gao, J. Fan, and A. Davari, “Real-time sign language
recognition based on neural network architecture,” in 2011 IEEE 43rd
Southeastern Symposium on System Theory, 2011, pp. 195–199.

[10] F. Chollet et al., “Keras,” https://keras.io, 2015.
[11] “Convolutional neural networks for visual recognition,”

[Online; accessed July 20, 2019]. [Online]. Available:
http://cs231n.github.io/convolutional-networks

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in International Conference on
Learning Representations, 2015.

[13] S. Adavanne, K. Drossos, E. Çakir, and T. Virtanen, “Stacked con-
volutional and recurrent neural networks for bird audio detection,” in
2017 25th European Signal Processing Conference (EUSIPCO), 2017,
pp. 1729–1733.

[14] L. Chen, J. Fu, Y. Wu, H. Li, and B. Zheng, “Hand gesture recognition
using compact cnn via surface electromyography signals,” Sensors,
vol. 20, no. 3, 2020. [Online]. Available: https://www.mdpi.com/1424-
8220/20/3/672

682

