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Abstract—Moths pose a significant threat to agricultural crops,
and identifying them accurately is crucial for effective pest
monitoring and crop conservation efforts. However, manually
evaluating glue traps is a time-consuming and labor-intensive
process, which has led to the development of automated solutions.
In this study, we present a deep learning-based automated
detection pipeline that can detect moths in images captured
by field traps with pheromone-emitting glue pads. To train our
model, we collected a comprehensive dataset that includes moths
from various environments, such as agricultural plants, homes,
and food production facilities. We augmented this dataset and
included additional glue pad datasets, enabling the model to
detect moths regardless of the species. We base our model on
the YOLOVS algorithm and fine-tune it using transfer learning,
which enables us to identify moths in real-time and on embedded
hardware. Our evaluation of the algorithm reveals that it achieves
an average precision of 98.2 % on a test dataset, which outperforms
reference models from previous research. We also assess the
model’s ability to handle disturbances such as other insects,
varying lighting conditions, and foreign objects. Importantly, our
solution maintains a tiny memory footprint and low inference
time of 2.3 ms, making it a highly efficient and effective tool for
moth detection in the field.

Index Terms—Pheromone Trap, Pest Management, Insect
Detection, Moths

I. INTRODUCTION

Approximately 40 % of agriculture productivity is being
reduced by pests and weed infestations [1], [2]. One of these
pests are moths, belonging to the order Lepidoptera, with
around 160000 different species. They are characterized by
their distinctive scales-covered wings as visible in Fig. 1. Moths
cause damage in their larval stage by feeding different natural
materials. Cloth moths, like Tineola bisselliella (common
clothes moth, Fig. la), are notorious for their infestation of
natural fibers such as wool, fur, and silk, causing damage to
clothing, carpets, and upholstery. Other moth species, such as
the Helicoverpa zea (corn earworm, Fig. 1b), Helicoverpa
armigera (cotton bollworm) and Spodoptera exigua (beet
armyworm, Fig. Ic), are considered significant crop pests, that
cause substantial damage to agricultural crops by feeding on
the fruits and leaves. Food moths, like the Plodia interpunctella
(indianmeal moth, Fig. 1d) damage stored products, such as
grains and nuts, by feeding on them and contaminating them
with their larvae and feces [2]. Due to their rapid reproduction
rates and recent resistances to pesticides, moths pose significant
challenges to crop production and food security.
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(a) Tineola
bisselliella

(d) Plodia
interpunctella

(b) Helicoverpa (c) Spodoptera
zea exigua

Figure 1: Images of different moth species that harm: (a) cloths
(b)—(c) agricultural crops, and (d) food stocks. Sources: [3]-[6]

Monitoring systems for pest management in agriculture
aid in preventing crop damage from pests including insects,
rodents, and crop diseases leading to better crop health and
crop yields [7]. Pest management methods include the use
of pesticides, biological controls, and physical barriers. Pest
management techniques in agriculture can contribute to higher
crop yields and better overall crop health by minimizing pest
damage. Pest management systems rely on monitoring, in
case of moths this is commonly done by pheromone traps
with a glue pad. Moth imagos are attracted by pheromones
and then stick to the glue. Pheromones are specific to single
moth species, allowing precise monitoring of specific pests
and damages with glue pads by selecting the right pheromone
or pheromone mixture [8]. When monitoring, quick responses
to occuring pests are essential. The occurrence of imagoes
indicates that reproduction begins, eggs are laid soon, new
larvea are due to occur and harm crops. The distinction between
images with single insects and trap images is important because
trap images may show a greater variety of insect species
in different positions, whereas database images show only
a single clearly visible bug that completely fills the image. Pest
management systems rely on the analysis of trap images by
a human expert [9], [10]. This is time-consuming and error
prone [11], [12]. Other approaches use modern object detection
techniques, but still take pictures from glue pads manually [13].
In other devices, the photos and the detection are done after
two or three days, when the moth’s features start to deteriorate.
In consequence the accuracy of the detection is decreased.
With a regular acquisition interval and automated counting,
monitoring of the infestation is facilitated.

Our work applies state-of-the-art deep learning algorithms to
automate moth detection and counting. Our target is to detect
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moths of different species in a resource- and memory-efficient
way in images obtained from automated field traps under
varying conditions and environments. The general algorithm is
shown in Fig. 2. Therefore, we evaluate different model sizes
of the YOLOVS model [14] and compare them to other models
used in literature. We evaluate the trained models regarding
mAP, inference time, and recall. We have implemented species-
agnostic detection in our model since we train our model on
various species of moths. We can determine the caught species
using different pheromones, making the automated trap widely
applicable. To cope with our small dataset, we use transfer
learning from ImageNet [15], data augmentation, and we
include other available datasets. Detecting pests from a distance
under various conditions allows for efficient, continuous and
seamless monitoring of insects in different environments.

Figure 2: Description of the general moth detection and glue
pad monitoring procedure.

1: SetupTrap()
2: InitializeSystem()
3: while True do
4:  image = Capturelmage()
5.  image = PreProcessImage(image)
6:  detectedObjects = DetectMothsWithNeuralNetwork(image)
7: detectedMothsCount = ProcessDetections(detectedObjects)
8: if detectedMothsCount >= UserDefinedThreshold then
9: NotifyUser("Glue pad is full. Change glue pad.")
10:  end if

11: WaitUserDefinedTimelnterval()
12: end while

II. RELATED WORK

Moths and insect detection on glue pads lies in the fields
of image classification and object detection. Before the break-
through of neural networks, approaches with scale invariant
feature transform (SIFT) and bag of words were applied for
automation in insect detection. Those reached accuracy rates
of 85.4 % on single images of insects [16]. For detection of
moths from trap images Bakkay et al. [17] combined contour-
based and region-based segmentation. With adaptive k-means
clustering, using the contours convex hull and region merging
algorithm, they reached a detection rate of 70 % for insects.

The breakthrough of Convolutional Neural Networks (CNNs)
also overcame the limitations of machine learning in agricul-
tural research [18], [19]. In 2016, Ding and Taylor achieved
an AP of 93.1 % on 40 images for moths in trap images with
a CNN for image area classification and a sliding window for
image segmentation [19]. With the advances of deep learning,
different pipelines and algorithms for moth monitoring evolved.
Bjerge et al. [20] developed a monitoring system to monitor
eight different moth species with a light trap based on a canvas
and a light ring. The detection branch is based on a custom
made CNN and achieves an Fl-score of 0.93.

For different prototypical glue pad traps, Siité developed a
detection and classification system for the codling moth [21].
With MobileNetV2 on an OpenMV Cam H7 microcontroller

[

Figure 3: The Traplinked Tom trap used for data acquisition

board he reached an accuracy of 82 %. Similarly, Hoye et al. [9]
developed a full pipeline for online moth detection using a
custom CNN and different prototype traps. They detected eight
different species with an automated trap. With a custom-made
lightweight network, they claim an F1 performance of 93 %.
Hong et al. [13] investigated a variety of standard detector
algorithms on a dataset containing three different moth species.
They achieved the best mAP of 90.25 % using a Faster R-CNN
detector with a ResNet-101 backbone. In a 2022 review by
Stit6 [18], different hardware and algorithms were studied for
moth detection with automated traps, with special focus on
practical application. He found that the problem of automated
insect counting is not yet solved due to the lack of sufficient
data and the small insect size in the images. In summary, there
are various approaches that achieve good scores. However,
these were not validated in actual application contexts, such
as using actual trap photos for pest monitoring.

III. MATERIAL AND METHODS

There are two main challenges in detecting pests from
trap images. The first challenge is the main constraint of the
setup: The power consumption limits the hardware and the
field hardware is also price constrained. The second factor
is inconsistency and variability of conditions inside the trap:
non-pest insects, objects and illumination conditions.

A. Data

The images were obtained using a Traplinked glue pad trap
with image acquisition device named Tom shown in Fig. 3. This
device is equipped with an RGB camera featuring a resolution
of 1080 x 1920 pixels and a field of view spanning 220 degrees.
The device takes pictures at regular six-hour intervals and
transmits them to a server for further analysis. The images were
captured during day- and nighttime, to provide a comprehensive
range of real-world scenarios. The trap is set up at various
locations indoor and outdoor to capture images of different
moth species, mainly Tineola bisselliella, Plodia interpunctella,
and Ephestia kuehniella. The trapped species is determined by
the used pheromones. The obtained data are then annotated with
the makesense platform [22]. An annotated image is shown in
Fig. 4. The trap images have a simple background consisting of
the glue pad without complex objects. During data annotation,
all moths are labeled with a bounding box and assigned to the
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Table I: Statistics of the created dataset.

Images with Images without Average Moths

Dataset Moth Moth per image
Training 994 91 11.45
Validation 212 22 10.62
Test 216 20 11.05

class *moths’. Non-moth objects, such as flies and other insects,
are not annotated and are considered as negative examples,
typically referred to as the ’background’ class. As a result of
data collection and labelling, we get a total of 474 annotated
images. Our data exhibits significant variations in terms of
lighting conditions because data are obtained at different times
of day, as well as indoors and outdoors. The influence of
daytimes is shown in Fig. 7. Additionally, the moth species
vary.

e
®

Figure 4: Image from the trap annotated with makesense. The
lighting conditions lead to a yellowish tint.

Since our own dataset is relatively small, we incorporate
several open-source images from the Lobesia botrana [23] and
Cydia pomonella [24] datasets. Both datasets provide glue pad
images and differ mainly in illumination conditions and the
glue pads colour.

To create an even more extensive dataset, we additionally
apply augmentation techniques on our data. To account for
variations that occur in the field, we employed data augmenta-
tion techniques using the Keras Image Data Generator. These
techniques include changes in brightness, perspective, and
rotation of the images. The latter accounts for differently
rotated moths. By combining the open source dataset with
our augmented dataset, we were able to obtain a total of 1422
labeled images of moths. The collected and augmented dataset
is divided into three subsets: the training set, the validation set,
and the test set, in the proportion of 70 %, 15 %, and 15 %,
respectively as shown in Table I.

B. Detection Network Models

In this work, we aim to use a light-weight and fast
model for object detection in real-time, thus we decided
for the YOLOvVS [14] architecture, especially in the small
and nano versions. Additionally, we evaluate also the bigger
YOLOvVS models as well as models from the literature, i.e.,
the best performing model from previous works (FasterRCNN

Table II: Model sizes, computation costs and number of
parameters for different YOLOVS and reference models.

Models Parameters  Model Size Flops
(Million) (MB) (Billion)
YOLOv5n 1.9 3.7 45
YOLOVSs 72 139 16.5
YOLOv5Sm 21.2 41.1 49
YOLOVS51 46.5 90.5 109.1
YOLOv5x 86.7 168.9 205.7
MobileNetV1 FPN 36.2 224 1233
MobileNetV2 FPN Lite 3.4 16.8 1.5
FasterRCNN ResNet-101 44 181.1 7.8

w. ResNet-101 backbone) and another lightweight network
(MobileNet).

The YOLO family, originally developed by Redmon et
al. [25], refers to a single-shot, fast real-time object detector.
The term single shot refers to the simultaneous object detection
and classification in the same feature branch. The general focus
of YOLO lies in a light-weighted design and fast inference
speed, which makes these able for real time applications on
embedded systems. Additionally, YOLO is well known for
being adaptable for different objects, memory, and dataset
sizes [26]. The YOLO version used here is YOLOVS [14].

YOLOVS consists of 3 main parts: Backbone, Neck, and
Head (for the architecture see Fig. 5). CSPDarknet53 is
used as a backbone to extract features from the desired
image [14]. Cross Stage Partial DenseNet (CSP) [27] is itself
based on the DenseNet [28] architecture and improves the
feature propagation and gradient flow of DenseNet. YOLOv5
introduces a focus layer and replaces the original three input
layers from YOLO v3 and reduces the number of convolutions
by slicing the input image to 4 matrices with half resolution
and then performing a convolution on this vector. The focusing
layer reduces memory requirements and improves gradient
backward propagation. However, this mechanism is suspected
to diminish the performance on tiny objects [29].

As model neck, YOLOVS uses the Path Aggregation Net-
work [30]. Due to data linkage, this network passes features
from one level to all other levels and therefore preserves spatial
information especially well. This is important for the model
head (YOLO layer), that extracts the position of the box and
the classification result [26].

YOLO architectures are popular in pest detection. In its
small version (YOLOVSs), it is applied by Teixeira et al. [31]
in two different datasets. They demonstrate the effectiveness
of transfer learning with small YOLO models by achieving
a detection AP of 96.5 % and a counting error of 63.3 % for
bedbugs. For grapevine moth, the AP is 90.9 % and the counting
error 6.7 %. Onler [32] evaluates different YOLOVS sizes in his
study in 2021 for harmful caterpillar detection in agriculture.
For these relatively simple tasks, small YOLO versions show
no drop in performance while maintaining superior speed.
Regarding complexity, YOLO v5 consists of two-dimensional
convolutions. Assume NV to be the image side length, and then
the time complexity is O(N?).
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Figure 5: YOLOVS architecture [14]

C. Evaluation Protocol

For a field application, the relevant factors are not only
prediction performance, but also memory, and computational
efficiency. As resource consumption has a cost and environmen-
tal impact. To demonstrate the effectiveness and performance of
YOLOVS regarding memory and computational efficiency, we
compare the following networks: all five variants of YOLOvS
(from nano to extra large). The best performing network of
the comparison by Hong et al. [13], which is a Faster RCNN
with ResNet-101 backend. As well as SSD MobileNet that is
regarded as memory efficient and which has been suggested by
Siit6 [21]. All models were trained from scratch as well as on
pretrained weights from ImageNet. Pretrained models usually
show faster convergence. The YOLOVS models were trained
for 100 epochs using a learning rate of 0.01 and a batch size
of 4. The chosen optimizer for training was stochastic gradient
descent (SGD). The reference models, including MobileNetV 1
FPN, MobileNetV2 FPN Lite, and FasterRCNN ResNet-101,
the parameters used were identical, except the initial learning
rate of 0.04.

For training, we used 1085 annotated images to train each
YOLOvVS5 model for object recognition. Table II shows the
number of parameters and the model size for all used models.
Training and evaluation was done in PyTorch within the Google
Colab Pro environment with a Tesla T4 graphics card. The
image patches used have a resolution of 640 x 640 as per our
image dimensions.

In our experiments, we use the following evaluation metrics.
Mean average precision mAP with an intersection over union
(IoU) threshold of 0.5, denoted as mAP@IoU=0.5. Furthermore,
we report the precision, i.e., measuring the number of correctly
predicted samples amongst the predictions. The recall, mea-
suring the number of positive samples correctly found by the
detection algorithm. As we want to use the algorithm in field,
the inference time is also used as a metric of computational
performance (although this will be computationally slower on
real hardware). For further explanation of the metrics we refer
to [29].

IV. RESULTS AND DISCUSSION

In Table III, the results for the models used with and
without transfer learning are shown. The best performing
model regarding mAP is YOLOv5x with an mAP of 98.4 %.
In terms of mAP, all YOLOvS5 models (even the nano and
small) outperform the reference models SSD MobileNet and
FasterRCNN ResNet-101. The latter model has the best Recall
with 98.2 %. However, even YOLOv5n is only 1.9 % worse
in Recall, while both SSD MobileNet models are 31.2 % and
39.0 % behind in terms of Recall. In summary, the YOLO
models perform significantly better than the ‘lightweight’
reference models and comparable to the much larger Faster
RCNN ResNet-101 model.

A. Impact of Transfer Learning

In Table III the scores are shown both for the networks with
and without transfer learning. For the training from scratch,
YOLOVSI shows the best mAP with 98.3 % and Recall with
96.5 % rates. For the approach with transfer learning, YOLOv5x
has the best mAP with 98.4 %. While the Faster RCNN -
ResNet-101 has the best Recall rate with 97.4 %. So large
models perform comparable with and without transfer learning.
In contrast, the smaller models perform significantly worse
than with transfer learning. With transfer learning, YOLOv5n
reaches a mAP of 98.2 %, which is an improvement of +3.8 %
compared to the model trained from scratch. Also the recall is
4.6 % better than without transfer learning. Especially small
models with few parameters benefit from using transfer learning.
Additionally, for the YOLOvVS models with transfer learning,
the difference in performance for the nano and small versions to
the extralarge versions is only -1.1 % in recall and -0.2 in mAP.
During training, the transfer learning approach converges faster
than training from scratch, and also shows fewer fluctuations.
The training saturates rather quickly, after 10 to 15 epochs, in
contrast to training from scratch, where this takes about 10
epochs longer.

B. Performance

In Table III, also the computation time on our hardware
is shown. YOLOv5n predicts in 2.3ms and is the fastest.
While FasterRCNN with ResNet-101 is the slowest with a
computation time of 197 ms. Moreover, all YOLO variants are
faster than the fastest reference network (SSD MobileNet v2 -
FPN Lite). As shown in Table II, YOLOv5n is smaller, has less
parameters, and fewer Multiply-Adds than all the reference
models. FasterRCNN with the ResNet-101 Backend is about
30 times larger in number of parameters than YOLOv5n while
MobileNet v2 with FPN-Lite is about 70 % bigger. As the
performance is not significantly worse for YOLOv5n than for
large and complex models, we assume, that the complexity
is sufficient for our task and that YOLOv5n offers the best
trade-off between prediction performance and computational
complexity.
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Table III: Evaluation of individual performance metrics for Moth detection.

Models Transfer Learning Without Transfer learning
Precision Recall mAP @IoU:0.5 Inference time | Precision Recall mAP @IoU:0.5 Inference time
(%) (%) (%) (ms) (%) (%) (%) (ms)

YOLOvV5n 96.0 96.3 98.2 2.3 92.6 91.7 94.4 23
YOLOVS5s 96.3 97.1 98.2 54 95.8 94.7 97.5 4.7
YOLOvV5m 96.9 96.2 97.3 12.3 95.8 94.4 96.6 11.3
YOLOV51 96.6 97.3 97.6 19.4 96.3 96.5 98.1 20.3
YOLOVv5x 96.6 97.4 98.4 36.4 95.3 94.2 96.5 35.2
Faster RCNN - Resnet-101 - 98.2 96.1 197 - - - -
SSD MobileNet vl - FPN - 66.2 93.2 100 - - - -
SSD MobileNet V2 - FPNLite - 58.4 89.0 55.2 - - - -

100
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Figure 6: Inference time and mAP plotted for all examined
models. Results with transfer learning are marked with an x,
results from scratch with an o.

Figure 8: Different disturbances (other insects, other objects).
The algorithm (YOLOvV5n) still detects the majority of moths

Low

Medium

High

Figure 7: Detection results with YOLOv5n (trained with
transfer learning) at various times of the day under different
levels of brightness.

C. Qualitative results

Our research focused on developing a method for detecting
moths in images from a trap in field. Thus, we use selected
images to demonstrate the effectiveness of our method under
the varying conditions in the trap. In Fig. 7, the algorithm
precisely predicts moths in the trap at different times of the day

correctly.

Figure 9: Time-lapse of a trap: Empty trap (left), few moths
arrive (center) and start to deteriorate (right).

(morning to evening), under all these conditions, the YOLOv5n
recognizes all moths and draws correct bounding boxes.

In Fig. 8, the influence of other insects and foreign objects
on trap images is shown. With a lot of disturbances like petals,
the detection quality deteriorates. Nevertheless, most moths

are detected correctly, so pest monitoring still works.
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In Fig. 9, we demonstrate that moths are detected correctly
even if they already show signs of deterioration.

V. CONCLUSION

In this study, we evaluated different algorithms for moth
monitoring on a real field glue pad trap. With YOLOVS nano we
found a lightweight algorithm, that may also run on embedded
hardware and in real-time. When trained with transfer learning,
this algorithm performs comparable to more complex reference
models in our one-class moth detection problem. While in
multi-class problems YOLOv5n drops in performance, e.g., in
case of a 21 class problem [33]. We can demonstrate that our
solution is robust to varying lighting conditions, foreign objects,
and other (non-moth) insects in the trap and to different moth
species in the dataset. Even when trained on a comparably
small dataset. Additionally, the detection works universally for
moths of different species in the trap.

These findings are limited by the size of the training and
testing set and that we cannot classify individual species. As
shown in Fig. 1, moth species have similar features and thus
classification, especially of moths on a glue pad, is tricky. There
are numerous datasets available, especially for the codling moth,
which are often different in the acquisition technique and the
aspect of the glue pad, resulting in color, lighting and contrast
variations. For future work, one universal dataset for different
traps and species could potentially be created from different
available moth datasets with the help of style transformations
using GANSs [34].
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