
SIGNRL: A Population-based Reinforcement
Learning Method for Continuous Control*

Daniel F. Zambrano-Gutierrez∗, Alberto C. Molina-Porras†, Emmanuel Ovalle-Magallanes†,
Iván Amaya∗, José C. Ortiz-Bayliss∗, Juan G. Avina-Cervantes†, and Jorge M. Cruz-Duarte∗,

∗Tecnologico de Monterrey, Monterrey 64849, Mexico, E-mails: {A00836756, jcobayliss, iamaya2, jorge.cruz}@tec.mx
†University of Guanajuato, Salamanca 36885, Mexico, E-mails: {a.molinaporras, e.ovallemagallanes, avina}@ugto.mx

Abstract—In engineering processes that require continuous
control, it is common to face significant challenges. Addressing
these challenges through explicit modeling can take much work
and effort. For this reason, Reinforcement Learning (RL) has
gained popularity as a feasible strategy for solving this problem.
In this context, various value-based methodologies, policies, or
combinations have been employed to obtain an optimal learning
policy. However, problems such as convergence to local maxima
and high variance in training persist. In addition, computational
time and cost increase in complex environments, so more robust
RL methodologies are required. This paper proposes a Swarm
Intelligence Guided Neural Reinforcement Learning (SIGNRL)
algorithm, which uses Particle Swarm Optimization as a multi-
agent parameter explorer to find the optimal policy. Numerical
results obtained in the OpenAI Gym Cart-Pole environment
show that SIGNRL, with its gradient-free learning, exhibits
good convergence and lower variance in continuous control
tasks.

Index Terms—Reinforcement Learning, Artificial Neural Net-
works, Particle Swarm Optimization, Control Systems.

I. INTRODUCTION

IN real-world applications, it is common to come across
the need to implement control systems correctly. This is

due to the dynamics of systems that, without a controller,
exhibit undesirable features [1]. However, finding the opti-
mal parameters for specialized controllers to address these
tasks can be complex and laborious [2, 3]. In addition, the
inherent complexity of many continuous control systems can
generate unexpected or undesirable results, increasing the
challenge of implementing an efficient and reliable solution.
Moreover, nonlinear effects and system disturbances can lead
to unexpected behaviors [4], requiring careful attention in
the design and commissioning of controllers. To overcome
this problem, alternative approaches based on Reinforcement
Learning (RL) have been proposed in the literature to control
system dynamics [5]. RL adopts the structured framework of
Markov Decision Processes to outline the agent-environment
interaction in terms of states, actions, and rewards, inspired
by how humans and animals learn through trial and error
when interacting with their surroundings.

RL generally exploits diverse techniques, such as value-
based, policy-based, or both, to learn an optimal policy [6, 7].

*Daniel F. Zambrano-Gutierrez, Alberto Carlos Molina-Porras, and Em-
manuel Ovalle-Magallanes thank the Consejo Nacional de Humanidades,
Ciencia y Tecnologı́a (CONAHCyT) for the financial support provided
through their fellowships 1046000, 1156648, and 626154, respectively.
Daniel F. Zambrano-Gutierrez and Jorge M. Cruz-Duarte also thank the
Tecnológico de Monterrey for their support under grant FAP 2275.

Value-based methods aim to estimate different state-action
pairs using such information to select the actions. These
value-based methods effectively manage tasks involving con-
tinuous states by employing approximation functions. How-
ever, they face a significant limitation in handling tasks with
continuous actions due to the inherent difficulty in identifying
the optimal function across the action space [8].

In contrast, policy-based methods directly learn an optimal
policy without explicitly estimating values. In this case, the
policy can be represented as a parameterized function that
can receive states and generate the best action possible in a
continuous domain. In Deep RL, this parameterized policy
is defined as a Feed-forward Neural Network (FNN) [9]
optimized in the training process by Policy Gradient (PG)
algorithms [10]. For continuous control tasks, several PG-
based methods have been studied [11, 12]. However, these
alternatives present some drawbacks when the environmental
complexity increases, generally related to data insufficiency
and training inefficiency. The episodic control concept was
introduced to overcome this problem, where episodic training
applied with PG achieved a satisfactory generalization for
continuous control, requiring less training time [13]. Still,
PG-based methods can converge to a local maximum in-
stead of a global optimum and exhibit high variance in
their training process [14]. Some gradient-free Population-
based Reinforcement Learning (PBRL) methods have been
proposed to avoid these common weaknesses of policy
gradient algorithms [8, 15–17]. Population-based training
methods have effectively taught robust policies in model-
free continuous control problems. They leverage the benefits
of multi-agent parallelism and explore the extensive search
space commonly encountered in optimization problems.

This work proposes an alternative PBRL training method
integrating Particle Swarm Optimization (PSO) with neural
parameterized policies, where the best policy selection de-
pends on the highest average cumulative rewards to guarantee
the best long-term performance. Based on episodic learn-
ing, the proposed methodology is efficient for continuous
control tasks in environments with continuous states and
action domains. Besides, through the PSO exploration, the
system found optimal policies capable of executing a feasible
response to external disturbances.

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1443

II. THEORETICAL FOUNDATIONS

A. Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning
paradigm that focuses on training agents to make decisions
in a known (model-based) or unknown (model-free) environ-
ment to maximize a cumulative reward. In model-free RL,
an agent learns by interacting with an unknown dynamic
environment over several episodes or continued tasks but
defined by discrete time steps [18–20]. It disposes of no
task models nor prior knowledge of the dynamics. At each
time step, the agent observes the current state st of the
environment, takes an action a, and then observes the next
predicted state st+1, receiving feedback as a reward rt until
reaching a terminus state or a time limit. The agent aims to
find an optimal policy π, which maps from states to actions
while maximizing the cumulative long-term rewards [21].

For model-free problems with continuous states and ac-
tions, Policy Gradient (PG) methods have become a popu-
lar solution for policy-based RL applications. PG methods
learn a parameterized policy π(a|s,ψ) w.r.t. the long-term
expected return by gradient descent [10]. This policy is
responsible for selecting an action a given the environment’s
state s with parameter vector ψ ∈ Rd, where d is the number
of parameters in ψ, without consulting a value function. A
parameterized value function v(s,ϕ) with ϕ ∈ Rd, may still
be used to learn the policy parameter but is not required for
action selection after the training process [21].

B. Population-Based Reinforcement Learning

Instead of PG methods, Population-based Reinforcement
Learning (PBRL) algorithms [16] update a population of N
agents (policies) defined by {πψi

}i=1,...,N that explore the
environment in parallel and learn from each other to improve
their collective performance. The key idea behind PBRL is
to maintain and evolve a diverse set of policies to explore
different regions of the policy space simultaneously [22].
As the agents interact with the environment and collect
experience, the population is updated based on performance
or some selection mechanism, encouraging better policies to
thrive while pruning out less successful ones.

This approach helps mitigate some PG issues like getting
stuck in local optima and improves the chances of finding a
globally optimal or near-optimal policy [8].

C. Cart-Pole Problem

A Cart-Pole environment comprises, in its simplest form,
an unactuated joint attaching a pole to a cart moving along a
frictionless track. The problem, proposed in [23], consists of
balancing such a pole, an inverted pendulum, placed upright
on the cart. An external force should be applied in the
same or opposite direction of the cart displacement to hold
the pole position. Fig. 1 illustrates the Cart-Pole dynamics
implemented in this work based on [23, 24].

Thus, the Cart-Pole system dynamic can be modeled using
the expressions reported in [24], which depend on the angular
pole position θ [rad] and the cart position x [m]; see Fig. 1.

Fig. 1: Sketch of the Cart-Pole mechanical system.

Velocities, accelerations, masses, the pole length, an gravita-
tional acceleration are also relevant, but we avoid extending
their formulation for brevity. For this implementation, we
used the parameter values defined by OpenAI Gym [25].
Notwithstanding, it is essential to mention that F [N] in
Fig. 1 stands for the external force applied to the cart, linked
with the action performed by the controller or agent.

Therefore, in the reinforcement learning context, the in-
tervals for the observation parameters used to describe the
environment behavior (and the states) are summarized in
TABLE I. Besides, the actions at ∈ A for this environment
correspond to the moving force exerted in the cart described
as A = [−20, 20] N, where the positive forces represent a
move to the right and the negative a move to the left.

TABLE I: Intervals of the Cart-Pole observation parameters.
Parameter Symbol [Unit] Min. Value Max. Value

Cart position x [m] -4.8 4.8
Cart velocity ẋ [m/s] -∞ ∞
Pole angular position θ [rad] -0.418 0.418
Pole angular velocity θ̇ [rad/s] -∞ ∞

Recall that the agent aims to keep the pole angular position
θ as near as possible to zero during the entire episode, trying
not to move the cart far from the center at x = 0 m. For
every step in an episode, a reward rt is defined by

rt = w · g(st+1|st), (1)

with

g(st+1|st) =
(
R,

θst − θst+1

θmax
,
xst − xst+1

xmax

)⊺

, (2)

where w ∈ RP+ is a weight vector and g(st+1|st) : S 7→
RP is the reward criteria function, defined according to the
number of reward criteria P . Without loss of generality, we
considered P = 3 and w = (1, 100, 5)⊺ chosen to balance
the reward value rt. Plus, for the first reward criterion in (2),
we considered that R is given by

R =

{
1, if |θ| ≤ 12◦ ∧ |x| ≤ 2.4 m,
0, otherwise, (3)

which is a simple and effective way to indicating the cart and
pole are within the desired positions. The second and third
criteria correspond to how good that transition is regarding
the pole angle and cart position, respectively.

In addition, it is worth mentioning that the episode is halted
if either the absolute pole angular position θ exceeds 12◦

(≈ 0.2094 rad), the absolute cart position x is greater than

1444

2.4 m or the episode time t is long lasting more than 200
steps.

III. PROPOSED APPROACH

This work proposes a population-based reinforcement
learning model using Particle Swarm Optimization (PSO) to
explore the policy space and a simple Feed-forward Neural
Network (FNN) for modeling policies. Such a technique,
called Swarm Intelligence Guided Neural Reinforcement
Learning (SIGNRL), can handle continuous states and actions
for complex system controllers. Fig. 2 summarizes the overall
framework where PSO leads exploration that creates and
modifies the population of policies based on their cumulative
rewards. After that, the actor based on FNN executes the
policies and interacts with the environment. The remainder
of this section details each of the elements of the proposed
methodology.

Fig. 2: Overall framework of the proposed SIGNRL algo-
rithm.

A. Policy Iteration

As usual, the actor is an agent who perceives observations
from the environment and provides the best available ac-
tion [21]. This actor comprises an FNN architecture built with
four input neurons (one per each observation in TABLE I), 20
hidden neurons with a hyperbolic tangent (tanh) activation
function, and one output neuron also with a tanh activation
function scaled to generate the action a. So, for the layer
sizes, we get L0 = 4, L1 = 20, and L2 = 1. The weight
matrices for this FNN are given by W 1 ∈ RL0×L1

+ and
W 2 ∈ RL1×L2

+ , and the corresponding bias vectors b1 ∈ RL1

and b2 ∈ RL2 , describe the actor’s policy π(a|s;ψ) with,

ψ = (vec(W 1)
⊺
, (b1)

⊺
, vec(W 2)

⊺
, (b2)

⊺
)
⊺
, (4)

since ψ ∈ R(L0+1)L1+(L1+1)L2 denotes the number of hyper-
parameters in the FNN model and vec: Rn×m 7→ Rnm is a
vectorization operation. For this particular implementation it
is (L0+1)L1+(L1+1)L2 = 121. Nevertheless, we expressed
it in that fashion to facilitate its extension and analysis.

The proposed method corresponds to a policy iteration
algorithm, where the policy π(at|st;ψ) defines the agent
behavior. The impact of each action the agent takes on the
environment is evaluated using the reward rt in (1), whose
value depends on the properties of the environment. This

reward is obtained at each step of an episode and represents
the short-term effect of the agent’s actions.

However, a more valuable long-term performance in agent
training is highly recommended to avoid the drawbacks of
short-term rewards. Therefore, we propose using the Episodic
Control approach by defining a finite episode, delimited
by T steps, to interact with the environment. Indeed, the
episode’s duration can be variable depending on each agent;
longer episodes indicate better agent performance, avoiding
a premature terminal state. Consequently, long-term rewards,

Gπψ =
∑T−1
k=0 γkrk+1, (5)

correspond to the cumulative of no discounted rewards (γ =
1) obtained by the agent in a complete episode starting in s0.

B. Training based on Swarm Intelligence

FNN hyper-parameters in the proposed scheme are es-
timated using Particle Swarm Optimization (PSO). Pseu-
docode 1 describes this optimizer, which renders a set of
potential solutions subsequently provided to the actor and
tested in the environment during a certain number of episodes
(iterations) until the best possible solution is obtained.

Pseudocode 1 SIGNRL algorithm

Input: Number of agents NA, number of episodes NE ,
maximum number of steps per episode Tmax, FNN ar-
chitecture for π(a|s;ψ), and problem environment env.

Output: Parameters of best policy obtained ψ∗

1: Initialize the global best fitness f∗ ← 0
2: for i← 1 to NA do
3: Initialize randomly the FNN hyper-parameters ψi
4: Initialize the ith individual best fitness fpi ← 0
5: Initialize the average reward value ACRi ← 0

6: for j ← 1 to NE do
7: parallel for i← 1 to NA do
8: s0 ← env.reset() ▷ Get initial observation
9: for t← 1 to Tmax do

10: ai,t ← π(st,ψi) ▷ Select an action
11: rt, st+1 ← env.step(ai,t)
12: Determine Gπψi

with (5)

13: if f(πψi) ≤ fpi then ▷ Using f(πψi) from (6)
14: fpi ← f(πψi) and pi ← ψi
15: Update ACRi using (9)
16: for i← 1 to NA do
17: f∗ ← fpi and p∗ ← pi if fpi ≤ f∗
18: ACR∗ ← ACRi and ψ∗ ← pi if ACRi ≤ ACR∗
19: Update ψi using (7) and (8)

Now, instead of modifying a single policy through ex-
ploration, PSO uses a population of NA agents, such as
Ψ = {ψ1, . . . , ψNA

}, containing the hyper-parameters
described in (4). These agents represent the candidate policies
associated with a particular expected reward. Moreover, the
fitness function for the PSO procedure is defined as,

f(πψ) = −Gπψ , (6)

1445

where Gπψ is the cumulative reward obtained by each agent
in an entire episode during the current iteration.

Therefore, the agents evolve following a process guided
by PSO, considering the best-known performance in the
swarm at each iteration. It aims to improve each agent
position (directly related to the FNN-based actor hyper-
parameters) so that the new population can generate policies
with better rewards. This is possible using the well-known
PSO’s expressions [26], such as

vi+1←α0vi + α1r1⊙(pi −ψi) + α2r2⊙(p∗ −ψi) , (7)
ψi+1←ψi + vi, (8)

where the inertial, self-confidence and swarm-confidence
factors were set as α0 = 0.9, α1 = 0.5, and α2 = 0.3,
respectively. In addition, r1 and r2 are two vectors with i.i.d.
random variables uniformly distributed in [0, 1] and ⊙ is the
Hadamard-Schur product.

Lastly, PSO finishes the procedure when reaching the
total number of episodes. Nevertheless, we implement an
alternative performance metric to the fitness function in (6)
based on the Average Cumulative Reward (ACR). So, the
(ACR∗) for the ith agent is updated each episode via

ACRi ←
(
(j − 1)ACRi +Gπψi

)
/j, (9)

since j = 1, . . . , NE corresponds to the episode counter. It is
important to note that this function is only used for the final
agent selection to obtain the best long-term performance.
This alternative metric allows selecting the best agent fitness,
which corresponds to the best Average Cumulative Reward
(ACR∗).

IV. EXPERIMENTAL RESULTS

All numerical case studies were performed in Python v3.9
running on an Intel® Xeon® Gold 6326 CPU @2.90 Hz,
with 32 cores and 32 threads, with 32 GB of RAM. The
Feedforward Neural Network (FNN) model was built using
Tensorflow v2.13.0, and the Particle Swarm Optimization
(PSO) algorithm was implemented using the PySwarms
v1.3.0 framework. Moreover, the asynchronous multiprocess-
ing module based on the Python concurrent library was
utilized to improve the training process.

To implement the SIGNRL algorithm, we defined 500
episodes with 30 agents and a maximum of 200 steps for
each agent. Furthermore, all data this work achieved is freely
available at https://github.com/Danielfz14/SIGNRL RL.

A. Training details

The SIGNRL algorithm was tested in 50 independent runs,
wherein the parameters of policy networks were initialized
using Glorot Uniform initialization at the start of each run.
As illustrated in Fig. 3, the cumulative reward Gπψ obtained
by the best agent of each run in each training episode shows
that 500 episodes were enough to achieve a high convergence
near a maximum cumulative reward of 207.

On the other hand, the average cumulative reward per
episode from the first episode to the current episode in Fig. 4
exhibits an increasing trend in the learning process. This

Fig. 3: Cumulative reward per episode of best agents obtained
in 50 independent training runs.

curve shows that most of the agent’s learning occurs in the
first 200 episodes, reflecting a high learning speed.

Fig. 4: Average cumulative reward per episode from the first
episode to the current episode of best agents obtained in 50
independent training runs.

B. Performance validation

We tested the agents’ performance obtained by the
SIGNRL methodology to validate our approach under three
scenarios. The first one corresponded to a set of short
episodes with the same duration as training episodes; the
second scenario considered episodes ten times longer than
the first scenario; and the third one had extended episodes of
the same duration as the second scenario but including dis-
turbances due to external forces perceived by the cart. These
disturbances were implemented according to F = a + df ,
where a is the action exerted by the agent and df is the
disturbance composed of Dirac delta and Heaviside signals.

We conducted a repeatability test to verify the agent’s
performance. It consisted of running each scenario 50 times
per agent with random initial states. The Average Mean
Squared Error (AMSE) of pole angle position θ and cart
position x to the reference was calculated for an entire
episode, such as

AMSEy =
1

N

∑N
j=1 E

{
∥yj∥2

}
, (10)

since y = {θ, x}. For the expectation E, we use a uniform
distribution f(τ) = 1/τ and consider the number of episodes
performed N ; we set it to 50 episodes per agent. τ = Tj

1446

corresponds to the total time-steps performed by the agent in
the jth episode. Besides, yk ∈ y is the position, either θk or
xk, in kth step; i.e., y = (y1, . . . , yτ)

⊺.
As both θ and x are essential observations to measure the

long-term behavior of agents, we implemented a metric to
quantify the agent’s performance based on the Median (med)
and the Inter-Quartile Range (iqr) of each AMSE, as shown

ξ =
∑
y={θ,x} med(AMSEy) + iqr(AMSEy). (11)

Table II shows the repeatability performance of each best
agent obtained by our proposal in each scenario. The loga-
rithm of ξ indicates the capability to keep the pole angle and
cart position as close to zero as possible, and [%] means the
percent of episodes finished successfully. A smaller log(ξ)
indicates that the agent performed better in the total or most
of the episodes executed. Conversely, larger values show that
the agent presented more significant difficulties in keeping θ
or x stable close to zero. Agents that offered at least one
uncompleted episode were highlighted in red, and the agent
with the best global performance was highlighted in blue.

The repeatability test shows that 100% of the best agents
completed the short episode scenario, 80% of agents had
a good performance in the long episode, demonstrating an
acceptable generalization, and 72% responded correctly to
the situation with disturbances.

Fig. 5 plots the environment observations and actions of
the best global agent tested in the long episode scenario
with disturbances. It proves that although θ and x started
in random initial values, the agent could create the actions
needed to stabilize quickly θ and x as near as possible to zero
in the entire episode. Indeed, the best agent generated the
correct actions that compensated for the effect of additional
forces of disturbances.

V. CONCLUSIONS

This paper introduced an alternative approach for
Population-based Reinforcement Learning using the PSO
algorithm for exploring policy parameters. The experimental
results prove that the SIGNRL method proposed offers a
straightforward and gradient-free framework for addressing
continuous control problems in reinforcement learning.

The main limitation of using a finite episode in the
training process for RL systems is the possibility of finding
a policy with an outperforming result in the episodic training
sessions that do not necessarily guarantee the best long-
term performance for continuous operation outside of that
episode’s boundaries. The results with actors trained in a
short episode and tested in episodes ten times longer show
that the selection of policy parameters based on the best
average cumulative reward with the SIGNRL method can
be a feasible alternative to avoid the limitation of episodic
training when it is necessary to select the best policy for long-
term operation. The conducted experiments also show that
our proposal requires low training times and exhibits high
convergence rates with environments involving continuous
states and actions.

TABLE II: Repeatability results for each best agent obtained
with RL-PSO model proposed in 50 intents. Agents that
rendered at least one uncompleted episode are highlighted
in red, while those with the best global performance are in
blue.

Scenario

Episodes: Short Long Long
Disturbances: No No Yes

Agent’s Id. log(ξ) [%] log(ξ) [%] log(ξ) [%]

1 -4.389 100.0 -5.41 100.0 -4.257 100.0
2 -3.485 100.0 -2.563 100.0 -2.601 100.0
3 -4.25 100.0 -3.009 100.0 0.05 0.0
4 -4.852 100.0 -5.953 100.0 -5.484 100.0
5 -3.638 100.0 -4.362 100.0 -2.86 82.0
6 -3.55 100.0 -0.519 66.0 -0.342 62.0
7 -4.539 100.0 -4.302 100.0 -4.355 90.0
8 -4.59 100.0 -5.461 100.0 -3.72 100.0
9 -3.909 100.0 -3.121 100.0 -3.096 100.0

10 -4.234 100.0 -2.969 100.0 -3.387 100.0
11 -4.745 100.0 -5.329 100.0 -4.003 100.0
12 -2.932 100.0 0.187 0.0 0.081 2.0
13 -3.781 100.0 0.146 0.0 0.142 0.0
14 -3.694 100.0 -1.867 100.0 -1.753 100.0
15 -2.863 100.0 0.241 0.0 0.258 0.0
16 -4.811 100.0 -5.77 100.0 -4.625 100.0
17 -4.503 100.0 -5.654 100.0 -4.582 100.0
18 -3.512 100.0 -2.246 100.0 0.06 4.0
19 -4.742 100.0 -5.934 100.0 -4.884 100.0
20 -3.057 100.0 -1.865 100.0 -2.123 100.0
21 -3.068 100.0 0.208 0.0 0.213 0.0
22 -4.735 100.0 -5.458 100.0 -4.05 100.0
23 -3.519 100.0 0.12 0.0 0.093 0.0
24 -4.75 100.0 -5.771 100.0 -4.541 100.0
25 -4.395 100.0 -4.633 100.0 -4.456 100.0
26 -3.681 100.0 -3.313 100.0 -2.552 100.0
27 -4.367 100.0 -3.088 100.0 -3.588 100.0
28 -4.698 100.0 -5.609 100.0 -3.978 100.0
29 -3.765 100.0 0.252 0.0 0.193 0.0
30 -3.494 100.0 0.192 0.0 0.198 0.0
31 -4.002 100.0 -2.431 100.0 -3.211 100.0
32 -4.316 100.0 -4.534 100.0 -4.206 100.0
33 -3.857 100.0 0.233 0.0 0.227 0.0
34 -4.571 100.0 -5.234 100.0 -4.967 100.0
35 -4.537 100.0 -3.209 100.0 -0.629 0.0
36 -4.742 100.0 -5.864 100.0 -3.771 100.0
37 -4.338 100.0 -2.976 100.0 -3.072 100.0
38 -4.564 100.0 -5.344 100.0 -4.756 100.0
39 -3.829 100.0 0.354 40.0 0.15 4.0
40 -4.854 100.0 -5.829 100.0 -4.957 100.0
41 -4.431 100.0 -2.954 100.0 -3.328 100.0
42 -4.37 100.0 -3.127 100.0 -3.148 100.0
43 -4.189 100.0 -4.67 100.0 -4.005 100.0
44 -4.149 100.0 -3.41 100.0 -3.334 86.0
45 -3.538 100.0 -3.049 100.0 -3.039 100.0
46 -3.534 100.0 0.178 2.0 0.158 2.0
47 -4.298 100.0 -1.11 70.0 0.079 0.0
48 -4.541 100.0 -5.457 100.0 -4.866 100.0
49 -4.535 100.0 -5.02 100.0 -4.27 100.0
50 -4.127 100.0 -4.656 100.0 -3.611 100.0

In addition, the performance of the best agents in long
episodes with disturbances shows that even when the agent
was not trained to manage a disturbance situation, it could
generate the correct actions to compensate for the unexpected
forces introduced throughout the test. Therefore, it shows
the robustness and adaptability of the best agents found

1447

Fig. 5: Cart position, pole angle, and actions executed by the
best agent, obtained with the proposed SIGNRL method, in
50 episodes of 2000 time steps with external disturbances.

by the proposed method and the capability of the SIGNRL
algorithm to find a long-term stable solution with adequate
generalization capabilities across continuous tasks.

REFERENCES

[1] D. Zambrano-Gutierrez, J. Cruz-Duarte, and H. Castañeda, “Automatic
hyper-heuristic to generate heuristic-based adaptive sliding mode con-
troller tuners for buck-boost converters,” in Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 1482–1489, 2023.

[2] S. Fong, S. Deb, and A. Chaudhary, “A review of metaheuristics in
robotics,” Computers & Electrical Engineering, vol. 43, pp. 278–291,
2015.

[3] C. Caraveo, F. Valdez, and O. Castillo, “Optimization of fuzzy con-
troller design using a new bee colony algorithm with fuzzy dynamic
parameter adaptation,” Applied Soft Computing, vol. 43, pp. 131–142,
2016.

[4] S. Pashaei and M. Badamchizadeh, “A new fractional-order sliding
mode controller via a nonlinear disturbance observer for a class of
dynamical systems with mismatched disturbances,” ISA transactions,
vol. 63, pp. 39–48, 2016.

[5] R. Nian, J. Liu, and B. Huang, “A review on reinforcement learning:
Introduction and applications in industrial process control,” Computers
& Chemical Engineering, vol. 139, p. 106886, 2020.

[6] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging the
gap between value and policy based reinforcement learning,” Advances
in neural information processing systems, vol. 30, 2017.

[7] M. Yu and S. Sun, “Policy-based reinforcement learning for time series
anomaly detection,” Engineering Applications of Artificial Intelligence,
vol. 95, p. 103919, 2020.

[8] T. Liu, L. Li, G. Shao, X. Wu, and M. Huang, “A novel policy gra-
dient algorithm with pso-based parameter exploration for continuous
control,” Engineering Applications of Artificial Intelligence, vol. 90,
p. 103525, 2020.

[9] M. H. Sazli, “A brief review of feed-forward neural networks,”
Communications Faculty of Sciences University of Ankara Series A2-
A3 Physical Sciences and Engineering, vol. 50, no. 01, 2006.

[10] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8,
pp. 229–256, 2004.

[11] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learn-
ing,” CoRR, 09 2015.

[12] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” arXiv preprint arXiv:1506.02438, 2015.

[13] Z. Zhang, J. Chen, Z. Chen, and W. Li, “Asynchronous episodic deep
deterministic policy gradient: Toward continuous control in computa-
tionally complex environments,” IEEE Transactions on Cybernetics,
vol. 51, no. 2, pp. 604–613, 2021.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[15] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learn-
ing,” arXiv preprint arXiv:1712.06567, 2017.

[16] K. W. Pretorius and N. Pillay, “Population based reinforcement learn-
ing,” in 2021 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1–8, 2021.

[17] N. Grinsztajn, D. Furelos-Blanco, and T. D. Barrett, “Population-based
reinforcement learning for combinatorial optimization,” arXiv preprint
arXiv:2210.03475, 2022.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[19] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–489, 01 2016.

[20] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-free reinforcement
learning with continuous action in practice,” in 2012 American Control
Conference (ACC), pp. 2177–2182, 2012.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. The MIT Press, second ed., 2018.

[22] A. Flajolet, C. B. Monroc, K. Beguir, and T. Pierrot, “Fast population-
based reinforcement learning on a single machine,” in International
Conference on Machine Learning, pp. 6533–6547, PMLR, 2022.

[23] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5,
pp. 834–846, 1983.

[24] R. V. Florian, “Correct equations for the dynamics of the cart-pole
system,” in Center for Cognitive and Neural Studies (Coneural), 08
2005.

[25] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[26] M. Jain, V. Saihjpal, N. Singh, and S. B. Singh, “An overview
of variants and advancements of pso algorithm,” Applied Sciences,
vol. 12, no. 17, p. 8392, 2022.

1448

