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Abstract—Engineering processes often require optimizing
model variables for satisfactory solutions. Reliable approaches
exist in literature but are application-dependent. In that sense,
metaheuristics have been proven to deliver outstanding results
while imposing a low computing burden. However, choosing
the most suitable one from the many available can overwhelm
even experts. This study implements a methodology that
automatically tailors a problem-based metaheuristic through
a hyper-heuristic approach. We select the tuning problem
of a Proportional Integral Derivative controller as a case
study for achieving the best stable features in an Automatic
Voltage Regulator system. The numerical results demonstrate
the reliability and potential of the implemented methodology
in solving control system tuning. Plus, we conduct an in-depth
quantitative comparison with recent works in the literature that
support those conclusions.

Index Terms—Automatic Algorithm design, Metaheuristics,
Control Engineering, Parameter Tuning, Complex Systems.

I. INTRODUCTION

OPTIMIZATION methods are crucial in solving practical
design engineering problems [1, 2]. These algorithms

seek, at least for approximate, optimal solutions to complex
problems, searching in the space of potential solutions.
Deterministic approaches and Metaheuristics (MHs) have
been developed in the literature to tackle real problems [3].

However, gradient-based deterministic methods may lose
effectiveness in highly nonlinear scenarios due to continuity
issues [4]. Conversely, MHs constitute a valuable alternative
due to their flexibility and low computing burden. They
use searching techniques inspired by natural principles
that mimic the behavior of biological, social, or physical
processes to find efficient solutions [5, 6]. Some examples
of classical MHs are Genetic Algorithms [7], Simulated
Annealing [8], and Particle Swarm Optimization [9]. Recall
that an MH may not always offer the best solutions for all
optimization problems, as indicated by the No-Free-Lunch
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theorem [10]. Therefore, selecting the appropriate MH for
a specific case can take significant time due to the colorful
palette of approaches available in the literature [11, 12].

An efficient way to get the suitable MH for the problem
is through the automatic and intelligent generation of MHs
via a Hyper-Heuristic (HH) model [13]. Recently, several
proposals have been reported in the Automatic Algorithm
Design (AAD), primarily for dealing with combinatorial
optimization problems [14, 15]. In the case of continuous
problems, it was reported in [16] a framework that focuses
on customizing MHs by searching on the heuristic space.
According to the performance tests, the presented numerical
results demonstrate that the automatically generated MHs
efficiently solve classical benchmark functions from the
literature. Moreover, such a framework has opened a wide
gamut of opportunities for MHs that can solve engineering
tuning problems, such as those related to electrical and
robotic systems [17, 18]. In this context, a particular case is
the Automatic Voltage Regulator (AVR) systems [19]. AVRs
are generally designed to maintain a constant output voltage
in generators or power generation systems independently of
load fluctuations or energy demand [20]. Still, AVRs require
a well-designed and tuned controller to ensure the stability
and performance of the power grid face disturbances [21, 22].
Some studies have employed Proportional, Integral, and
Derivative (PID) controllers due to their versatility and easy
implementation [23, 24]. However, proper PID controller
tuning is crucial in the precise operation of the AVR system.
In this study, we implement the HH framework reported
in [16] and evaluate it in the tuning problem of PID
controllers for AVR systems. So, we automatically generate a
customized population-based MH for tuning a PID controller,
achieving the AVR system with the desired output voltage
stability features. In addition, the main contributions of this
work are summarized as follows:
i) We demonstrate the potential of an automated

methodology to generate an MH for tuning a PID
controller and improving the robustness of an AVR
system against disturbances.
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ii) We confirm the exceptional performance of the custom
MH compared with two approaches recently proposed in
the literature.

iii) We corroborate that the PID control tuned by the tailored
MH can compensate for induced disturbances, keeping
the output voltage stable.

II. FOUNDATIONS

This section describes the most relevant concepts we
employed in this work, such as AVR, PID, and AAD.

A. Automatic Voltage Regulator System (AVR)

An AVR system is an energy technological solution of
vital importance in electricity distribution and generation. It
adjusts the voltage in one or more phases of an electrical
system in response to changes in input voltage, load
fluctuations, and other external factors [19]. Its primary
purpose is maintaining the voltage at stable and constant
levels, avoiding fluctuations detrimental to the connected
devices, which can have adverse consequences. Hence, an
AVR must ensure reliable and optimal power quality in
electrical supply systems.

A basic AVR system can be modeled as four
interconnected subsystems: an amplifier, exciter, generator,
and sensor. Each subsystem performs specific functions in
accurately regulating the output voltage [25]. Fig. 1 depicts
these subsystems represented by their transfer function,

Gk(s) =
Kk

1 + sτk
, (1)

since the subscript k = {a, e, g, s} corresponds to the initial
letter of each subsystem’s name. These first-order systems
are represented by a gain Kk and a time constant τk. The
values presented in TABLE I were selected based on [23, 24]
to ensure a fair comparison using the same plant setup.

Fig. 1. AVR system model without a controller.

TABLE I
GAIN AND TIME CONSTANT VALUES USED FOR THE AVR SUBSYSTEMS’

TRANSFER FUNCTIONS.

Subsystem: Amplifier Exciter Generator Sensor

Gain: Ka = 10.0 Ke = 1.0 Kg = 1.0 Ks = 1.0
Time Constant: τa = 0.1 s τe = 0.4 s τg = 1.0 s τs = 0.01 s

The AVR system’s behavior can be evaluated through its
step response, as Fig. 2 depicts. However, it suffers from a
non-zero steady-state error, high overshoot, and long settling
times. For future comparisons, the AVR system without a
controller exhibits an Overshoot (Mp) of 67.42%, a Settling
Time (Ts) of 6.971 s, a Rise Time (Tr) of 0.754 s, and

a Steady-State Error (Ess) of 0.090 p.u. With these poor
features, the need for implementing a controller that guides
the system dynamics to a desired behavior is evident.

Fig. 2. Output voltage of the AVR system without a controller.

B. AVR System with a PID Controller

This study uses a Proportional, Integral, and Derivative
(PID) controller due to its simple structure and easy
implementation. As its name indicates, this controller
combines three fundamental control actions in response to the
error signal, which compares the reference and the sensor’s
output [26]. The controller’s transfer function is given by

GPID(s) = Kp +Ki
1

s
+Kd s, (2)

where Kp, Ki, and Kd are the proportional, integral, and
derivative gains, respectively.

These parameters must be tuned appropriately to guarantee
that the PID controller regulates and stabilizes the AVR
output voltage efficiently. This task may seem simple, but
it is not trivial. It could require expertise and knowledge
about the process, an extensive analytical procedure, or
sophisticated algorithms. Hence, the tuning process involves
balancing system dynamic response and stability, considering
the specific plant features and operating conditions. In this
work, we implement a heuristic-based algorithm tailored for
tuning this controller for the AVR system. The tailoring
procedure is described in the following sections.

C. Automatic Algorithm Design (AAD)

AAD is a well-known field focused on high-level techniques
that select or generate algorithms for dealing with a problem
family [27]. This designing task can be defined using the
General Combinatorial Optimization Problem (GCOP) [28]
for heuristic-based algorithms such as metaheuristics. For
the particular case of continuous optimization problems,
a specific variant is referred to as the Metaheuristic
Composition Optimization Problem (MCOP) [29], given by

(MH∗; x⃗∗) = argmax
MH∈Hϖ, x⃗∈X

{Q(MH |X)}, (3)

since Q(MH |X) corresponds to a performance metric value
associated to a Metaheuristic (MH) implemented on a
particular problem (X, f). Consider that X corresponds to
the feasible problem domain and f to the objective function.
Now, a high-level algorithm that deals with the MCOP is
commonly called Hyper-Heuristic (HH), no matter its nature.
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A HH searches within the heuristic space Hϖ to find the best
heuristic sequence that composes the optimal MH (MH∗)
rendering a maximal performance Q(MH∗ |X) [30]. (ϖ
stands for the number of operators in the MH.)

Moreover, to better understand the HH process, it is
necessary to review the term ‘heuristic.’ In a broad sense,
a heuristic is a procedure that generates or modifies one or
more candidates for a solution in a given problem [31]. In
particular, heuristics can be classified into three categories
based on their level of abstraction and interaction with the
problem domain [29]. At the lowest level of abstraction, there
is the Simple Heuristics (SHs), which interact directly with
the problem domain. Then, MHs interact indirectly with the
problem by controlling the search procedure done by a fixed
sequence of SHs. At the highest level, HHs search in the
heuristic space for either a combination of SHs or an MH
that tackles the problem.

Considering the heuristic interaction nature with the search
domain (either the problem or heuristic one), these can be
classified according to [32, 33] as follows: A Constructive
Heuristic (hi) creates a candidate solution from scratch; a
Perturbative Heuristic (hp) modifies a candidate solution; and
a Selective Heuristic (hs) evaluates a candidate solution and
decides whether to accept it or look for another one.

Keeping this information in mind, an MH can be described
using the three essential components: an initialization
heuristic hi; at least one Search Operator (SO) ho, which
is composed by a perturbative heuristic hp succeeded by a
selective one hs; and a selective heuristic operating as master
strategy or finalizer (hf ). Thus, MH = ⟨hi, ho, hf ⟩, where
ho can be a SO composed of many SOs given in a sequence,
i.e., ho=hϖ◦· · ·◦h1, ∀hk∈ h⃗∈Hϖ. Further information can
be found in [31, 32].

III. PROPOSED APPROACH

This section details the methodology proposed to generate
heuristic-based tuners for a PID controller in an AVR system.
We organize the following sections w.r.t. the low-level and
high-level domains corresponding to the controller tuning
problem and the MCOP, respectively. Figure 3 shows an
overview of this methodology.

Fig. 3. Overview of the hyper-heuristic procedure to generate a metaheuristic
for tuning a PID controller for an AVR system.

A. Low-Level Domain

First of all, the low-level problem domain, corresponding
to the PID controller tuning, is a three-dimensional space

where is the design vector (Kp,Ki,Kd)
⊺ ∈ X ⊆ R3. In

the literature, it is common to find several approaches to
evaluate the performance of a controller once coupled to the
dynamic system [34, 35]. However, traditional performance
metrics, such as Integral Time Absolute Error (ITAE),
Integral Square Error (ISE), Integral of Time multiplied
Squared Error (ITSE), and Integral Absolute Error (IAE), are
of particular importance in controller tuning. These metrics
are defined as

IAE =
∫ T

0
|e(τ)|dτ, ISE =

∫ T

0
e2(τ)dτ,

ITAE =
∫ T

0
τ |e(τ)|dτ, ITSE =

∫ T

0
τe2(τ)dτ.

(4)

We consider them as objective functions in the low-level
problem domain and also regard other functions
incorporating specific system characteristics [23, 24, 36],
given by

OFk = α1 × gk + α2 × Ts + α3 × Mp,

ZLG = (Mp + Ess)×
(
1− e−β

)
+ (Ts − tr)× e−β ,

(5)

since gk ∈ {ITAE, IAE, ITSE, ISE}, ∀ k = 1, . . . , 4. Plus,
α1 = α2 = α3 = 0.33, and β = 0.8 were determined for
this study. Each objective function evaluates the controller’s
performance from different dynamic perspectives. However,
the effect of each of these objective functions on the PID
controller tuning is only detailed. Besides, we prioritize
implementing the traditional ITSE metric to generate a
customized MH through an HH process.

B. High-Level Domain

In this case, the high-level domain corresponds to the
heuristic space Hϖ, where ϖ is the number of SOs
used for generating an MH. For this space, we employ a
collection composed of 205 SOs, obtained by considering
different combinations of SOs extracted from ten well-known
MHs [13]. In addition, for evaluating the performance of a
candidate sequence of SOs as an MH, we use

Q(MH |X) = −(med(Fh) + iqr(Fh)), (6)

where Fh is given by Fh = {f(x⃗r,∗) | ∀ x⃗r,∗ ∈ X∗}, which
stands for a set of fitness values f(x⃗r,∗) achieved after
implementing the candidate MH on Nr independent runs;
thus, X∗={x⃗1,∗, . . . , x⃗Nr,∗}. In this work, we set Nr = 20.
med and iqr are the median and inter-quartile range operators.

Lastly, to solve the MCOP in (3), we implemented
the Simulated Annealing Hyper-Heuristic (SAHH) reported
in [16] to facilitate the experimentation. We employed 20
for the population size of SOs, 30 for the MH’s maximum
iteration number, and 10 for the HH’s maximum step number.

IV. EXPERIMENTS AND RESULTS

The proposed strategy to tune a PID controller for an
AVR system and achieve a suitable heuristic-based tuner
for this problem was tested on a two stages methodology.
First, we implemented the HH process to tailor this MH
according to Section III. Then, we conducted several
experiments to study the influence of different objective

1265



functions on the generated MH by examining the features
of the AVR system. In the second stage, we analyzed the
controller tuned with the achieved metaheuristic regarding
stability and performance and its robustness to perturbations.
We also compared our resulting controller against others
tuned using two state-of-the-art techniques such as the
Tree Seed Algorithm (TSA) [24] and Improved Kidney
Algorithm (IKA) [23]. Furthermore, we employ a population
size of 20 individuals for the SOs, a maximum number of 30
iterations as a finalization criterion of candidate MHs, and a
maximum number of 10 steps for the hyper-heuristic search.

All the numerical case studies were conducted in Python
v3.9 running on an ASUS TUF Gaming F17 with AMD
Ryzen 7 Processor 5700G-8 CPU Cores, 16GB RAM, and
using Microsoft Windows 10-64 bit. For implementing the
high-level procedures, we utilized the stable CUSTOMHyS
v1.1.2 framework, which is freely available at https://pypi.
org/project/customhys/ [16]. For numerically simulating the
AVR system and each PID controller in the low-level domain,
we employed Matlab R2022b. Moreover, all data this work
achieved is freely available at https://github.com/Danielfz14/
AutoDesign AVR PID Controller.

The first stage focused on tackling the MCOP to find
the optimal tuner for a PID controller operating in an AVR
system. Fig. 4 displays the HH evolution process, where each
box represents the fitness results obtained after repeating 20
times the current candidate MH. At the sixth step of SAHH,
we notice that MH6 is a great algorithm that outperforms
the previous candidates. Fig. 4 also shows the performance
tendency (orange dashed strokes) characterized by the lowest
value of the Q metric from (6).

Fig. 4. Evolution tendency of the fitness function achieved by each candidate
MH during the HH procedure.

To analyze the heuristic search carried out by SAHH,
Fig. 5 depicts the fitness evolution per iteration generated
by the candidate MHs at the zeroth (pink strokes),
third (green strokes), and sixth (blue strokes) steps. At
step zero, the behavior of the initial candidate (MH0)
is expectedly poor, with a considerable dispersion and
stagnation far from optimal. In step three, MH3 presented
evident performance improvement with reduced dispersion
in all fitness evolution curves. However, some stagnation
problems can still be observed. Finally, the sixth and final
candidate metaheuristic MH6 ≡ MH∗ corresponds to the
tailored one (MH∗). It rendered the best performance during
the SAHH implementation with a metric value of 2.4×10−2.
However, recall that the HH process is constrained to conduct

only ten steps, so considering more HH steps can still be
improved. We can now be interested in knowing what is
inside this heuristic-based. It is composed of two search
operators, i.e., MH∗ = ⟨hi, ho, hf ⟩, with h̄o = h18 ◦ h186,
following the MH standard model detailed in [32]. The more
detailed structure of these operators can be seen as follows:

h18: Differential Mutation with a scale factor of 1.0 as the
perturbation heuristic and Greedy as the selection heuristic.

h186: Swarm Dynamic with Gaussian distribution as the
perturbation heuristic and Greedy as the selection heuristic.

Fig. 5. Fitness evolution generated per the candidate metaheuristics MH0,
MH3, and MH6 during the steps 0, 3, and 6 of the hyper-heuristic procedure.

Now, let us examine the effect of the objective function
once the customized metaheuristic (MH∗) is generated. To
do so, we evaluated its performance on various objective
functions using (5) to identify the target function that
would provide the best performance for the system. We
implemented the MH∗ using these functions and employing a
maximum of 50 iterations and a population of 30 individuals.

TABLE II
RESULTS OF THE TRANSIENT RESPONSE OF THE AVR SYSTEM TO A STEP

INPUT FOR DIFFERENT TARGET FUNCTIONS.

Fobj. Fitness Mp Ts Tr Ess Kp Ki Kd[%] [s] [s] [p.u.]

OF1 0.162 1.83 0.38 0.26 8.62×10−5 0.680 0.577 0.257
OF2 0.336 27.08 1.99 0.09 5.92×10−4 1.370 1.814 0.911
OF3 0.152 1.79 0.43 0.28 2.47×10−4 0.629 0.560 0.560
OF4 0.303 9.38 0.69 0.21 6.04×10−5 0.875 0.784 0.285
ZGL 0.077 0.52 0.49 0.32 2.17×10−5 0.612 0.410 0.200
ZGL+ITSE 0.081 1.57 0.39 0.26 8.20×10−5 0.669 0.571 0.253

TABLE II details the results from this evaluation, where
the best-obtained values are highlighted. The ZLG function
provides remarkable performance, achieving the lowest
overshoot (0.52%) and steady-state error (2.17×10−5). OF1
provided the shortest settling time (0.38 s), and OF2 enabled
the fastest rise time (0.09 s). These results exhibit that each
function focuses on a particular feature. Therefore, ZLG was
selected for the remainder of the analysis as it balances
overshoot, settling time, rise time, and steady-state error.

In the second stage, we focus on analyzing the PID
controller tuned by the tailored MH and comparing its
results with those generated by similar controllers tuned with
TSA [24] and IKA [23]. These algorithms were employed
to calculate the PID control system parameters based on
ITSE objective function criteria, and performances were
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also explored using other objective functions such as ZLG.
TABLE III presents the values for Kp, Ki, and Kd of
the PID controllers estimated using the MH∗, TSA, and
IKA. We can quickly notice that the MH∗-tuned controller
performs better than the IKA- and TSA-tuned controllers.
The overshoot obtained by the MH∗-tuned controller was
0.52%, 29.8 and 28.8 times lower than those obtained by
the IKA- and TSA-tuned controllers. Plus, the MH∗-tuned
controller achieved a settling time of 0.49 s, which was
53% and 59% faster than the controllers tuned with IKA
and TSA. In the case of the steady-state error, all algorithms
improved this metric, but the MH∗-tuned controller obtained
the lowest value among the others. Fig. 6 summarizes the
above analysis, showing the evolution of the output voltage
from the AVR system for each controller adjusted via the
three different algorithms. The zoom-in square allows for a
detailed study of overshoot (Mp) and settling time (Ts) values.

TABLE III
RESULTS OF TRANSIENT RESPONSE ANALYSIS OF THE AVR SYSTEM FOR

DIFFERENT CONTROLLERS TUNED BY MH∗ , IKA, AND TSA.

Alg. Fobj. Mp Ts Tr Ess Kp Ki Kd[%] [s] [s] [p.u.]

MH∗ ZGL 0.520 0.490 0.32 2.17×10−5 0.612 0.410 0.200
IKA [23] ZGL+ITSE 15.00 0.753 0.12 2.08×10−4 1.128 0.956 0.567
TSA [24] ITSE 15.57 0.758 0.13 8.86×10−4 1.042 1.009 0.599

Fig. 6. Step response of the AVR system in a closed-loop and with a PID
controller tuned with the tailored metaheuristic MH∗, TSA, and IKA.

Then, we perform a root locus and Bode analysis to verify
the stability of the AVR system using each controller tuned by
MH∗, IKA, and TSA. TABLE IV shows the system features
for closed-loop poles and damping corresponding to the tuned
controllers connected to the AVR system. It is essential to
mention that the system is stable for all three methods used
since the closed-loop poles are located on the left side of
the complex s plane. After comparing the results obtained
for each controller, we observed that the conjugate poles of
AVR systems are generally more stable. However, we also
noticed that the conjugate poles obtained from IKA and TSA
are slightly located farther to the left than those from MH∗.
Despite this, it is paramount to emphasize that the AVR
system, tuned using MH∗, has a much higher damping ratio
of 72% and 68.9% compared to the damping ratios achieved
by using IKA and TSA, respectively. This confirms the quick
neutralization of the oscillations shown in Fig. 6.

TABLE IV
CLOSED LOOP POLES AND DAMPING RATIOS OF AVR SYSTEM FOR

DIFFERENT CONTROLLERS TUNED BY MH∗ , IKA, AND TSA.

MH* IKA TSA
Closed Damping Closed Damping Closed Damping
Loop Poles Ratio Loop Poles Ratio Loop Poles Ratio

-100.55 1 -101 1 -101 1
-0.9935 1 -0.8-0.9i 0.652 -0.9+0.8i 0.748
-1.8801 1 -0.8+0.9i 0.652 -0.9-0.8i 0.748
-5.04+5.42i 0.681 -5.13+11.9i 0.395 -5.05+11.5i 0.403
-5.04-5.42i 0.681 -5.13-11.9i 0.395 -5.05-11.5i 0.403

Lastly, we conducted a disturbance test to analyze the
AVR system controlled by a PID controller. We modified
the load of synchronous generators using Heaviside function
inputs. The disturbances appeared at 3 and 5 s with 10%
and -20% amplitudes, respectively. Fig. 7 exhibits how each
controlled system effectively manages these disturbances.
However, the MH∗-tuned system remarkably performs by
quickly stabilizing and smoothing the response.

Fig. 7. AVR system responses to disturbances for different controllers tuned
by MH∗, IKA, and TSA.

V. CONCLUSIONS

This work implemented an Automatic Algorithm Design
methodology based on Simulated Annealing to generate
a population-based Metaheuristic (MH∗) for tuning a PID
controller in an Automatic Voltage Regulator System (AVR)
system, which is present in various electrical applications.

The MH tailored for this work comprises two SOs,
such as a Differential Mutation from Differential Evolution
followed by a Greedy selection and a Swarm Dynamic
with Gaussian distribution from Particle Swarm Optimization
also followed by a Greedy selection. With this MH∗, we
analyzed the effect of the different objective functions from
the literature on the system’s dynamic responses. We noticed
that ZGL is a balanced function in speed response and
overshoot of the controlled system. We also compared MH∗
against two state-of-the-art algorithms, such as TSA [24]
and IKA [23]. From numerical results, we proved that MH∗
exhibited superior performance compared to the IKA and
TSA algorithms. The controller tuned using MH∗ obtained
an overshoot of 0.52%, at least 29 times lower than that
obtained by the IKA- and TSA-tuned systems. For the settling
time, the system controlled by MH∗ achieved a value of
0.49 s, at least 53% lower than those obtained by the systems
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adjusted by IKA and TSA. Plus, we observed that our system
achieved a damping ratio at least 69% higher than that
obtained by the system using the other algorithms. Finally,
we evaluated the robustness of the MH∗-tuned system in
a scenario involving changes in the AVR’s generator load
due to disturbances. We found that the MH∗-tuned system
performed superior to those obtained using the IKA and TSA
algorithms. Consequently, the response of the MH∗-tuned
system evidenced the controller’s robustness and efficiency.

We are confident that professionals from any field can
implement the proposed methodology for tailoring MHs
capable of dealing with complex problems, allowing them
to focus on their specific applications.

This work opens room for several future research areas. We
shall explore a range of disturbances, evaluate the controller’s
robustness, and improve its adaptability. We also plan to
analyze various electrical system applications to identify
patterns for more effective heuristic exploration. Lastly, we
shall add more mathematical operators to the HH framework.
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