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Abstract—Evolving Fuzzy Neural Networks (EFNNs) are well-
regarded for their interpretability and proficiency in pattern
classification tasks. However, their accuracy may need to be im-
proved when confronted with limited samples for specific classes
or the emergence of new classes in the data stream. To overcome
this limitation, we applied the EFNN-Gen, a novel approach
that integrates a priori knowledge through generalist rules to
solve a beer classification problem. These rules are derived from
assessing the specificity of Gaussian functions within the first
layer neurons of the EFNN. They represent expert knowledge
about the classification problem and are aimed at enhancing
the network’s performance. Experimental tests conducted on
the Beer dataset, a real-world multiclass pattern classification
dataset, demonstrate that integrating generalist rules leads to a
significant accuracy improvement of 97.14%.

Index Terms—Evolving fuzzy neural network, generalist rules,
interpretability, EFNN-Gen.

I. INTRODUCTION

Experts’ Feedback has proven beneficial for several in-
telligent models in overcoming their challenges. Such feed-
back can be obtained from logical propositions, like logical
rules, or through evaluating the final results achieved [1].
Consequently, incorporating a priori knowledge while training
intelligent models becomes a viable solution to enhance their
accuracy and performance in tackling classification problems.
This expert knowledge about a problem is crucial in helping
intelligent models adapt and improve their performance as
new patterns and behaviors emerge from the data. Leveraging
this strategy enables the effective implementation of evolving
system models, which can continuously adjust their parameters
in response to new data for ongoing evaluation. As intelligent
models adapt to new information, their knowledge can further
contribute to determining a priori knowledge relevant to the
problem at hand [2].

Evolving Fuzzy Neural Networks (EFNN) are models ca-
pable of dynamically defining their architectural elements and
updating factors related to their training as new samples are
evaluated [3] [4]. This adaptive behavior empowers EFNNs
to tackle complex problems of diverse nature effectively [5].
These challenges span a wide range, from addressing different
diseases [6]–[8] to more general areas of study, such as auction
fraud detection, power quality disturbance classification [9],
and even Typhoon path prediction [10]. Notwithstanding their
exceptional problem-solving abilities across various domains,
EFNNs encounter a challenge: their performance may decline

when faced with a scarcity of samples for specific classes,
particularly when new classes emerge in the data stream.

It is worth acknowledging that, in interpretability, Evolving
Fuzzy Neural Networks (EFNNs) hold a distinct advantage
over other machine-learning approaches documented in the
literature. Consequently, it becomes imperative to explore
methods that can enhance EFNNs’ problem-solving accuracy
while retaining their superior interpretability.

This study aims to implement the model proposed in [11]
(EFNN-Gen) to address the classification of various types of
beer. A key enhancement to EFNN-Gen involves incorporating
generalist rules based on the specificity of the first layer
Gaussian neurons. These rules enable the model to leverage
a priori knowledge in the dataset, allowing for a comparison
with the results obtained through fuzzy rules.

Using feedback to incorporate a priori knowledge in model
training helps to provide initial knowledge, making the learn-
ing process more coherent and adaptable to new data. Expert
systems exemplify this approach, where prior knowledge is
combined with data-extracted knowledge. The feedback can
come from familiar users or domain experts, with the latter
providing direct interaction based on a priori knowledge.
Professionals can verify the knowledge base extracted from
data, creating expert systems and disseminating knowledge
through training using hybrid models.

The primary focus of this paper is to showcase the excep-
tional problem-solving capabilities of EFNN-Gen, particularly
in handling complex challenges. By leveraging the beer dataset
a priori knowledge, we aim to conduct a comparative analysis,
contrasting the results of the model presented in this article
with the pre-existing understanding of the problem at hand.

In addition to the introduction, this paper presents the
section of theoretical references (Section II), linked to the
concepts of evolving models and related work on fuzzy rules
ideas. In section III, the layers and training of the model and
the new proposition regarding generalist rules are exposed to
the reader. The experiments and their results will be high-
lighted in section IV. Finally, conclusions about the activities
performed in the paper will be presented in Section VI.

II. LITERATURE REVIEW

A. Evolving System concepts

Fuzzy neural network models and Neuro-fuzzy systems
stand out as significant advancements in the realm of hybrid
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models [12] [5]. Intelligent models have demonstrated advan-
tages and limitations as researchers develop techniques and
algorithms to address various societal challenges. Combining
two or more intelligent techniques offers the opportunity to
harness the strengths of diverse models, leading to more
efficient solutions for complex problems. Evolving systems,
encompassing fuzzy neural network models and neuro-fuzzy
systems, excel in adaptively solving problems by dynamically
adjusting system parameters and internal structures as new
samples are presented [13]. This form of training closely
mirrors the comparative assessment of human behavior, where
problem-solving knowledge adapts to emerging situations [3]
[4]. Evolving models have found widespread applications
in diverse scientific fields, particularly within data stream
mining processes. Unlike traditional batch offline train mod-
els, evolving models efficiently process successively arriving
data online, owing to fast single-pass update techniques and
swift convergence to optimal solutions. Consequently, these
models have been successfully employed in various industrial
problems with increasing complexity [14], as well as within
the realms of healthcare and finance. For a comprehensive
overview of the concrete applications of evolving models,
please refer to [4] and [3].

B. Specificity

The notion of specificity serves as a metric to quantify the
information content within a studied fuzzy subset. It shares
similarities with entropy in probability theory, as seen in fuzzy
sets and possibilities theory [15]. The specificity measure
gauges the extent to which a fuzzy subset unequivocally points
to a single element as its member. It is closely linked to
the inverse of the set’s cardinality. Yager discerns between
imprecision and specificity, where the former pertains to the
gradual lack of clarity in association within certain sets,
while the latter relates to the absence of precise knowledge
concerning specific attributes [15].

Specificity measures find applications in decision-making,
serving as a metric of tranquility in the decision process. A
more specific set of choices reduces decision-related anxiety.
Additionally, specificity plays a crucial role in measuring the
performance of decision support systems and determining the
usefulness of the information they provide. The relationship
between increased specificity and enhanced information utility
is central in this theory [15]. Correctness and specificity are
highly desirable qualities in decision support and knowledge-
based systems. Evaluating their performance requires con-
sideration of both these aspects [16]. Specificity also holds
significance in deductive reasoning systems, as demonstrated
by Dubois and Prade using the concept of minimal specificity
[17]. This principle highlights the importance of selecting
manifestations resulting in outputs with the least specificity,
minimizing unjustified additional information [15].

In the context of this study, our objective is to assess the
minimum specificity values of Gaussian membership functions
formed within the first layer of the model. This endeavor
seeks a generalized understanding of a specific group of

characteristics rather than a specialized one. Leite and Škrjanc
[18] emphasize that specificity measures tend to approach
their maximum values when an object closely aligns with a
single element. Therefore, the specificity (Sp) of a Gaussian
membership function (Ω) can be expressed as [19]:

Sp(Ω) = 1, ifΩ ≡ {x} (singleton) (1)
Sp(Ω) = 0, ifΩ = ∅ (2)

Sp(Ω1) ≤ Sp(Ω2), ifΩ1 ⊇ Ω2. (3)

and 0 ≤ Sp(Ω) ≤ 1. X= (X1 × ...×Xj × ...×Xn) represents
the Cartesian product space assembles of an interval-valued
cloud [19].

III. EFNN-GEN ARCHITECTURE AND TRAINING

The EFNN-Gen model presents a notable advantage by
harnessing domain expertise to enhance the beer classification
process. The model’s architecture comprises three layers and
a fuzzy rule structure based on uni-nullneurons, enabling
the formation of fuzzy rules with both AND- and OR-
connections in their antecedents. This flexibility, distinct from
previous EFNN approaches, allows for a more comprehensive
knowledge representation. In the first layer, the specificity of
the Gaussians originating from the clusters is evaluated after
creating the clouds through a data density-based technique.
Those that meet the knowledge generalization criterion form
the generalist rules, encapsulating expert knowledge about
the analyzed dataset. In the offline phase, the pseudo-inverse
concepts are employed to define the rule consequents and
the weights of the Singleton neuron in the third layer. These
Singleton consequents, representing certainty levels of the
rules to possible output classes, play a vital role in the model’s
defuzzification process, providing the expected outputs for
pattern classification. In the evolving training phase, the rule
consequents are determined using an indicator-based recursive
weighted least squares approach. Additionally, an incremental
feature weighting technique considers the class separability
power of features, assigning weights to Gaussian neurons’
features. This technique helps mitigate the curse of dimen-
sionality effects when certain features receive low weights, as
they are down-weighted or masked in the neuron construction.
An architectural representation of the EFNN-Gen can be seen
in Fig. 1.

A. First Layer: Autonomous Fuzzification Method

The process applied in the input layer enables the construc-
tion of inference systems based on logical rules, representing
knowledge through linguistic expressions [20]. This approach,
known as EFNN-Gen, utilizes the Autonomous Data Parti-
tioning (ADPA) fuzzification process proposed by Gu et al.
[21]. ADPA is a non-parametric technique that autonomously
identifies maximum data-density locations, forming clouds that
serve as the basis for Gaussian fuzzy neurons in the first layer
[20]. Each input variable (xj) is associated with several clouds,
denoted by Alj , l = 1... L, serving as activation functions for
corresponding neurons. Consequently, the first layer outputs

1533



Fig. 1. EFNN-Gen Architecture [11]

membership degrees linked to input values, represented as ajl
= µA

l for j = 1... N and l = 1 ...L, where N represents the
number of inputs, and L signifies the number of clouds for
each input. The Gaussian fuzzy neurons of EFNN-Gen can be
expressed by:

Ω(xj , cjl, σjl) = e
− 1

2

(
xj−cjl

σjl

)2

, for j = 1... n, l = 1 ... L
(4)

where cjl denotes the jth coordinate of the center of the lth
neuron and σjl denotes the standard deviation of the lth neuron
in the jth input dimension.

1) Autonomous fuzzification process: ADPA, introduced by
Gu et al. [21], effectively partitions the input space into data
clouds using local modes. A key advantage of ADPA is its
ability to objectively represent the original data distribution,
forming clouds without predefined shapes. This contrasts
with traditional prototype-based clustering techniques [22],
which rely on predefined cluster centers and their influence
ranges, often using predetermined local density functions and
cluster numbers. By leveraging data density concepts, ADPA
dynamically determines the number of clouds necessary to
solve the problem based on the organization and essence
of the data [23]. This adaptive process involves evaluating
four recursively calculated parameters derived from empirical
data analysis (EDA): cumulative proximity, standardized ec-
centricity, density, and multimodal typicality [23]. About the
EDA parameters used by EFNN-Gen, consider seeing more
information in [11] and [21].

The offline approach in EFNN-Gen utilizes EDA operators
to define the initial clouds during the initial training stage. As
new samples are evaluated, the fuzzification strategy recur-
sively updates these EDA parameters, allowing the previously
formed clouds to adapt and represent the new data. ADPA
operates in several steps: initializing the data cloud by select-
ing the first sample in the data stream, and then evolving the

parameters and distances with the insertion of new samples
[21]. The fuzzification approach continuously updates EDA
operators as the model evaluates new data, leading to the
redefinition of the system structure. This recursive update of
EDA parameters is further described by Gu et al. [21]. EFNN-
Gen uses Ck as the number of local modes at the k time. More
details about cloud formation, please see [11].

Moreover, in [20], an extension of ADPA was introduced
to govern the evolution of rules. This extension involves
incorporating a relative term to verify whether the output
derived from the fuzzification method aligns with the expected
label of the evaluated class. This condition can be formulated
as follows [20]:

IF

(
xk − ϱnk ≤ ∆c

k

2

)
AND (argmax(ρn,.) == (yk − 1) and ν ≥ 0.80)

THEN (xk is assigned to ϱ
n
k )

let yk denote the actual label of the k-th stream sample xk,
and ρ represents a matrix. The (i, j)-th entry in this matrix
indicates the number of samples falling into cloud i and
belonging to class j. Consequently, argmax(ρn, .) refers to
the argument maximum of the n-th row, which corresponds
to the nearest cloud n, with class labels starting from 0.
Additionally, ν represents the frequency of the majority class
within the closest cloud (n) compared to the frequencies of
other classes. Consequently, the majority class must match the
class of the current samples and be significant. This condition
reduces the probability of significant class overlaps within the
clouds.

2) Definition of weights in first layer neurons: Online
Incremental Characteristic Weight Calculation: The proposal
introduced by Campos Souza and Lughofer [20] incorporates
the concepts of relevance and reducibility in neurons within the
first layer. In conventional fuzzy neural network approaches,
the weights of Gaussian neurons formed during the fuzzifi-
cation process are randomly defined. However, by identifying
the classes of the problem and considering this information
to determine the weights, it becomes possible to discern
the most relevant dimensions (and subsequently neurons) for
class identification. This objective is achieved through an
incremental technique that calculates weights based on the
problem’s dimensions, utilizing the Dy-Brodley separability
criterion [24] for the analyzed classes. The feature importance
is determined by assessing the contribution of each feature
in defining the separation between classes. This approach
enables EFNN-Gen neurons to align with the relevance of
new data blocks in the dimensions, facilitating a smooth
and adaptive learning process for evolving fuzzy classifiers.
Dimensions contributing to class separation receive values
close to 1, whereas dimensions with negligible contributions
are assigned values close to zero. By identifying and detaching
irrelevant dimensions, this strategy promotes reducibility in
the complexity of interpretation, enhancing interpretability
assessments [25]. Further details regarding the definition and
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calculation of these weights can be found in de Campos Souza
and Lughofer [20].

B. Second Layer: Fuzzy Rules

In EFNN-Gen, the second layer employs neurons based on
2-uninorms [26]. This neuron structure enables using uninorm
and nullnorm operators within the same group of fuzzy rules.
Consequently, uni-nullneurons can create an IF-THEN rule
base with different rule connectors, such as AND or OR. The
inputs for these neurons consist of Gaussian neurons and their
corresponding weights (wil where i = 1... N and l = 1... L),
which are estimated through the feature weighting approach
described in the preceding subsection. The 2-uninorms are
based on conventional uninorms [27], expressed as follows:

U(x, y) =

{
g T (xg ,

y
g ), x, y ∈ [0, g]

g + (1− g) S (x−g
1−g ,

y−g
1−g ), x, y ∈ (g, 1].

(5)

where T is a t-norm (probabilistic sum), S is a t-conorm (prod-
uct) and g is the neutral element of the uninorm. Therefore,
the 2-uninorm used in EFNN-Gen is defined by [20]:

Nun(x, y, β, g, λ) =

{
βU1(

x
β ,

y
β ), x, y ∈ [0, β]

β + (1− β)U2(
x−β
1−β ,

y−β
1−β ), x, y ∈ (β, 1]

In the context of EFNN-Gen, we utilize two distinct uninorms
denoted as U1 and U2. The uninorm U1 is governed by Eq.
(5) with a neural element (identity) equal to g

β , while U2 is
represented by Eq. (5) using (λ−β

1−β ) as the neutral element
[28]. Combining the elements (g, λ, β) within a 2-uninorm
allows us to achieve varying rule antecedent connectors,
alternating between AND and OR. For a detailed exploration
of the combinations of these elements and their respective rule
antecedents’ connectives, please refer to [20].

The uni-nullneuron creates a key role in computing the
model output for each pair (ai, wi), effectively transforming
them into a single value denoted as bi = p(ai, wi) through
a conditional transformation (p). The function (p) carries out
the unified aggregation of the transformed values, denoted as
Nun (b1, b2...bn), as defined by [20]:

p(w, a, β, g, λ) =

{
wa+ w̄ g

β , if U1

wa+ w̄ λ−β
1−β , if U2

(6)

Finally, the uni-nullneuron (for the l-th neuron) can be ex-
pressed by [20]:

zl = UNINUL(w, a, β, g, λ) = Nunn
i=1p(wi, ail, β, g, λ)

(7)
The wi denotes the weight of the i-th feature, estimated using
the incremental separability check techniques described in the
preceding section, while ail represents the activation level of
the l-th neuron in the i-th feature. These neurons offer high
interpretability since a group of generated rules can possess
diverse meanings based on the connectors used in the rule
antecedents. This characteristic enhances the feasibility of
comprehending the knowledge extracted from the model, even

for individuals who are not experts in artificial intelligence
techniques [20].

Uni-nullneurons develop fuzzy rules that can be analyzed
as follows:

R1 : If x1 is A
1
1 with impact w11...

and/or(g,λ,β) x2 is A
2
1 with impact w21...

Then y1 is [v11...v1C ]

R2 : If x1 is A
1
2 with impact w12...

and/or(g,λ,β) x2 is A
2
2 with impact w22...

Then y2 is [v21...v2C ]

....RL : If x1 is A
1
L with impact w1L...

and/or(g,λ,β) x2 is A
2
L with impact w2L...

Then yL is [vL1...vLC ]

(8)

In the context of this problem, C represents the number of
classes, and v⃗i = [vi1, ..., viC ] can be regarded as a certainty
vector, where each entry signifies the certainty of the rule to
its output class. Consequently, our rules can convey certainty
degrees in the outputs, thereby enhancing interpretability,
particularly concerning the level of class overlap in the local
region represented by the rule.

C. Definition of generalist rules

The determination of generalist rules is contingent upon the
evaluation of the specificity of Gaussians generated during
the fuzzification process. As the uni-nullneuron performs
the aggregation of Gaussian neurons from the first layer, it
enables the assessment of data representativeness based on the
sensitivity of the extracted Gaussians via the ADPA technique.

In [19], the authors define Sp(Ω) as a measure of specificity
for a set, indicating the extent to which Ω refers exclusively to
a single element. When Ω is a subset of X, the general class of
specificity measures over continuous domains can be defined
as [29]:

Sp(Ω) =

∫ αmax

0

F (Υ(Ωα))dα (9)

where Ωα = {x : Ω(x) ≥ α} is the α-level of Ω, αmax is the
height of Ω, Υ is a monotonic measure and F : [0, 1] → [0, 1]
is a function such that F (0) = 1, F (1) = 0, and 0 ≤ F (x1) ≤
F (x2) for x1 > x2.

Level sets of Gaussian membership functions are intervals
Ωα whose centers and radii are of the form c±

√
−2σ2ln(α),

so when setting [19]:

M ≜
√
−2σ2ln (α) (10)

then
Ωα = [c−M, c+M ]. (11)

The Lebesgue–Stieltjes measure [30] is used to define Υ in a
totally bounded domain X = [t, d]:

Υ(Ωα) =
wdt(Ωα)

wdt(X)
=
c+M − (c−M)

d− t
=

2M

d− t
(12)
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where wdt(.) means the interval width which is equal to the
absolute difference between the endpoints of the interval [19].
If all x ∈ [0, 1], then [t, d] = [0, 1].

Assuming F(Φ)= 1− Φ, we get:

F (Υ(Ωα)) = 1− 2M

d− t
. (13)

Therefore, using the definition of Specificity and the α-level
set Ωα, we have [19]:

Sp(Ωα) =

∫ 1

0

F (Υ(Ωα))dα (14)

= 1−
∫ 1

0

Υ(Ωα)dα (15)

= 1− 2

d− t

∫ 1

0

Mdα. (16)

In terms of the dispersion σ and α [19]:

Sp(Ωα) = 1−
2
√
2σ

√
−ln(α)

d− t
. (17)

Finally, let’s consider Ωi = {Ωi
1, ...,Ω

i
j , ...,Ω

i
n} as a set of

Gaussian functions, where Ωi
j has a domain Xj , and Xn =

X1 × ... × Xj × ... × Xn. Utilizing α-cuts, we can form an
interval Gaussian neuron ai in Xn. In [19], the authors define
the specificity of an n-dimensional Gaussian neuron ai as the
average of the specificity measure of each of its n components,
expressed as:

Spa(ai) = 1− 2
√
2

n

n∑
j=1

σi
j

√
−ln (α)

dj − tj
. (18)

This indicates that the Gaussians with higher standard
deviations can cover a greater number of samples, effectively
representing an overall view of the analyzed problem. Higher
specificity implies that the ’linguistic value’ associated with
the cluster’s membership functions is more specific. In con-
trast, lower specificity suggests a broader coverage of the
generated Gaussians.

Building upon this concept, our work introduces the con-
cept of generalist rules (φ). These rules are determined by
identifying the set of Gaussians (η) with the least specificity
among the model’s first-layer neurons. Hence, this technique
selects several fuzzy rules (η) based on their specificity value.
These rules are defined during the offline training phase of the
model, and can be mathematically expressed as:

Zφ(η) = {Ri, i ∈ [[1, L]] |
|{j ∈ [[1, L]], j ̸= i | Spa(aj) < Spa(ai)}| ≤ η − 1}

(19)

where η ∈ {1, ..., L} defines the number of generalist rules to
be considered in the model.

D. Third Layer: Neural Aggregation Network

The third layer of the model plays a crucial role in obtaining
the final consequent parameters to determine the output aggre-
gation layer of the fuzzy neural network. This layer consists
of a single neuron, which can be mathematically expressed as
given in [20]:

y = Ξ

 l∑
j=0

fΓ(zj , vj)

 (20)

where fΓ represent the activation function of the neuron, which
is linear in this particular study. We define z0 = 1 and v0 as
the bias, while zj and vj , for j = 1, ..., l, denote the output of
the fuzzy neurons in the second layer and their corresponding
weights, respectively.

Additionally, the function Ξ serves a purpose similar to
the sign function in binary pattern problems, producing a
value of 1 for positive numbers and -1 for negative numbers.
Mathematically, the Ξ function is expressed as:

Ξ =

{
1, if

∑l
j=0 fΓ(zj , vj) > 0

−1, if
∑l

j=0 fΓ(zj , vj) < 0
(21)

E. Model’s Training

The EFNN-Gen training comprises two distinct stages.
The first stage involves utilizing the Moore-Penrose pseudo-
inversion method [31] to define the network weights. Subse-
quently, during the evolving phase of the model, the indicator-
based recursive weighted least squares (I-RWLS) technique
[32] is employed to update the consequent parameters v⃗ ∈ RL.
The values of these parameters can be estimated in the offline
phase and evolving training, respectively, as described in [20]:

v⃗ = Z+y⃗ (22)

with y⃗ the target vector containing all the class labels of all
samples.

η = z⃗tQt−1
(
ψ + (z⃗t)TQt−1z⃗t

)−1
(23)

Qt = (ILt−ηT z⃗t)ψ−1Qt−1 (24)

v⃗t = v⃗t−1 + ηT (yt−z⃗tv⃗t−1) (25)

In the EFNN-Gen model, the pseudo-inverse of the Moore-
Penrose matrix Z+ is computed from the activation levels of
all neurons stored in matrix Z, where each row represents the
activation levels of a neuron, and each column corresponds
to a stream sample. The activation levels of all neurons in
the current stream sample are denoted by z⃗t, and η represents
the current Kalman gain (row) vector. The matrix ILst is an
identity matrix based on the number of neurons in the second
layer, denoted as Lt

s × Lt
s. The parameter ψ ∈]0, 1] can be

a forgetting factor but is typically set to 1 (no forgetting) by
default. The inverse Hessian matrix Q is initialized as ωILst,
where ω is a large value (e.g., 1000) [20]. As for managing
parameters in EFNN-Gen, it only requires specifying the
number of generalist rules (η) that will be incorporated into the
model’s architecture. The I-RWLS method and the incremental
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feature weighting technique are completely parameter-free,
and for the ADPA clustering approach, the default setting for
∆c

k is used, as described in the original paper.

IV. EXPERIMENTS

The experiments to be carried out in this paper seek to prove
the increased assertiveness of evolving fuzzy neural networks
in classifying patterns through the insertion of generalist
knowledge for a beer dataset. Tests will be performed to
compare the results with a previous research, allowing a solid
comparison of the applicability of the generalist rules proposed
in this paper. For this purpose, data sets provided by [33]. After
the tests, the generated fuzzy rules will be compared with the
problem domain fuzzy rules. All tests were performed on a
computer with the following settings: Intel (R) Core (TM) i7-
6700 CPU 3.40GHz with 16GB RAM.

A. Model evaluation and approaches used in the test
In the EFNN-Gen experiments, the accuracy evaluation

is established through a trend line approach, particularly
in stream-mining scenarios. In such cases, the accuracy is
updated in a cumulative manner using the following method-
ology:

Accuracy(K + 1) =
Accuracy(K) ∗K + Iŷ=y

K + 1
, (26)

The accuracy is determined using the indicator function, de-
noted as I , in the given context. When the prediction matches
the actual label, i.e., ŷ = y, the indicator function takes the
value 1. Otherwise, it takes 0 (Accuracy(0) = 0). Following
the accuracy update, the model itself undergoes an update,
adhering to an interleaved-test-and-then-train protocol, which
is a widely adopted approach in the data stream mining com-
munity [34]. This protocol assesses the model ahead prediction
capabilities while incrementally adapting and evolving.

B. Validation of fuzzy rules results based on a prior knowledge
The study in [33] used a fuzzy inference system to generate

the model’s rules. They obtained 87.50% accuracy using nine
fuzzy rules for beer classification, while expert-taught knowl-
edge achieved 81.25% with eight rules. The authors adopted
antecedents and connectives to generate the fuzzy rules in this
experiment. However, expert knowledge was insufficient to
fully solve the target problem.

In the experiment, 30% of samples were used for training,
and the remaining 70% were used for evaluating the model’s
performance. The simulation was carried out using the EFNN-
Gen model, which was chosen based on simplicity. The model
used uni-nullneurons and a linear function in the third layer to
generate rules with the same antecedent connectives as expert
knowledge. For this experiment we decided to highlight 2
expert rules.

The final result achieved 97.14% accuracy in identifying
beers, using eight fuzzy rules extracted from the analyzed
dataset. Fig. 2 displays the model evaluation results in trend
lines.

Fig. 3 presents the confusion matrix generated by the
experiment.

Fig. 2. Accuracy trend lines for beer identification -EFNN-Gen.

Fig. 3. Confusion matrix generated by EFNN-Gen in identifying the type of
beer.

V. EVALUATION OF FUZZY RULES GENERATED BY THE
MODEL ACCORDING TO PRIOR KNOWLEDGE ESTABLISHED

BY AN EXPERT.

This subsection presents aspects related to beer classifica-
tion using EFNN-Gen. Figs. 4, 5, and 6 illustrate the three
dimensions of the problem, which were derived from the
expert’s knowledge mentioned in the paper [33]. This enables
a direct comparison between the Gaussian functions generated
by EFNN-Gen and the trapezoidal functions extracted by the
specialist.

Fig. 4. Comparison of membership functions obtained by the EFNN-Gen
model and expert knowledge for the Color dimension.

Eight fuzzy rules were generated at the end of the model
training as logical to expect from an eight-class problem. They
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Fig. 5. Comparison of membership functions obtained by the EFNN-Gen
model and expert knowledge for the Bitterness dimension.

Fig. 6. Comparison of membership functions obtained by the EFNN-Gen
model and expert knowledge for the Strength dimension.

are presented below.
1. If (Color is Brown or Black) with impact 1.00 and

(Bitterness is high) with impact 0.16 and (Strength is Session)
with impact 0.44 then (Beer is out1).

2. If (Color is Pale or Straw) with impact 1.00 and
(Bitterness is Medium high) with impact 0.16 and (Strength
is Session) with impact 0.44 then (Beer is out2).

3. If (Color is Pale or Straw) with impact 1.00 and
(Bitterness is low) with impact 0.16 and (Strength is Session)
with impact 0.44 then (Beer is out3).

4. If (Color is Amber or Brown) with impact 1.00 and
(Bitterness is high) with impact 0.16 and (Strength is Session
or Standart) with impact 0.44 then (Beer is out4).

5. If (Color is Straw or Amber) with impact 1.00
and (Bitterness is medium high or high) with impact 0.16
and (Strength is Session) with impact 0.44 then (Beer is out5).

6. If (Color is Amber) with impact 1.00 and (Bitterness is
high) with impact 0.16 and (Strength is Session) with impact
0.44 then (Beer is out6).

7. If (Color is Pale or Straw) with impact 1.00 and
(Bitterness is low medium or medium high) with impact 0.16

and (Strength is Session) with impact 0.44 then (Beer is out7).

8. If (Color is Brown or Black) with impact 1.00 and
(Bitterness is high) with impact 0.16 and (Strength is Session
or Standart or High or very high) with impact 0.44 then (Beer
is out8).

Table I presents the outputs for each of the generated fuzzy
rules.

TABLE I
CORRESPONDING OUTPUT OF EACH FUZZY NEURON-EFNN-GEN

Rule Blanche Lager Pilsner IPA Stout Barleywine Porter Belgian Strong Ale
out1 medium none medium medium none none none medium
out2 none medium none none medium medium medium large
out3 large none large none none none none none
out4 large none large large none none none none
out5 medium none medium medium none none none none
out6 medium none medium medium none none none none
out7 none medium none none medium medium medium none
out8 none large none none large large large large

The fuzzy rules generated by EFNN-Gen in this experiment
were evaluated based on their ability to identify different types
of beers. Each rule’s identification capacity was analyzed con-
cerning the three dimensions: Color, Bitterness, and Strength,
using the prior knowledge provided by the specialists. Overall,
the results indicated that some rules accurately identified
specific beer types, while others showed inconsistencies with
the expert’s knowledge. The rules were divided into categories
based on their identification probabilities. Specific rules (e.g.,
Rules 1, 3, and 4) could correctly identify specific beer types,
such as Blanche, Pilsen, and IPA. These identifications aligned
well with the characteristics highlighted by the beer specialists.
However, some rules (e.g., Rules 2, 6, and 7) showed medium-
level identification probabilities and needed consistent with the
expert’s knowledge, particularly for the Stout, Barleywine, and
Belgian Strong Ale types. Despite some inconsistencies, the
EFNN-Gen model achieved an impressive accuracy of 97.14In
conclusion, the fuzzy rules extracted by EFNN-Gen showed
promising results and aligned with the prior knowledge to a
considerable extent. The model’s high accuracy highlights its
potential for beer classification, surpassing the performance of
previous studies in this domain.

VI. CONCLUSION

This study presented the EFNN-Gen model, an evolving
fuzzy neural network designed to classify different types of
beer. By incorporating generalist rules into its architecture,
the model can leverage prior knowledge about the data ex-
tracted by analyzing the Gaussian specificity generated during
the fuzzification process. This approach proved beneficial in
enhancing beer identification accuracy. Interestingly, the study
identified that the model’s learning capacity is subject to
a maximum saturation point, determined by the number of
pre-defined rules integrated. In future research, it would be
valuable to investigate the relationship between the saturation
degree of generalist rules and the initial number of generated
fuzzy rules in different datasets. Additionally, exploring the
evolution of rules during the model’s iterative process, rather
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than relying solely on replacements, could yield further in-
sights. Moreover, evaluating alternative factors for Gaussian
assessment could lead to a more robust definition of gener-
alist knowledge. Notwithstanding its contributions, this study
acknowledges limitations concerning evaluating the interplay
between generalist rules and the model’s generalization ability.
Addressing these factors in subsequent research endeavors
could shed more light on EFNN-Gen’s capabilities and po-
tential applications.
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