
Multi-Sensor Object Detection System for Real-

Time Inferencing in ADAS 

Sai Rithvick Mandumula   

Mobility System 

Kettering University 

Flint, USA 

 

Jungme Park 

ECE 

Kettering University 

Flint, USA 

jpark@kettering.edu 

 

Ritwik Prasad Asolkar   

Mobility System   

Kettering University 

Flint, USA 

 

 

Karthik Somashekar 

Mobility System   

Kettering University 

Flint, USA

Abstract— Advanced Driver Assistance Systems (ADAS) are 

designed to assist drivers in various driving scenarios, and the 

object detection system is a critical component of ADAS. This 

paper aims to develop and evaluate an object detection system 

using two cameras placed on the vehicle's front and rear sides 

for real-time inferencing in ADAS. The real-world data set is 

collected under different weather and lighting conditions to 

evaluate the object detection system. The object detection 

system is further optimized using the TensorRT engine to 

deploy the system on the in-vehicle computing unit, NVIDIA 

Jetson AGX Xavier. The object detection system achieved 18 fps 

to process two cameras simultaneously on the in-vehicle 

computing unit, NVIDIA Jetson AGX Xavier. The experimental 

findings of this study will be useful for researchers, engineers, 

and manufacturers in the field of ADAS and autonomous 

vehicles to improve road safety and reduce accidents.   

Keywords—ADAS, object detection, TensorRT engine, deep 

neural networks, camera calibration, embedded devices 

I. INTRODUCTION  

Road vehicles are the primary mode of daily transport. The 
increasing use of transport increases accidents due to human 
inattention. With the rapid advancements in automotive 
technology, Advanced Driving Assistance Systems (ADAS) 
have become an integral part of modern vehicles. ADAS can 
reduce the number of car accidents and prevent deaths by 
improving road safety. ADAS date back to the early 20th 
century, with the first driver assistance systems including 
basic features such as windshield wipers and headlights. 
ADAS continued to evolve by introducing features such as 
Anti-lock Braking Systems (ABS), lane departure warning 
systems, and collision avoidance systems in the 1990s and 
2000s. Today, ADAS technology advances, introducing self-
driving capabilities and a growing emphasis on improving 
road safety.  

One crucial component of ADAS is environment 
perception, which involves collecting and interpreting data 
about the environment surrounding the vehicle. Cameras are 
essential sensors for environment perception, as they can 
capture visual information about the road, traffic, and 
obstacles. Recently, camera-based Deep Neural Networks 
(DNNs) have achieved state-of-the-art performances in 

computer vision [1-3]. In addition, onboard computing units 
such as the NVIDIA Jetson series [4] (Nano, NX, AGX 
Xavier, etc.) have been introduced. Based on the advancement 
in DNN modules and computing power, evaluating the state-
of-the-art object detection systems' performance with multiple 
cameras on the in-vehicle computing unit is necessary. In this 
paper, two camera sensors are placed on the testing vehicle's 
front and rear sides, developed the object detection system that 
can process images from the two cameras simultaneously, and 
deployed it on the in-vehicle computing unit for real-time 
inferencing.   

The paper is organized in the following chapters. Chapter 
2 reviews the state-of-the-art technologies in ADAS and 
object detection technologies. Chapter 3 explains the 
importance of the camera sensor, its limitations, the necessity 
for calibration, and the procedure to perform the calibration. 
Chapter 4 discusses the approaches to developing and 
evaluating the object detection system and how to deploy it on 
the in-vehicle computing unit. Chapter 5 concludes the main 
findings, highlights the study's contributions, and discusses 
the future research scope. 

II. LITERATURE REVIEW 

Recently, DNNs have been used extensively for object 
detection in ADAS. Research studies have shown that the 
state-of-the-art DNN algorithms can significantly improve 
object detection accuracy in various driving conditions, 
including low light and adverse weather. Zou et al. [1] 
explained how object detection is one of computer vision's 
most fundamental and challenging problems. Over 400+ 
papers have been reviewed by the authors [1], spanning over 
a quarter-century (from the 1990s to 2019). Several topics are 
discussed, such as detectors in history, detection datasets, 
metrics, speed-up techniques, fundamentals, and current state-
of-the-art detection systems. They reviewed key technologies 
in detection methods, including Viola-Jones detectors, 
Histogram of Oriented Gradients, discriminatively trained 
part-based models, faster-region-based convolution neural 
network, You Only Look Once (YOLO), and Single Shot 
Detection (SSD).  

Wang et al. [2] developed the most advanced object 
detection system, YOLO v7, in 2022. This system 
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outperforms all currently available object detectors in speed 
and accuracy. The authors examined different YOLO versions 
and related object detectors and claimed that YOLO v7 
performed better than any other YOLO versions and other 
Convolution Neural Networks (CNN)-based object detectors. 
The proposed YOLOv7 was trained from scratch on the 
Microsoft COCO dataset to classify 80 classes. They focused 
on module-level re-parametrization by selecting modules 
using gradient flow propagation paths. Since Model re-
parameterization techniques merge multiple computational 
modules into one at the inference stage, they could reduce 
about 40% of DNN parameters, which reduced the inferencing 
time. It is said to have a range of 5 frames per second (FPS) to 
160 FPS in inferencing time and an accuracy of 56.8% 
average precision (AP). They addressed the problems existing 
in conventional architectures and focused on typical generic 
methods, modifications, and tricks to improve performance 
further.  

Sensors are a critical component of ADAS, and their 
calibration and placement are essential for ensuring accurate 
detection and response to driving conditions. Proper sensor 
calibration and placement are crucial for accurately detecting 
objects and potential hazards. Various studies [5-7] have 
focused on developing calibration algorithms and techniques 
for different sensors used in ADAS. Camera calibration is 
closely related to the sensor framework, which describes 
capturing and converting light into digital signals by the 
sensor [5]. Fetic et al. [6] explained the calibration procedure 
of a charge-coupled device (CCD) digital camera to extract 
precise three-dimensional information from images. The 
calibration procedure determined which light is associated 
with each pixel on the resulting image. Dey et al. [7] proposed 
a novel framework called VESPA (Vehicle Sensor Placement 
and orientation for Autonomy) for optimizing heterogeneous 
sensor placement and orientation for autonomous vehicles. 
They studied the synthesis of a heterogeneous sensor 
configuration for accomplishing autonomous vehicle goals. 
The authors claimed the VESPA framework could achieve the 
best setup for heterogenous sensors installed across two 
current actual vehicles, the Chevrolet Blazer and Chevrolet 
Camaro.  

ADAS applications [8-11] encompass many features, 
including lane departure warning, collision avoidance, 
parking assistance, and adaptive cruise control. Park et al. [9] 
carried out a rear cross-traffic detection system for ADAS 
applications using radars and a camera. The proposed 
methodology uses a region of interest and CNN to classify the 
static and dynamic objects at the vehicle's rear. A Blind Spot 
Detection (BSD) system [10-11] is an essential functionality 
in ADAS. BSD is a safety feature commonly found in modern 
vehicles that helps drivers identify potential hazards in areas 
outside their field of view. Blind spots are areas around a 
vehicle that are not visible to the driver through the mirrors or 
windows, and they can pose a significant danger when 
changing lanes or merging with traffic. Ciberlin et al. [12] 
explained how modern vehicles are equipped with different 
ADAS systems and the importance of object detection and 
tracking using front-view cameras. Two-object detection 
methods, the Viola-Jones algorithm, and YOLO v3, are 
evaluated in accuracy and performance. They evaluated nine 
object detection modules for the Viola-Jones algorithm, and 

four object detection modules for YOLOv3 on precision, 
recall, and frames per second (fps) as inference time.  

State-of-the-art literature review on ADAS-related topics 
showed that these systems can help reduce driver fatigue, 
improve fuel efficiency, reduce accidents, and increase road 
safety. However, challenges still need to be addressed, such as 
the cost of the technology, the need for reliable and accurate 
sensors, and the development of more advanced algorithms 
for object detection and sensor fusion.  

III. CAMERA SENSOR CALIBRATION 

Cameras are one of the most prevalent types of ADAS 
sensors used in today's automobiles, and they come in various 
forms and sizes depending on their role in a system. Recently 
vehicles have been equipped with 360-degree cameras that 
display an overhead picture of the vehicle's immediate 
surroundings by utilizing many tiny cameras positioned at the 
front, rear, and sides. Camera sensor provides rich visual data, 
are relatively low-cost, and have a wide field of view. On the 
other hand,  they are limited by range, can be affected by 
lighting conditions, have limited depth perception, and are less 
weather-resistant than other sensors.  

Camera calibration is an important process to ensure the 
accuracy and reliability of the visual data captured by a 
camera in a vehicle. The image presented in Fig. 1. has a 
distortion, and the actual location and size of the object are 
different from the real one. In addition, the image bends as it 
moves toward the end. So, calibration is required to produce 
an undistorted actual image. Cameras have two main types of 
distortion: radial distortion and tangential distortion. Radial 
distortion occurs when light rays entering the camera lens do 
not pass through the lens' optical center. This causes straight 
lines in the real world to appear curved in the image. On the 
other hand, tangential distortion occurs when the camera's lens 
is not perfectly parallel to the image sensor, as shown in Fig. 
2. This causes the image to appear tilted or skewed.  

 

 

Fig. 1. Example of a distorted image. 

 

Fig. 2. Tangential distortion because the camera's lens is not parallel to 

the image sensor. 
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Both radial and tangential distortion can be corrected 
through camera calibration, which involves estimating the 
distortion parameters. Calibration techniques typically 
include capturing multiple images of a known calibration 
target and using the image data to estimate the distortion 
parameters. Camera calibration involves estimating the 
relationship between the 3D world and the 2D image captured 
by the camera. This relationship is defined using several 
coordinate systems and parameters.  

The extrinsic parameters shown in Fig. 3 include the 
rotation matrix, R, and translation vector, t. The extrinsic 
matrix is denoted by [R, t], where R is the 3x3 rotation matrix, 
and t is the 3x1 translation vector. The rotation matrix, R, 
brings the corresponding axes of the two frames into 
alignment, as shown in Fig. 4(a). The translation vector, t, 
between the relative positions of the origins of the two 
reference frames is found, as mentioned in Fig. 4(b).  The 
extrinsic matrix describes the position and orientation of the 
camera relative to the object being photographed. On the other 
hand, the intrinsic camera parameters define the internal 
characteristics of the camera, such as the focal length, 
principal point, and distortion coefficients as shown in Fig. 3. 
The intrinsic parameter matrix, K, is defined as below: 

 

K = [
1/𝑥 0 𝑢0

0 1/𝑦 𝑣0

0 0 1

] * [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

]  

    = [

𝑓

𝑥
0 𝑢0 0

0
𝑓

𝑦
𝑣0 0

0 0 1 0

].                                                         (1) 

 
 Where f is the camera focal length, 𝑥  and 𝑦  are the 
physical x and y pixel lengths in the image coordinate, 
respectively. The notation,𝑢0 is the x pixel coordinate of the 
intersection point between axis Zc in camera frame 
coordinates and the image plane. Similarly, 𝑣0 is the y pixel 
coordinate of the intersection point between axis Zc and the 
image plane. The intrinsic and extrinsic camera parameters are 
estimated from a set of calibration images during calibration. 
This allows us to convert between the different coordinate 
systems and correct for distortion and other errors in the 
images. These parameters are used to determine an accurate 
mapping between 3D world coordinates and their 
corresponding 2D image coordinates. 

 

Fig. 3. Coordinate systems of a camera and image. 

(a)  

(b)  

Fig. 4.    Extrinsic parameters: (a) rotational matrix, R, b) translation vector, t. 

 
The camera calibration procedure can be implemented 

using MATLAB’s Computer Vision System Toolbox [13]. A 
checkered board with a known size is used for the camera 
calibration, as shown in Fig. 5 (a). It is required to acquire a 
set of calibration images as shown in Fig. 5 (b). The camera's 
intrinsic and extrinsic parameters are estimated by detecting 
and re-projecting all 63 points (7 rows x 9 columns) in the 
checker-board image. Fig. 6 shows the corrected image using 
the intrinsic and extrinsic parameters found from camera 
calibration, where Fig. 6 (a) is the distorted image and Fig. 6 
(b) is the corrected image using the extrinsic and intrinsic 
camera parameters. It is important to note that the accuracy of 
the camera calibration depends on the quality and quantity of 
the calibration images, the calibration pattern used, and the 
calibration algorithm. Therefore, capturing multiple images of 
the calibration pattern from different viewpoints and distances 
is recommended to ensure the robustness and accuracy of the 
calibration. 

 
 

a)  b)  

Fig. 5. Calibration procedure: a) A checkered board and the camera sensor, 

b) Captured images for calibration. 

 

a)   b)  
 

Fig. 6. Corrected images using intrinsic and extrinsic camera parameters: 

a) a distorted parking lot image, b) a corrected parking lot image. 
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IV. DEVELOPING  THE OBJECT DETECTION SYSTEM FOR TWO 

CAMERAS 

 
To develop a robust and reliable object detection system 

that can monitor the vehicle’s front and rear sides 
simultaneously, two Spinel USB cameras [14] are selected 
and mounted in the testing vehicle as shown in Fig. 7. The 
Spinel USB camera is selected because it has high resolution 
(5Mpixels), compact size, and low price. The specifications of 
the camera are presented in TABLE I. 

Deep learning-based object detection techniques use end-
to-end learning, which transforms raw input images into 
hierarchical feature representations. Since YOLO was 
proposed by J. Redom et al. [15] in 2016, it has become one 
of the most popular deep-learning architectures for object 
detection. YOLO takes an image and predicts the object 
locations with bounding box coordinates and class 
probabilities. The main features of YOLO are high speed, high 
accuracy, and learning ability. The YOLO family of models 
has continued to evolve and the current version of YOLOv7 
[2] is released in July, 2022. Two versions of YOLO 
architectures, YOLOv4 [16] and YOLOv7, are considered as 
object detection system in this research because these two 
versions were achieved great improvement in object 
detection. YOLOv4 uses a more advanced backbone network 
CSPDarknet53, with Spatial pyramid pooling for better 
feature extraction, the addition of a Path Aggregation Network 
(PANet) for handling different object scales, and the 
implementation of several optimization techniques to improve 
accuracy. On the other hand, YOLOv7 expanded upon 
YOLOv4 by incorporating a larger and more powerful 
backbone network to capture richer spatial and semantic 
information. YOLOv7 also leverages a combination of 
anchor-free and anchor-based approaches for better 
localization and detection accuracy. YOLOv7 has a much 
smaller model size than YOLOv4, which means it is faster to 
run the model for real-time inferencing and requires less 
memory. 

(a)  (b)  

Fig. 7. Hardware set-up: a) Camera Sensor, b) cameras mounted in front 

and rear side of the testing vehicle. 

TABLE I.  SPECIFICATION OF THE SPINEL CAMERA 

Parameter Description 

Resolution 5 Megapixels 

Compliance USB 

Streaming MJPEG & YUV2 

WDR (Wide Dynamic Range) 120 DB (decibels) 

Minimum Illumination 0.2 Lux 

Operating Temperature ~4° F ~167° F 

Dimensions 38 mm x 38 mm 

It is necessary to evaluate the two selected DNN models 
for ADAS with two cameras in front and rear of the testing 
vehicle. To compare the performances of the two selected 
DNN models in terms of accuracy and processing time, a total 
of 14,015 images are collected with various light conditions. 
Lighting conditions can significantly impact objects' 
visibility and appearance, affecting the system's accuracy. 
The collected image samples are presented in Fig. 8, 
including image samples in different weather conditions and 
traffic densities. Ground truth annotation for two object 
classes "car" or "pedestrian" has been done using the 
MATLAB Image Labeler app [17] as shown in Fig. 9. Total 
128,341 objects are labeled as ‘car or ‘pedestrian’ using the 
labeling app.  

The detection model is evaluated by comparing the 
prediction outputs with the ground truth annotations. If the 
predicted bounding box from the DNN model overlaps with 
the ground truth bounding box above 50% or more, it is 
considered a correct detection, and it is considered as True 
Positive (TP). If the predicted bounding box does not overlap 
with any ground truth bounding box, it is considered a False 
Positive (FP) detection. If ground truth bounding boxes are 
not detected, False Negative (FN) is incremented. Three 
different metrics are used to measure the accuracy of the 
object detection model: Precision, Recall, and F1-score. 
Precision measures how many positive predictions are 
correct, and Recall measures how many positive cases the 
classifier correctly predicted over all the positive cases in the 
testing data. F1-Score is a measure combining both Precision 
and Recall. F1-Score is generally described as the harmonic 
mean of the two. The mathematical representations of the 
evaluation metrics are defined in (2)-(4): 

Precision = 
TP

TP+FP
 ,                                            (2) 

Recall = 
TP

TP+FN
 ,                                                (3) 

F1-score = 
2 × Precision ×Recall

Precision+Recall
 .                         (4) 

 

 

Fig. 8. Sample collected images with various lighting and traffic 

conditions. 

Fig. 9. Example of labeled images for ground truth.    
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A total of 14,015 collected images with the size 640 by 
480 are used to evaluate the two DNN models. TABLE II 
summarizes the performances of two models on the collected 
images. The precision of YOLOv7 is 0.89, which is 4.5% 
higher than the YOLOv4 precision, 0.85. The recall of 
YOLOv7 is 0.92, which is 2% higher than the recall of 
YOLOv4, 0.90. Similarly, the F1 score of YOLOv7 is 0.90, 
which is 2% higher than the F1 score of YOLOv4, which is 
0.88. The three metrics, Precision, Recall, and F1-score, are 
plotted in Fig. 10. In Fig. 10, the recall is slightly higher than 
the precision for both DNN models. Based on the 
performance evaluation in Fig. 10 and TABLE II, YOLOv7 
has shown better accuracy and sensitivity in object detection 
for both car and pedestrian classes. Fig. 11 presents example 
detection results by YOLOv4 and YOLOv7 models. The 
detection results in Fig. 12 show that YOLOv7 can detect tiny 
objects even in low illumination conditions. 

To deploy the model on the in-vehicle computing unit for 
real-time inferencing, the NVIDIA® Jetson AGX Xavier™ 
Developer Kit [4] is selected. The NVIDIA® Jetson AGX has 
a powerful computing power of up to 32 TOPs (Tera 
operations per second) with a 512-core Volta GPU, as shown 
in Fig. 13 (a). For real-time inferencing, object detection 
processing time is critical. The selected two DNN models 
were deployed on the Jetson AGX and measured the 
processing time. Fig. 14. displays the inferencing time for 
two DNN models.  For one camera processing, the 
inferencing times for YOLOv4 and YOLOv7 are 8 fps and 
15 fps, respectively. For two cameras’ simultaneous 
processing, the processing time becomes slower than one 
camera processing, and the inferencing times for YOLOv4 
and YOLOv7 are 5 fps and 9 fps, respectively. It is necessary 
to improve the inferencing time further.    

TABLE II.  DETECTION RESULTS OF YOLOV4 AND YOLOV7 

Models TP FP FN Precision Recall 
F1-

score 

YOLOv4 116,653 28,859 

 

11,688 
 

0.85 0.90 0.88 

 

YOLOv7 

 

120,707 23,077 7,634 0.89 0.92 0.90 

  

 

Fig. 11. Evaluation of the DNN models using three metrics. 

 

  

  

   

Fig. 12. Example Detection results of YOLOv4 and YOLOv7. 

 

(a)     (b)    
 

Fig. 13.  Deployment of the object detection system on the in-vehicle 

computing unit: a) the NVIDIA® Jetson AGX Xavier™, b) In-vehicle 
computing unit in the testing vehicle.  

 

 

  
 

Fig. 14. Average inferencing time for the DNN models.  
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Since the low response time and high accuracy in ADAS 
are critical factors when the object detection system is 
deployed, the selected YOLOv7 model is optimized further 
to reduce the inferencing time using the TensorRT engine 
[18]. First, the YOLOv7 model is converted into the ONNX 
[19] model, then the ONNX model is converted into the 
TensorRT engine. The detailed optimization procedures can 
be found in [20]. Finally, the optimized YOLOv7 model is 
deployed on the in-vehicle computing unit (Jetson AGX 
Xavier) for real-time inferencing. The measured inferencing 
time for one camera is 25 fps and for two cameras is 18 fps, 
as presented in Fig. 14. Fig. 15 presents the demo of 
simultaneous real-time inferencing using two cameras 
mounted on the testing vehicle's front and rear sides. The 
demo in Fig. 15 shows that the deployed object detection 
system can process two camera images simultaneously for 
real-time inferencing.  
 

V. CONCLUSION 

This paper is dedicated to developing and evaluating an 
object detection system for ADAS using two camera sensors 
placed on the testing vehicle's front and rear sides. Two DNN 
models are evaluated using a collected real-world dataset in 
various scenarios, including daytime and nighttime driving, 
weather conditions, and traffic densities. The selected model 
is further optimized using the TensorRT engine. The 
optimized object detection system has achieved running 25 
fps for the single-camera processing and 18 fps for two 
cameras. The findings of this study will be helpful for 
researchers, engineers, and manufacturers in the field of 
ADAS and autonomous vehicles. The proposed object 
detection system using camera sensors helps in proximity 
detection around the car, improving road safety and reducing 
accidents.  

For future research, research on optimization of the DNN 
models and the inferencing time with more cameras for a 
360-degree surrounding monitoring system. In addition, 
research on the sensor fusion system is vital to improve the 
performance of the obstacle detection system by fusing 
different sensor information. 

 
 
Fig. 15. Real-time inferencing using the optimized YOLOv7 model on the 

NVIDIA Jetson AGX Xavier.    
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