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Abstract—Transformer neural network (TNN) has 
demonstrated its remarkable capacity to analyze and discern 
complex sequential datasets. This approach has achieved 
unprecedented success, particularly in the domain of natural 
language processing (NLP). TNN has since consistently proven 
to perform remarkably in other fields where long-term 
dependencies in the data are prevalent. Electroencephalography 
(EEG) data has historically posed a challenge for even modern 
deep neural networks to classify as EEG is notably complex and 
noisy, making training laborious and time-consuming. Though, 
there has been significant research done recently into the 
application of TNNs in EEG classification, often the task 
involved does not infer the TNN’s ability for long-term 
dependencies. In this paper, we propose a TNN-based model for 
EEG-based driver vigilance monitoring, emphasizing the 
classification of driver vigilance states. This study utilized the 
data of 11 subjects taken from a public EEG dataset, focusing 
solely on single-channel analysis. Results indicate that the 
proposed TNN model can achieve average accuracies of up to 
92.69% for Single-Subject analysis, 94.09% for Cross-Subject 
analysis and 74.74% for Leave-One-Subject-Out analysis, 
which surpasses state-of-the-art methods. The proposed TNN 
model's potential lies in not only driver vigilance state 
monitoring but also paving the way for broader applications of 
biosignal processing. 
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I. INTRODUCTION 
The detection and classification of driver vigilance has 

become increasingly important as it offers enhanced road 
safety by mitigating drowsy-driving accidents. Developing a 
real-time detection system that can monitor and assess a 
driver’s vigilance level represents a crucial advancement in 
this sphere [1]. Among the myriads methods, 
electroencephalography (EEG) -based detection has garnered 
interest due to the valuable insights that brain activity 
measurements offer, amplified by its widespread applications 
in neuroscience, clinical diagnostics, and brain-computer 
interfaces (BCI) [2]. Yet, the intricacies of EEG data present 
hurdles for traditional deep neural networks, such as 
convolutional neural networks (CNNs) and long short-term 
memory (LSTM) [3]. Conventional EEG data analysis 
techniques often rely on manually designed feature extraction 
and filtering methods, which are both intricate and resource-
consuming. 

The landscape of deep learning models was transformed 
by the advent of the Transformer Neural Networks (TNNs) by 
Google Brain, which leverages the self-attention mechanism 
for sequential data analysis [4]. The innovation has sparked 
development of groundbreaking pre-trained models such as 

GPT-4 and T5 which have completely revolutionized the field 
of natural language processing and generation [5], [6]. TNNs 
have also proven their versatility by demonstrating their 
efficacies in other domains, such as image recognition and 
human pose estimation [7], [8]. In each case, the TNN was 
specifically designed and trained for the tasks and surpassed 
traditional methods. 

Models like EEGNet, CNNs, and LSTMs have been 
employed for driver vigilance classification using EEG 
signals, yielding satisfactory results [9]. Nonetheless, there 
remains room for improvement in handling the complexities 
inherent in EEG data. Inspired by the shared time-dependent 
characteristics between auditory signals and EEG data, both 
of which record dynamic changes over time and demand 
accurate temporal analysis, we propose the usage of TNNs for 
this time-sensitive EEG signal classification [10]. The self-
attention mechanism within TNNs, which emphasizes 
relevant data segments while minimizing noise, offers a 
promising avenue for EEG data processing. This can 
potentially reduce or remove the need for hand-crafted feature 
extraction and automatically filtering EEG data [11]. 
Additionally, the long-term dependency handling ability of 
TNNs is particularly advantageous for large sequential data, 
such as driver vigilance recordings, where context is crucial 
[12].  

Despite TNN’s infancy, its applicability to EEG data 
classification, has been substantiated. One study applied a 
variant of Google’s BERT TNN for EEG data, though 
accuracies fell short of existing models [13]. Other research 
demonstrated ‘gated transformers’ outperforming 
conventional methods on BCI tasks, and the synergistic power 
of combined CNN and transformer networks for time series 
data [14], [15]. A distinct study classified raw EEG data using 
TNN, indicating potential for automated feature extraction, 
and hinted at performance enhancement through TNN specific 
modifications for EEG data [11]. Cumulatively, these findings 
underscore the potential of TNNs in EEG data classification. 
While these studies have highlighted the effectiveness of 
TNNs for extracting temporal features like in emotion 
recognition and short stimuli tasks such as motor imagery, 
there remains an evident lacuna in assessing TNNs capability 
for long-dependent features in EEG data.  

Addressing this gap, the paper contributes to the growing 
body of research on EEG data classification. Specifically, we 
are the first to harness TNNs for the nuanced, time-sensitive 
task of driver vigilance state monitoring. While previous 
studies have explored the use of TNNs for EEG data for other 
tasks, the application to the specific problem of driver 
vigilance classification presents a novel contribution. Through 
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this, we aim to leverage the power of TNNs to potentially 
improve the accuracy, efficiency, and reliability of vigilance 
detection systems, thereby enhancing road safety. 

II. METHODOLOGY 

A. TNN Model 
The TNN model used, shown in Figure 1, consists of 

stacks of encoders with two sub-layers, multi-head self-
attention and feed forward network. To effectively harness the 
potential of TNN for EEG data analysis, our model 
incorporates two key additions: a positional encoder and a 
one-dimensional convolutional layer (Conv1D). 

Unlike traditional methods such as the LSTM, the TNN 
model inherently lacks a mechanism for capturing the 
sequential information of the input data, which is critical to be 
able to understand the context of a data series. In the field of 
NLP, a tokenizer is typically employed prior to the positional 
encoder to breakdown sentences into separate text data, called 
‘tokens’. These tokens subsequently serve as a basis for 
position assignment. However, EEG data lacks explicit textual 
differentiators such as letters, words, or punctuation marks. To 
address this, our model subdivides the EEG data into epochs 
representing discrete data points that mirror the temporal 
progression of brain wave patterns. A unique position is 
assigned to each point via a positional encoder, permitting the 
model to learn the positional relationships within the EEG 
data. This approach imparts the necessary sequence 
recognition capabilities to the TNN model, making it more 
effective for EEG data analysis. 

A Conv1D layer is also introduced prior to the input data 
being processed by the TNN encoders. Activated by a 
Rectified Linear Unit (ReLU) function, the Conv1D layer 
serves a critical role in the extraction of local features from the 
input data and thereby enhancing the EEG data representation 
and improving the model's ability to recognise critical patterns 
in the data. 

B. Dataset 
We utilised a public EEG dataset involving a simulated 

driving task designed to induce different states of vigilance. A 
sustained attention driving task was designed in a virtual 
reality driving simulation [16]. Twenty-seven participants 
were instructed to drive the car while maintaining its position 
in the centre of the lane with assistance of cruising control at 
fixed speed 100 km/hour. To mimic minor alterations in road 
curvature or obstacles like stones that cause the car to drift, 
random lane-departure events were introduced, which shifted 
the car to the left or right of the central lane. The subjects were 
required to stay attentive throughout the experiment and 
promptly respond to lane-departure events by steering the car 
back to the centre of the lane. Each lane-departure event 
constituted an "epoch" consisting of a baseline period, 
deviation onset (when the car begins drifting), response onset 
(when the participant starts turning the wheel), and response 
offset (when the car repositions in the central lane). During 
driving, the drivers’ brain dynamics were recorded via 32-
channel EEG equipment. 

The data is then further processed as detailed in [17], the 
baseline alert response time (RT) is set at the 5th percentile of 
all session RTs. Epochs are labeled either 'alert' when both 
local and global-RT are less than 1.5 times the alert-RT, and 
'drowsy' when they exceed 2.5 times the alert-RT. This is done 
to exclude the transitioning states. Out of 27 subjects, data 
from 11 were selected based on how balanced they were. Each 
data was then further filtered by selecting the most 
representative from the majority class. Shorter reaction times 
(RTs) were chosen for the alert class and longer RTs for the 
fatigue class, ensuring an equal number of each label in the 
final data used in the training. 

C. Experiment Setup 
An essential facet of the experiment preparation was data 

processing. We started by down-sampling and bandpass filter 
our EEG data to 128Hz and 1-50 Hz, taking 3-second epochs 
prior to each epoch's deviation onset. We performed single-
channel analysis, focusing on the central channels – Fz, FPz, 
Pz, CPz, Cz, Oz, which cover areas over the major brain 
regions including frontal, central, parietal, and occipital 
regions. These areas are associated with motion and cognitive 
functions in driving tasks [3], [9], [17-18]. This allowed us to 
investigate the efficacy of using single-channel EEG 
classification as it is more cost-effective, less intrusive, and 
more comfortable for participants. However, we 
acknowledged that while single-channel analysis has these 
benefits, it offers a more limited view of brain activity 
compared to multi-channel EEG.  

In this study, we conducted three distinct predictive 
modelling experiments to classify the driver’s states. These 
experiments, structured around different training and testing 
paradigms, served to explore the diverse facets of vigilance 
classification from EEG data. All experiments were done with 
and without the one-dimensional convolutional layer to 
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Figure 1. EEG-based TNN Model: The figure presents the 
architecture of a TNN model designed for EEG data analysis. 
The model begins with a positional encoder that assigns unique 
positions to each data point in the EEG data, enabling the 
model to recognize the sequence of the data. Following the 
positional encoding, a one-dimensional convolutional layer 
(Conv1D), activated by a Rectified Linear Unit (ReLU), is 
applied to extract local features from the EEG data. The 
processed data is then passed through stacks of encoders, each 
consisting of multi-head self-attention and feed-forward 
network sub-layers, for further transformation and analysis. 
Finally, the output of the TNN model is passed through a 
pooling layer and a softmax function for classification. This 
sequential architecture effectively harnesses the potential of 
TNN for EEG data analysis. 
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quantify the layer’s contribution to feature extraction and 
pattern identification.  

The first experiment, "Single-Subject Prediction", 
involves training and testing using each subject's individual 
EEG data. The objective is to leverage the model's capacity to 
discern and predict unique vigilance-associated patterns and 
characteristics inherent to each subject. This investigation 
primarily answers how effectively an individual's vigilance 
state can be modelled from their exclusive physiological 
patterns using a TNN neural network. 

The second experiment, "Cross-Subject Prediction", 
involves a comprehensive approach, where the model is 
trained and tested on the collective EEG data from all eleven 
subjects. This investigation explores the ability of the model 
to identify and predict vigilance-related features from a larger, 
more diverse dataset, encompassing the vigilance patterns of 
all participating subjects. The objective here is to assess the 
model's efficacy when exposed to a broad array of vigilance-
related EEG patterns and its capacity to generalize over a 
wider spectrum of individual variations.  

The third experiment, referred to as "Leave-One-Subject-
Out Prediction", adopts a generalized methodology. Under 
this paradigm, the model is trained on EEG data from ten 
subjects, and subsequently, its performance is evaluated on a 
distinct held-out subject. The aim here is to probe the model's 
generalizability and its capacity to extract and apply broad 
vigilance-associated features across a heterogeneous group of 
subjects. This approach is designed to answer whether 
common indicators of vigilance can be extracted from a 

diverse dataset and successfully applied to a separate 
individual.  

Altogether, these three experiments provide a holistic 
evaluation of the capabilities of TNNs in vigilance state 
prediction. This multi-tiered approach enables a more 
comprehensive understanding of the model's versatility and 
adaptability in handling varied and complex data, thus 
enhancing its potential applications in real-world scenarios. 

For performance evaluation, we employ multiple metrics 
including accuracy, F1 Score, and Receiver Operating 
Characteristic Area Under Curve (ROC-AUC). These metrics 
are chosen to provide a well-rounded view of the model's 
performance. While accuracy measures the overall 
correctness of the model's predictions, the F1 score offers 
insights into its precision and recall, useful in contexts of 
uneven class distributions. Additionally, ROC-AUC measures 
the model's discriminative power across varying classification 
thresholds. These indices are calculated for each EEG channel 
and averaged over multiple iterations, providing a 
comprehensive assessment of our model's performance. 

III. RESULTS AND DISCUSSION 
Table 1 details the accuracy of our model across Single-

Subject, Cross-Subjects, and Leave-One-Subject-Out 
classifications, with and without the Conv1D. In both Single-
Subject and Cross-Subjects classifications, the Pz channel 
proved most optimal, yielding accuracies of 92.69% and 
94.09%, respectively. In the Leave-One-Subject-Out 
classification, the CPz channel achieved the highest accuracy 

55



of 74.73%. The Fz channel generally showed lower accuracy, 
with the lowest being 70.15% in the Leave-One-Subject-Out 
classification. The use of the Conv1D typically improved 
accuracy across all classifications.  

We also observed that the individual channel differences 
could play a significant role in the model's performance as 
highlighted by the range of accuracy rates across subjects and 
channels. This prompts further investigation into the factors 
that may contribute to such variation, such as differences in 
individual brain wave patterns and how they're captured by 
different EEG channels. Certain EEG channels, particularly 
the Pz and CPz channels, consistently yielded higher accuracy 
rates in Single-Subject, Cross-Subjects, and Leave-One-
Subject-Out classifications. This could be due to these 
channels' specific scalp locations, potentially capturing more 
relevant neural activity for the task at hand. 

In comparing our findings to a similar study mentioned 
earlier, we found that our TNN model has performed slightly 
better than conventional methods such as EEGNet and Deep 
CNN and also outperformed their proposed model which had 
the highest accuracy in their paper of 73.22% [17]. It's worth 
noting that the difference, though modest, could be significant 
considering the challenges associated with Leave-One-
Subject-Out EEG analysis, such as inter-individual variability 
in brain activity patterns and EEG signal quality. 

However, our study has limitations. While our sample size 
was sufficient to demonstrate our model's potential, larger and 
more diverse datasets are needed to verify its effectiveness 
across a broader range of individuals. Furthermore, our single-
channel approach, while beneficial in simplifying data 
collection and computation, may limit the model's ability to 
capture the full complexity of brain activity. 

IV. CONCLUSION 
The application of transformer-based models for driver 

vigilance monitoring is a promising approach. This research 
demonstrated its potential by delivering high accuracy rates 
across different classifications, with the highest being 94.09% 
in the Cross-Subjects classification at the Pz channel. While 

these initial results are promising for real-time monitoring of 
driver alertness, further investigation is required to enhance 
the model's universality across diverse individuals and to 
evaluate the amalgamation of multiple channels for even 
greater precision in detecting different states of vigilance. 

The integration of TNN architecture in EEG analysis 
heralds a novel paradigm in driver vigilance systems. As 
advancements continue, transformer-based models are poised 
to revolutionize the tools available to offer more nuanced 
insights into a driver's alertness and cognitive state. 
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