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Abstract—The utilization of computational intelligence, 

particularly Artificial Neural Networks (ANNs), for fault 

detection is of paramount importance as it empowers industries 

to proactively identify anomalies, leading to improved system 

reliability, reduced downtime, and enhanced safety. By 

leveraging the pattern recognition capabilities of ANNs, 

complex data patterns indicative of faults can be accurately 

identified and analyzed in real-time, enabling early intervention 

and preventing potential catastrophic failures. Additionally, the 

importance of fault detection in refrigeration systems lies in its 

ability to proactively identify and address potential issues, 

ensuring optimal performance, energy efficiency, and longevity 

of the system while preventing costly breakdowns and ensuring 

product safety and quality. The main aim of this study is to 

create a computational intelligence model that can accurately 

depict the energy and exergy performance of a GAX hybrid 

refrigeration system. Moreover, the model aims to identify 

potential instrument failures occurring at different parts of the 

system. The primary findings indicate that creating a numerical 

database using the governing equations of the GAX system 

enables the identification of anomalies in the instrumental 

measurements of operating parameters. Subsequent research 

aims to incorporate experimental data from a broader range of 

parameters, encompassing additional sections of the GAX 

system. 

Keywords—Artificial neural networks (ANNs), refrigeration 

systems, fault detection. 

I. INTRODUCTION 

Computational intelligence has emerged as a powerful 
technique for detecting failures in various domains, with 
artificial neural networks (ANNs) playing a crucial role in this 
endeavor. ANNs are computational models inspired by the 
human brain's neural structure, capable of learning patterns 
and relationships from large datasets. Through their ability to 
process complex and high-dimensional data, ANNs have 
shown remarkable success in fault detection and diagnosis 
tasks [1]. Recent research highlights the effectiveness of 
computational intelligence-driven approaches, especially 
ANNs, in identifying failures in renewable energy systems, 
such as wind turbines [2]. These techniques leverage 
sophisticated algorithms, such as deep learning, to 
automatically identify anomalies, enabling proactive 
maintenance and mitigating potentially catastrophic 
consequences [3]. The adoption of computational intelligence 

for failure detection has garnered substantial interest and is 
expected to further advance various industries, improving 
reliability and safety while reducing operational costs. 

Refrigeration systems powered by renewable energy have 
gained significant attention in recent years as environmentally 
friendly alternatives to conventional cooling technologies. 
One promising approach in this domain is the use of the 
generator-absorber (GAX) cycle, which has been extensively 
studied for its potential in improving the efficiency and 
sustainability of refrigeration systems. The GAX cycle 
utilizes renewable energy sources, such as solar or geothermal 
power, to drive the refrigeration process, making it highly 
attractive for reducing greenhouse gas emissions and 
minimizing the environmental impact. Considering some of 
the most representative research done in this area, a solar-
powered GAX refrigeration system was proposed and 
analyzed, demonstrating its feasibility and energy-saving 
capabilities [4]. Additionally, the performance of a 
geothermal-powered GAX cycle has also been investigated, 
highlighting its potential for applications in remote areas with 
abundant geothermal resources [5]. Such studies signify the 
growing interest in harnessing renewable energy for 
refrigeration purposes and emphasize the potential of the 
GAX cycle as an innovative and sustainable solution for 
cooling needs. 

A key aspect regarding the merging of these two topics lies 
in the utilization of ANNs to simulate the complex 
interactions and dynamics of refrigeration systems. ANNs 
have demonstrated their capability to learn intricate patterns 
from extensive data, enabling accurate predictions of system 
behavior under various operating conditions. By using an 
ANN-based model, it is possible to analyze the energy 
performance of a refrigeration system, showcasing the 
potential of computational intelligence-driven approaches in 
enhancing the system's overall efficiency [6]. Similarly, an 
ANN model can be used to analyze and improve the mass 
transfer of a GAX cycle, resulting in enhanced system 
performance and energy savings [7]. These studies exemplify 
the increasing adoption of computational intelligence 
techniques, particularly ANNs, in the field of hybrid 
refrigeration, offering valuable insights into system behavior 
and optimization strategies, thereby contributing to more 
sustainable and environmentally friendly cooling solutions. 
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The present work uses an ANN model to detect 
measurement errors at different sections of a GAX hybrid 
system.  The novelty consists in training the computational 
intelligence technique with a numerical database generated by 
an exergy analysis of the GAX system, powered by both 
renewable and non-renewable energy. This document is 
divided in the following sections: Section II contains the 
materials and methods, which contains the system description, 
an exergy analysis, and the computational intelligence 
technique. Section III presents the results and discussion of 
the main outcomes. 

II. MATERIALS AND METHODS 

A. System description 

Fig. 1 shows the schematic diagram of the GAX cycle, to 
describe each stage of the system in detail. The cycle begins 
at the outlet of the rectifier, where the 𝑁𝐻3  vapor at high 
system pressure is directed to the condenser, with a purity of 
99%. Once inside this element, it is converted to a saturated 
liquid and sent to the pre-cooler, to reduce its temperature. The 
fluid passes through a pressure valve (V1), becoming a liquid-
vapor mixture at low pressure. Once inside the evaporator, the 
mixture receives the heat from the water to be cooled, thus 
generating the cooling effect for the corresponding 
application. When leaving the evaporator, the mixture passes 
through the pre-cooler again, which, acting as a heat 
exchanger, allows the heat coming from the flow in the 
opposite direction to be used to evaporate the liquid that was 
still present in the mixture. This cooled vapor now enters the 
lower part of the absorber, where it is absorbed by the low 
ammonia 𝑁𝐻3/𝐻2𝑂  solution. Due to the exothermic phase 
changes that occur, heat exchangers are required in this zone 
of the absorber. The aqueous solution or strong solution, now 
with a high percentage of refrigerant, is pumped at high 
pressure to the next absorber element (AHX), where it 
receives heat from the absorber. Upon entering the hotter 
element (GAX), the solution receives even more heat from the 
absorber, reaching its saturation point as it leaves the column 
as a liquid-vapor mixture. The mixture enters a chamber 
located between the generator and rectifier, where the liquid 
phase from the absorber encounters the condensed vapor from 
the rectifier. Once inside the generator, the refrigerant is 
drawn from the solution, turning it into a weak solution and 
exiting at the bottom of the generator column. The solution is 
heated in the generator through external heat sources (in this 
case natural gas and solar thermal energy) and delivers this 
energy in the GHX section. The second pressure valve (V2) 
returns it to low pressure, making it possible for it to be 
reintroduced to the top of the absorber, where it meets the 
refrigerant vapor. While in the lower part of the generator, the 
refrigerant vapor rises through the column until it reaches the 
rectifier, where the heavier elements (𝐻2𝑂) are condensed. 
This results in a refrigerant with a high degree of purity, ready 
to restart the cycle [8]. To replicate this work, the 
characteristics mentioned in Table 1 should be considered. 

 

 

 

 

      Table 1 Main operating conditions of the GAX system. 

Mass flow 

System elements Value Units 

Weak solution 13.302𝑥10−3 𝑘𝑔/𝑠 

Strong solution 22.565𝑥10−3 𝑘𝑔/𝑠 

Refrigerant 9.263𝑥10−3 𝑘𝑔/𝑠 

Cooling air in the absorber 1.306 𝑚3/𝑠 

Cooling air in the condenser 1.410 𝑚3/𝑠 

Cooling air in the rectifier 0.270 𝑚3/𝑠 

Thermal oil 0.122 𝑘𝑔/𝑠 

Ammonia concentration 

System elements Value Units 

Week solution 3.99 % 

Strong solution 43.15 % 

Refrigerant 99.39 % 

Cold water generation 

System elements Value Units 

Evaporator inlet temperature 16 °𝐶 

Evaporator outlet temperature 10 °𝐶 

Mass flow 0.419 𝑘𝑔/𝑠 

Pressure 

System elements Value Units 

Generator 2.0 𝑀𝑃𝑎 

Condenser 2.0 𝑀𝑃𝑎 

Evaporator 0.5 𝑀𝑃𝑎 

Absorber 0.5 𝑀𝑃𝑎 
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Fig. 1 Schematic diagram of the GAX cycle, consisting of a 
generating column with coupled rectifier, condenser, precooler, 
evaporator and the absorber column with GAX and AHX sections. 

B. Exergy analysis 

To carry out the study of the GAX cycle, it is necessary to 
establish the equation that governs the exergetic behavior of 
the system [9], as it is stated in (1): 

  
∑ ṁieẋi

n
i=1 = ∑ ṁjeẋj

m
j=1 +Irrcomp () 

Where the index i from 1 to n indicates the n input states, 
the index j from 1 to m indicates the m output states. 
Regarding ṁ and eẋ, these are the mass flows and exergies 
reported for the states analyzed, while Irr represents the 
irreversibilities associated with the component studied. By 
using (1), it is possible to state that the irreversibilities 
measured for the generator (2), as well as for the overall GAX 
system (3), are: 

 Irrgen = ∑ ṁj,geneẋj,gen
m
j=1 − ∑ ṁi,geneẋi,gen

n
i=1  () 

 Irrgax = ∑ ṁj,gaxeẋj,gax
m
j=1 − ∑ ṁi,gaxeẋi,gax

n
i=1  () 

 

 

 

C. Computational intelligence technique 

Due to the ease of synthesizing the operation of complex 
systems and learning through previously known values, 
artificial neural networks (ANN) are presented as a powerful 
solution to the task of processing large amounts of data.  

This technique consists of using the independent variables 
of the problem as input neurons, and the dependent variables 
as output neurons. These layers of neurons are connected by a 
hidden layer, whose main purpose is to establish a black-box 
relation between the known input and the expected output. 
Additionally, a training algorithm is used, so that the ANN can 
learn from a database supplied by the user. 

To evaluate the performance of the computational 
intelligence model, three statistical parameters are used. The 
Pearson correlation coefficient (R) is a statistical metric that 
quantifies the extent of linear correlation between two 
variables, and is defined in the following manner: 

RAB=
cov(A,B)

σAσB
  () 

Where cov(A,B) is the covariance between the variables 
A and B, and σA, σB are the standard deviations of A and B, 
respectively [10]. The second statistical parameter is the 
mean absolute percentage error (MAPE), which is calculated 
by taking the average of every absolute percentage error 
between real data and the one calculated, as it is stated in the 
following equation: 

MAPE =
1

N
∑ |

yn-tn

yn

N
n=1 | 𝑥 100 () 

Where N is the total amount of data, y is the actual value 
and t the forecast value. The equation is multiplied by 100, to 
obtain the percentage parameter [11]. The third parameter 
used is the root mean square error (RMSE), which represents 
the square root of the average of the squared differences 
between the predicted and actual values: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑛 − 𝑡𝑛)2𝑁

𝑛=1  () 

Where N, y, and t represent the parameters mentioned 
previously in (5) [12]. 

III. RESULTS AND DISCUSSIONS 

A numerical experiment is carried out, to obtain a database 
capable of representing the thermodynamic relations that 
takes place in the GAX system. The independent variables 
considered were the type of solar collector used as thermal 
supply for the generator, the number of collectors and the 
mass rate. Additional information regarding the solar 
technologies is provided in Table 2. As for the dependent 
variables, they were the mitigated carbon (CCM), net present 
value (NPV), solar thermal energy (ETH), auxiliary thermal 
energy (EAUX) and the irreversibilities measured at the 
generator (IRRGEN) and for the global system (IRRGLO). 
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Table 2. Design parameters considered for the renewable energy 
technologies. 

Flat plate collector 

Parameter Value Units 

Length 2.099 𝑚 

Width 1 𝑚 

Separation of cover and plate 0.254 𝑚 

Separation of absorber plate and 

insulator 
0.0254 𝑚 

Insulation thickness 0.025 𝑚 

Edge thickness 0.019 𝑚 

Tilt angle 21 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

Parabolic trough collector 

Parameter Value Units 

Length 5.508 𝑚 

Parabola opening width 1.594 𝑚 

Receiver tube outer diameter 0.028 𝑚 

Receiver tube inner diameter 0.026 𝑚 

Edge angle at maximum radius 90 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

 

 

Fig. 2 Schematic representation of the ANN model used for 
failure detection of the GAX system. 

 

Fig. 3 Performance analysis of the ANN model, considering the 
six dependent variables of the GAX system. 

 

By using the dataset created from the numerical 
experiment, a computational intelligence model based on 
ANN is created. This model generates a black box relation 
between the input parameters, which are the independent 
variables considered in the numerical experiment, and the 
output variables, represented by the dependent variables of the 
GAX system. The training method used was Levenberg-
Maquardt, obtaining an ANN with architecture 3-10-6. Figure 
2 is a schematic representation of such ANN model. 
Additionally to the previous described features, it can be seen 
that in the input layers, there were different conditions 
considered for each neuron. For instance, the type of 
collectors considered for this work where flat plate collector 
(FPC) and parabolic trough collector (PTC). The model 
considers a variation of the number of collectors from 1 to 10, 
with an increment of 1; and a mass rate of 0.05 to 0.25 kg/s, 
with an increment of 0.05 for each step.  

With this configuration, it was possible to create a model 
with acceptable statistic parameters. As it is shown in Figure 
3, the ANN model presents an adequate performance 
regarding the representation of the GAX system, by achieving 
a Pearson correlation coefficient of R = 0.98557, MAPE = 
12.0304 and RMSE = 0.0386. 

Once the computational intelligence model was properly 
trained, it was used to detect potential measurement errors 
from the GAX system. As it can be seen in Tables 3 and 4, the 
mass flow at the generator outlet was modified, from the 
0.7901 kg/s which is used normally by the system, to a value 
of 1.5 kg/s. Such variation led to negative irreversibilities at 
the generator IRRGEN = -70.0723 J and in the GAX system 
IRRGLO = -70.2351 J. The mass flow at the generator outlet 
was chosen for this numerical experiment, as it is a parameter 
that depends on the different energy sources that may be 
coupled to the GAX system. 

Table 3. Numerical results of the ANN model with positive 
irreversibilities. 

Operational conditions of the GAX system 

Parameter Value Units 

Mass flow at generator outlet 0.7901 𝑘𝑔/𝑠 

Outputs obtained by the ANN model 

Parameter Value Units 

Mitigated carbon (CCM) 56.8562 𝑘𝑔 𝐶𝑂2 

Net present value (NPV) 87,291 $ 𝑈𝑆𝐷 

Solar thermal energy (ETH) 88,373 𝑘𝑊ℎ 

Auxiliary thermal energy 

(EAUX) 
2,595.6 𝑘𝑊ℎ 

Irreversibilites at the generator 
(IRRGEN) 

25.5429 𝐽 

Irreversibilites of the system 

(IRRGLO) 
25.5422 𝐽 
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Table 4. Numerical results of the ANN model with negative 
irreversibilities. 

Operational conditions of the GAX system 

Parameter Value Units 

Mass flow at generator outlet 1.5 𝑘𝑔/𝑠 

Outputs obtained by the ANN model 

Parameter Value Units 

Mitigated carbon (CCM) 57.8273 𝑘𝑔 𝐶𝑂2 

Net present value (NPV) 84,670 $ 𝑈𝑆𝐷 

Solar thermal energy (ETH) 90,580 𝑘𝑊ℎ 

Auxiliary thermal energy 

(EAUX) 
2,666.6 𝑘𝑊ℎ 

Irreversibilites at the generator 
(IRRGEN) 

−70.0723 𝐽 

Irreversibilites of the system 

(IRRGLO) 
−70.2351 𝐽 

 

If an error like the negative irreversibilities shown in Table 
4 arises, the ANN model will be capable of detecting it and 
sending a message to the user. Such action is activated by 
using a string type block, created with conditional clauses 
which identifies when an experimental measured variable 
does not agree with the theoretical expected value. As it is not 
possible to obtain negative irreversibilities, the messages 
displayed by the computational intelligence model are: 

Fault detection (IRRGEN): A negative irreversibility was 
detected at the generator. Please check the instruments used 
to measure mass flow, temperature, and pressure at the 
generator, as this error is due to a malfunction in the 
measuring instruments. 

Fault detection (IRRGLO): A negative irreversibility was 
detected at the GAX system. Please check the instruments used 
to measure mass flow, temperature, and pressure at the 
generator, absorber, condenser, and evaporator, as this error 
is due to a malfunction in the measuring instruments. 

As explained before, the energy source used at the 
generator is a major element of disruption, as different solar 
technologies may affect the operating parameters measured at 
this section. For future research, it is intended to expand the 
database used to train the computational intelligence model, 
by considering a wide range of energy sources, both 
renewable and nonrenewable. Furthermore, additional 
measurement instruments may be added at different sections 
of the GAX cycle, to detect errors in different parts of the 
system. Additional aspects of this study could encompass 
identifying various other failures, including an inaccurate 
coefficient of performance (COP) caused by measurement 
errors in mass flow, working fluid temperature, or pressure at 
different parts of the GAX system. As more variables are 
targeted for measurement, it might be necessary to utilize a 
distinct training algorithm or even consider a different 
computational intelligence technique. All these fault detection 

instruments would contribute to a decision-making process, 
wherein the replacement of a mass flow sensor, pressure 
sensor, or temperature sensor might occur within a specific 
section of the refrigeration system. 
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