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Abstract—Nowadays, recommendation systems (RSs) have 

been widely used in many real-world applications. However, 

traditional recommendation techniques mainly aim at 

improving recommendation accuracy, while other metrics to 

measure the performance of the RSs are not considered. In this 

paper, a multiobjective recommendation model that considers 

different metrics, including accuracy, diversity, and novelty of 

recommendations is established. Compared with 

recommendation models that only consider accuracy, this model 

can recommend more different items with higher diversity and 

more fresh items with higher novelty to enhance the long-term 

performance of RSs. Moreover, to efficiently solve this 

multiobjective recommendation model, a multi-population 

genetic algorithm (MPGA), which follows the multiple 

populations for multiple objectives (MPMO) framework, is 

proposed. As far as we know, it is the first time that the advanced 

MPMO framework is used in RSs. We conduct comparison 

experiments on three real-world datasets with three state-of-the-

art multiobjective recommendation algorithms and two 

traditional multiobjective evolutionary algorithms. The 

experimental results indicate that the performance of MPGA is 

better than all the compared methods. 

Keywords—multiobjective evolutionary algorithms (MOEAs), 

recommendation system, multiple populations for multiple 

objectives 

I. INTRODUCTION 

With the rapid development of society and Internet, there 

have been a large amount of items and information, which are 

still growing exponentially. Therefore, it is hard for human 

beings to find the items that they really need and it is also hard 

to expose all the valuable items to different users. 

Recommendation systems (RSs) [1], which can provide 

guidance for users to choose items, have attracted increasing 

attention. 

At present, lots of recommendation techniques have been 

proposed, such as  content-based methods [2], collaborative 

filtering methods [3], and hybrid methods [4]. The content-

based methods recommend items mainly through matching 

the interests of users with the characteristics of items and the 

interests of users are usually summarized based on the items 

already chose by this user. Collaborative filtering methods 

mainly include two working fashions. One is that it would 

recommend the items chosen by similar users to the target 

users, which is named as user-based collaborative filtering 

(User-based-CF). Another one is that it would recommend 

items similar to the items already chosen by the target user, 

which is named as item-based collaborative filtering. The 

hybrid methods are the combination of two or several 

techniques. In addition, the knowledge graph can also be used 

to excavate the information of the input data, and improve the 

recommendation accuracy [5]. 

However, these traditional recommendation techniques 

only focus on improving recommendation accuracy. The 

diversity and novelty of recommendation are not considered. 

Items that are rated by many users would be recommended 

frequently and other items cannot be exposed enough, which 

hurts the long-term performance of RSs. The RSs may also 

suffer from the cold-start problem. 

In order to overcome the above-mentioned problems, 

some works model the RSs as a multiobjective problem and 

measure the performance of RSs from different aspects with 

different metrics. Considering the high effectiveness and 

efficiency of evolutionary computation [6]-[8], various kinds 

of multiobjective evolutionary algorithms (MOEAs) are 

proposed to deal with the models of multiobjective RSs. For 

example, Zuo et al. [9] proposed a MOEA-ProbS method, 

which was a combination of MOEA and probabilistic 

spreading algorithm (ProbS). Accuracy and Diversity were 

considered as two objectives to be optimized by this method. 

Cui et al. [10] designed a new probabilistic genetic operator 

and proposed the PMOEA to optimize two objectives, 

including accuracy and diversity. Wei et al. [11] focused on 

the commercial RSs and proposed a hybrid probabilistic 

MOEA (HP-MOEA) to optimize two objectives, i.e., the total 

profit and novelty. Zhao et al. [12] explicitly considered the 

interest and profit from both customers and merchants and 

proposed the cooperative-competitive evolutionary algorithm 

to optimize three objectives, i.e., the needs of customers, the 

expectations of merchants, and constraint functions. 

Most of these existing multiobjective recommendation 

algorithms are based on the non-dominated genetic algorithm 

II (NSGA-II) [16], which is a widely applicable MOEA. 
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However, the NSGA-II variants are sometimes not efficient in 

multiple or many objectives optimization, and many efficient 

MOEAs have been proposed in the decade, such as algorithms 

based on multiple populations for multiple objectives 

framework (MPMO) [18]. To be more specific, two 

representative MPMO-based algorithms, i.e., coevolutionary 

multiswarm particle swarm optimization algorithm proposed 

by Zhan et al. [18] and coevolutionary particle swarm 

optimization algorithm proposed by Liu et al. [19] for multi-

objective optimization and many-objective optimization 

respectively, have shown high effectiveness on multiple 

benchmarks compared with NSGA-II and other traditional 

MOEAs. Yang et al. have developed another MPMO-based 

algorithm [20] that achieves considerable results. Moreover, 

the algorithms based on the MPMO framework have also 

shown competitive performance on various real-world 

problems, such as cloud workflow scheduling [21], supply 

chain configuration [22], airline crew rostering [23], job-shop 

scheduling [24], vehicle routing [25], and cold chain logistics 

scheduling [26]. In order to further verify the performance of 

MPMO-based methods and promote the process of 

multiobjective RSs, we utilize the MPMO framework to solve 

the multiobjective RSs problem. As far as we know, it is the 

first time that the MPMO framework is used in multiobjective 

RSs. 

Based on the above-mentioned consideration, we establish 

a multiobjective recommendation model and propose a multi-

population genetic algorithm (MPGA) that also follows the 

MPMO framework. To sum up, the contributions of this paper 

are as follows: 

1) In the problem formulation aspect, we formalize the 

RS problem as a multiobjective problem. Moreover, a novel 

multiobjective recommendation model is established to 

measure the accuracy, diversity, and novelty of 

recommendations. 

2) In the algorithm design aspect, we propose the novel 

MPGA to solve the established model and deal with the 

recommendation problem. To the best of our knowledge, it is 

the first time that MPMO is used in multiobjective RSs. 

3) In the application aspect, we verify the performance of 

the proposed MPGA on three datasets. These three datasets 

cover different real-world applications. 

The remainder of this paper is organized as follows. 

Section II details the related work of multiobjective RSs. 

Section III describes the novel multiobjective 

recommendation model. Section IV presents the proposed 

MPGA. Section V verifies the performance of the proposed 

MPGA through experiments. Finally, Section VI concludes 

this paper. 

II. RELATED WORK 

In this section, recent works related to multiobjective RSs 

are reviewed from the aspects of RSs and MOEAs 

respectively. 

A. Recommendation Systems 

RSs mainly aim at finding items that users would enjoy 

and recommend these items to users. In order to recommend 

accurately, users’ interest and ratings of some items are used 

as training data and analyzed. A rating matrix is frequently 

used to represent the training data, with a row representing a 

user, a column representing an item, and an entry representing 

the rating if the rating is known. Many entries in the rating 

matrix may be unknown because some users may only rate a 

few items. 

RSs can excavate more information from users’ previous 

ratings and construct the predicted rating matrix. Traditional 

recommendation algorithms would recommend items with the 

highest predicted ratings to the target user. The User-based-

CF [27],  one of the widely adopted methods, would first 

calculate the similarity relationship between users through 

metrics such as cosine similarity. For example, the cosine 

similarity between user a and user b can be described as 
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where a and b are two different users, ra and rb are their rating 

vectors on all the items. 

 After that, the predicted rating pra,i of a for an unrated item 

i can be calculated based on ratings of a’s k most similar users, 

described as 
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where Sa,k represents the set of k users who have the highest 

similarity to a and rb,i is the rating of user b for item i. 

B. Multiobjective Evolutionary Algorithms 

Multiobjective evolutionary algorithms are used to solve 

problems with two or more objectives. Moreover, these 

objectives are often conflicting with each other. A 

minimization multiobjective optimization problem can be 

formulated as 
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where x represents the decision vector in the decision space Rn 

and F(x) represents the objective vector in the objective space 

RM. 

 Algorithms that are based on the MPMO framework have 

shown high effectiveness and efficiency to solve the 

multiobjective optimization problem. MPMO-based 

algorithms maintain multiple populations and each population 

is updated according to one corresponding objective and 

would not be confused by other objectives. Therefore, 

different populations can search different regions of the Pareto 

front with the guidance of different objectives. In addition, an 

archive is utilized to store excellent solutions such as Pareto 

optimal solutions from different populations and so as to help 

the multiple populations to generate more promising solutions 

through evolution operators. 

III. MULTIOBJECTIVE RECOMMENDATION MODEL 

A multiobjective recommendation model is established in 

this paper, and three objectives, i.e., accuracy, diversity, and 

novelty are considered. These three objectives conflict with 

each other. For example, recommending items that are 

evaluated with high ratings by some users to other users who 

have similar preferences can reach high recommendation 

accuracy. However, the recommendation diversity would be 

low because that duplicate items are recommended to different 

users. In addition, in order to deal with the cold-start problem 

and recommend fresh items to users, the novelty is considered 
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as an objective of this model. Moreover, in order to treat these 

three objectives equally, we transform these objectives into 

minimization functions and normalize these three objectives. 

A. Accuracy 

The first objective of this multiobjective recommendation 

model is to measure the accuracy of recommendations. 

However, we cannot access the real ratings during the 

training stage. Therefore, the predicted ratings are used 

instead. In this paper, we calculate the predicted ratings 

through the User-based-CF technique described in Section II-

A. Suppose that the predicted rating between the user u and 

the item i is prui, the accuracy of recommendations is the sum 

of the predicted ratings of all users and the recommendation 

list related to each user, described as 
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where U is the set of users and L is the recommendation list 

that contains items. 

B. Diversity 

The second objective of this recommendation model is to 

measure the diversity. In order to expose more items, i.e., 

recommend as many different items as possible, the coverage 

of items in the recommendation list is adopted to measure the 

diversity, described as 
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where Nd is the number of different items that are 

recommended to all the users in the recommendation lists. 

C. Novelty 

The third objective of this recommendation model is to 

measure the novelty of recommendations. Traditional RS 

may encounter the cold start problem because there are no 

ratings for fresh items and the predicted ratings of these fresh 

items are also not available. To establish an RS with high 

performance in the long run, we consider these fresh items 

and measure them through the novelty, described as 
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where Nf is the number of fresh items that are recommended 

to all the users in the recommendation lists. 

D. Normalization 

In order to fairly measure the effect of these three 

objectives and calculate the real values of crowding distances, 

we normalized the objectives to have a scale of [0, 1]. In order 

to better calculate the hypervolume contribution, we 

transform these three objective functions into minimization 

functions by subtracting the objective function value from 1. 

IV. PROPOSED MPGA METHOD 

A. The Framework of MPGA 

In this paper, RS is modeled as a multiobjective problem 
and a multiobjective recommendation model is established. In 
order to deal with the model, we incorporate MPMO 
framework with GA and propose the MPGA. To our best 
knowledge, it is the first time the MPMO framework is used 
in multiobjective RSs. Based on the MPMO framework, 
MPGA maintains an archive and three populations for three 

corresponding objectives. The pseudocode of MPGA is shown 
in Algorithm 1. The multiple populations and the archive are 
initialized, as described in Section IV-B. After that, MPGA 
approaches the Pareto front through iterations. There are 
mainly three steps in each iteration. First, the trial multiple 
populations and the trial archive are generated through the 
genetic operators based on the multiple populations and the 
archive respectively, as described in Section IV-C. Second, 
the multiple populations are updated to preserve the solutions 
that are excellent on the corresponding single objective, which 
can enhance the local search ability of the algorithm, described 
in Section IV-D. Third, the archive is updated to preserve the 
solutions that are excellent on three objectives, which can 
enhance the global search ability of the algorithm, described 
in Section IV-E. 

B. Initialization 

 In MPGA, we encode the individual as a matrix. Each row 
in the matrix represents the recommendation list associated 
with a user, and each entry is an item recommended to this 
user. Therefore, an individual is a possible solution to 
recommend items to users. In addition, it should be noticed 
that there are two constraints when constructing the matrix. 
One constraint is that one item cannot be recommended to one 
user twice. Another constraint is that the rated item by a user 
cannot be recommended to this user. In MPGA,  for the 
multiple populations, we initialize all the individuals 
randomly under these two constraints. Moreover, the archive 
is updated to preserve the individuals in the initialized 
multiple populations. 

C. Genetic Opeators 

 In MPGA, genetic operators, i.e., crossover operator and 

mutation operator, are used to generate trial multiple 

populations and trial archive based on the original multiple 

populations and archive respectively. 

 The crossover operator used in MPGA is an extension of 

the standard uniform crossover operator. Each individual is 

generated based on two parent individuals A and B. As for the 

trial multiple populations, A is an individual randomly 

selected from the corresponding population and B is an 

individual randomly selected from the archive. As for the trial 

archive, A and B are two individuals randomly selected from 

the archive. 

 The process of crossover operator is described in Fig. 1, 

and only one row is shown for focus and simplicity. When 

MPGA generates an individual C based on A and B, the 

process is carried out row by row. For each row, first, the items 

Algorithm 1 MPGA 

Begin 

1. Initialize the size of each population SN = 33, objective number M = 3; 

2. The total size of multiple population N = SN * M; 

3. Initialize feasible Population P based on the training data; 

4. Evaluate P on all the objectives; 

5. Archive Ar = P; 

6. For gen = 1 to 1000 Do 

7.     Trial population TP = Genetic Operator (P, Ar); 

8.     Trial archive TAr = Genetic Operator (Ar, Ar); 

9.     Evaluate TP and TAr on all the objectives; 

10.     P = Population Update (P, TP); 

11.     Ar = Archive Update (Ar, TP, TAr); 

12. End for 

13. Output the Pareto non-dominated solutions from Ar as the result. 

End 
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appeared in the recommendation lists of both A and B are 

inherited to the recommendation list of the individual C. In 

this case, item 1 and item 5 are inherited. Then, if a random 

number in [0, 1] is smaller than the crossover probability pc, 

an item in A is inherited to the individual C. Otherwise, an item 

in B is inherited. This step is conducted iteratively to fill in the 

recommendation list of the individual C. In this case, three 

random numbers are generated and compared with pc in order 

to choose three items to fill in the recommendation list, i.e., p1 

= 0.4 < pc and item 8 from individual A is chosen, p2 = 0.7 > 

pc and item 4 from individual B is chosen, and p3 = 0.8 > pc 

and item 7 from individual B is chosen. 

 In MPGA, the single-point mutation operator is conducted 

after the crossover operator. For each row in an individual, an 

item is randomly selected. If a random number in [0, 1] is 

smaller than the mutation probability pm, this item is discarded 

and another available item is selected under the constraints 

described in Section IV-B. Otherwise, the item would not be 

changed. The pseudocode of the genetic operator is given in 

Algorithm 2. 

D. Population Update 

In MPGA, after generating trial individuals based on the 
multiple populations, the multiple populations are updated to 
preserve the excellent individuals. For each population that 
aims at optimizing one corresponding objective, all the 
individuals in this population and all the individuals in the 
corresponding trial population are merged and sorted 
according to the corresponding objective. And half of the 
individuals with better objective value in the merged list are 
inserted into the new population. The pseudocode of the 
population update is given in Algorithm 3. 

E. Archive Update 

In MPGA, we merge all the individuals in the original 
archive, trial multiple populations, and trial archive together. 
The non-dominated ranking method [13] is adopted to sort the 
individuals in the merge list. Then, add the individuals in the 
first non-dominated front into the new archive. If the number 
of individuals in the new archive is less than the maximum 
size, the individuals in the next non-dominated front are added 
until the number of individuals in the new archive is equal to 
or greater than the maximum size of the archive. If the number 
of individuals in the new archive is greater than the maximum 
size of the archive, some individuals are deleted based on the 
crowding distance [14] to ensure the diversity of the archive 
individuals. In this paper, the archive maximum size is the 
same as the sum of the size of three populations for simplicity. 
The pseudocode of the archive update is given in Algorithm 
4. 

V. EXPERIMENTAL ANALYSIS 

In this section, the experimental datasets are first described. 
Then, the experiment is set up. After that, the parameter 
settings of the proposed MPGA and the compared algorithms 
are given, and the experimental results are shown and 
analyzed. Last, the conflicting relationship of multiobjective 
recommendation model is verified. 

A. Experimental Datasets 

 We evaluate our methods on three datasets, i.e., 

MovieLens-1M (ML-1M), Last.FM, and Jester Dataset4. 

These three datasets vary significantly in user number, item 

number, and sparsity. Sparsity is the known user-item relation 

over the total user-item pairs. Therefore, these three datasets 

can measure the robustness of the method in different sparse 

applications, as described in TABLE I: 

1) ML-1M 

(https://grouplens.org/datasets/movielens/1m/): this dataset 

Algorithm 2 Genetic Operator (P1, P2) 

Begin 

1. Trial population TP = ∅; 

2. For i = 1 to N Do 

3.     Generate a random number a in range [0, 1]; 
4.     Generate a random number b in range [0, 1]; 

5.     Individual A = P1,a; 

6.     Individual B = P2,b; 
7.     Individual C = crossover and mutation operator between A and B; 

8.     TP = TP ∪ {C}; 

9. End for 

10. Return TP; 
End 

 
 

Fig. 1. The process of crossover operator. 

 Algorithm 3 Population Update (P, TP) 

Begin 

1. Population P* = ∅; 

2. For i = 1 to M Do 

3.     MP = Merge the ith population of P and ith population of TP; 

4.     Sort MP based on the ith objective function; 

5.     BMP = Half of individuals in MP with better ith objective value; 

6.     P* = P* ∪ BMP; 

7. End for 

8. Return P*; 

End 

 

Algorithm 4 Archive Update (Ar, TP, TAr) 

Begin 

1. Archive Ar* = ∅; 

2. MP = Merge Ar, TP, and TAr together; 

3. {F1, F2, …, Fn} = Non-dominated sort MP; 

4. Initialize i = 0; 

5. While |Ar*| < N Do 

6.     Ar* = Ar* ∪ Fi; 

7.     i = i + 1; 

8. End while 

9. If |Ar*| > N Then 

10.     Delete some individuals from Ar* based on crowding distance; 

11. End if 

12. Return Ar*; 

End 

 

TABLE I  
PROPERTIES OF THE THREE DATASETS 

Datasets Users Items Relations Sparsity 

MovieLens-1M 6040 3952 1000209 4.19e-02 

Last.FM 1892 17632 92834 2.78e-03 

JesterDataset4 7699 158 106489 8.75e-02 
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contains 1000209 anonymous ratings of 3952 movies (items) 

provided by 6040 users. The data is collected from the 

MovieLens website. The rating ranges from 1 to 5 and a 

higher rating means that the user likes this movie better. 

2) Last.FM (https://grouplens.org/datasets/hetrec-2011/): 

this dataset consists of 1892 users, 17632 artists, and 92834 

listening relations between users and listened artists (items). 

The data is collected from the Last.FM online music website. 

The rating is the number of listen for each relation and a 

higher rating means that the user likes this artist better. 

3) Jester Dataset4 [16]: This dataset contains 7699 users, 

158 jokes (items), and 106489 anonymous ratings of jokes by 

users of the Jester joke recommendation system. The data is 

collected from April 2015 to Nov 2019. The rating ranges 

from -10 to 10 and a higher rating means that the user like 

this joke better. 

In order to better deal with the data in these three datasets, 

we apply a normalization process to the ratings. To be specific, 

we scale the ratings to [-1, 1], where a negative value means 

dislike and a positive value means like. Besides, an item is 

defined as a fresh item if it is rated by fewer than 5 users.  

B. Experiment Setup 

To set up the experiment, the dataset should be divided 

into training set and test set. In this paper, for each dataset, 80% 

of the data is randomly selected as the training set, and the rest 

makes up the test set. 

In addition, the hypervolume [28] is adopted as the 

performance metric, which is a widely used metric to compare 

different MOEAs. The hypervolume of the non-dominated 

solution set can assess the portion of the objective space that 

is covered by these solutions. It should be noticed that the 

reference point is set as (1,1,1) in this experiment. Therefore, 

we can determine if one solution set is superior than the other 

through hypervolume. 

C. Parameter Settings and Experimental Results 

In order to validate the effectiveness of the proposed 

MPGA, we compare the proposed MPGA with various kinds 

of algorithms. Generally speaking, these comparison 

algorithms can be classified into two categories, i.e., 

multiobjective recommendation algorithms and MOEAs. All 

the algorithms are implemented on a PC with Core i7, 8GB 

RAM, Windows 11, and are compiled with Python 3.8.10. 

1) Multiobjective Recommendation Algorithms: Three 

novel multiobjective algorithms that are designed for 

recommender systems, i.e., MOEA-ProbS [10], PMOEA [11], 

and HP-MOEA [12], are selected for comparison. 

2) MOEAs: Two representative MOEAs, i.e., NSGA-II 

[17] and NSGA-III [18], are implemented to optimize the 

proposed multiobjective recommendation model and tested 

on the datasets. 

The parameter settings of these algorithms are given in 

TABLE II. N is the size of population if only one population 

is maintained, and N is the total size of multiple populations 

if two or more populations are maintained. For MPGA, the 

size of each population is set as 33 and the total size of three 

populations is 99. T is the maximum generation size, in order 

to keep the number of function evaluation times the same 

among all the algorithms, T is set as 1000 for MPGA and set 

as 2000 for other algorithms. L is the length of 

recommendation list, pm is the crossover probability, k is the 

number of similar users who are used in User-based-CF, pc is 

the mutation probability, pn is the number of parents used in 

the crossover operator for PMOEA. 

 The proposed MPGA is compared with three 

multiobjective recommendation algorithms (i.e., MOEA-

ProbS, PMOEA, and HP-MOEA) and two MOEAs (i.e., 

NSGA-II and NSGA-III) on three datasets. Each algorithm is 

run 30 times independently, and TABLE III records the mean 

values and standard deviations of hypervolume. The algorithm 

with higher mean hypervolume value and lower standard 

deviations indicate that this algorithm is better. The highest 

mean values and lowest standard deviations for each dataset 

are also highlighted in bold. From TABLE III, it is clear that 

the proposed MPGA achieves the highest mean values on all 

the three datasets and the lowest standard deviations on two 

datasets. It indicates that the proposed MPGA can outperform 

all the compared algorithms on these three datasets and that 

MPGA is robust.  

D. Conflicting Relationship of multiobjective RS model 

 The multiobjective RS model proposed in this paper 

includes three objectives, i.e., accuracy, diversity, and novelty. 

The conflicting relationship between any two objectives 

should be verified. Therefore, we use the parallel coordinate 

plot [29] to analyze the conflicting relationship of these three 

objectives, which is a frequently used technique to visualize 

high-dimensional multivariate data. Fig. 2 shows the parallel 

coordinate plot of MPGA on dataset MovieLens-1M. Similar 

results can be obtained for other algorithms and other datasets. 

From Fig. 2, it is clear that line segments between any two 

objectives are crossed, which indicates that any two objectives 

of the proposed multiobjective RS model are conflict. 

VI. CONCLUSIONS 

In this paper, we establish a novel multiobjective 

recommendation model and propose the MPGA algorithm to 

deal with it. It is the first time to use the MPMO framework in 

multiobjective RS as far as we know. The proposed MPGA 

TABLE II  
PARAMETER SETTINGS OF ALGORITHMS 

Algorithms Parameter settings 

MPGA N = 99, T = 1000, L = 5, pm = 1/L, k = 20, pc = 0.5 

MOEA-ProbS N = 100, T = 2000, L = 5, pm = 1/L, k = 20, pc = 0.8 

PMOEA N = 100, T = 2000, L = 5, pm = 1/L, k = 20, pn = 5 

HP-MOEA N = 100, T = 2000, L = 5, pm = 1/L, k = 20 

NSGA-II N = 100, T = 2000, L = 5, pm = 1/L, k = 20, pc = 0.5 

NSGA-III N = 100, T = 2000, L = 5, pm = 1/L, k = 20, pc = 0.5 

 

TABLE III  
HYPERVOLUME VALUES OF ALL ALGORITHMS FOR THREE DATA SETS 

Dataset 
MPGA MOEA-ProbS PMOEA HP-MOEA NSGA-II NSGA-III 

Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev 

MovieLens-1M 0.7140 0.0065 0.4556 0.0582 0.5027 0.0256 0.6848 0.0071 0.6957 0.0088 0.6042 0.0250 

Last.FM 0.5863 0.0202 0.5690 0.0174 0.5443 0.0143 0.5805 0.0180 0.5785 0.0209 0.4727 0.0367 

JesterDataset4 0.5678 0.0092 0.3266 0.0266 0.3815 0.0246 0.5644 0.0120 0.5563 0.0144 0.4459 0.0203 
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uses the designed genetic operators to generate promising 

solutions for multiple populations and archive. Moreover, the 

multiple populations are updated with the guidance of one 

corresponding objective, and the archive is updated based on 

the non-dominated sort and crowding distance. The proposed 

MPGA is tested on three real-world datasets and compared 

with three multiobjective recommendation algorithms and two 

traditional MOEAs. Experimental results show that MPGA 

can outperform these three multiobjective recommendation 

algorithms and these two MOEAs on the hypervolume 

contribution, which can verify the robust and excellent 

performance of MPGA. 

Our future work mainly includes two aspects. On one 

aspect, we will further improve the performance of MPGA by 

combing MPGA with some mathematical methods or deep 

learning techniques [30]. On the other aspect, we will assess 

MPGA on more datasets with different sparsity, and compare 

MPGA with more methods. 
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Fig. 2. The parallel coordinate plot of MPGA on dataset MovieLens-1M. 
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