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Abstract— Ensuring validation for highly automated driving
poses significant obstacles to the widespread adoption of highly
automated vehicles. Scenario-based testing offers a potential
solution by reducing the homologation effort required for these
systems. However, a crucial prerequisite, yet unresolved, is the
definition and reduction of the test space to a finite number of
scenarios.

To tackle this challenge, we propose an extension to a
contrastive learning approach utilizing graphs to construct
a meaningful embedding space. Our approach demonstrates
the continuous mapping of scenes using scene-specific features
and the formation of thematically similar clusters based on
the resulting embeddings. Based on the found clusters, similar
scenes could be identified in the subsequent test process, which
can lead to a reduction in redundant test runs.

I. INTRODUCTION

The validation of highly automated driving systems remains
a major challenge for their widespread integration into public
road traffic. The vast operational design domain (ODD) and
the resulting large number of test possibilities make the
application of statistical test methods economically unfeasible.
Consequently, alternative verification strategies are essential
to address this issue [1]. Scenario-based testing as a validation
methodology promises to solve several challenges [2]. The
utilization of authentic data enables the identification of
plausible scenarios that possess the potential to trigger errors.
Additionally, the test scenarios generated from the data hold
promise for achieving robust test coverage. One challenge
in data-driven scenario generation is the classification of
scenarios and scenes. The initial step in the scenario-based
testing process involves defining the test space, which refers
to the entire scope of potential test scenarios. This is achieved
by dividing the test space into specific areas that can be effec-
tively tested using scenario-based testing methods. Typically,
the prevailing approach involves the manual annotation of
scenarios and scenes that are subsequently clustered and
grouped together.

One of the most important prerequisites for automating
the clustering process is to identify a descriptive model that
can cover a broad range of possible scenarios, including
edge cases, while still maintaining sufficient granularity to
distinguish between distinct situations.

The focus of this paper is on the transformation of a traffic
scene, described by a graph, into a projection that allows
traffic scenes to be grouped and categorised according to
their similarity. This work builds heavily on our previous
publications [3] in this field and can be seen as a continuation
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Fig. 1. Schematic representation of our approach: Generating a sample
triplet for self-supervised clustering of traffic scenes.

of our earlier work. We were able to show that with the
help of a Graph Neural Network (GNN) contrastive learning
approach, similar traffic scenes represented as graphs can
be grouped and that the procedure is applicable in principle.
In this paper, we address the challenge of validating the
similarity of unlabelled traffic scenes.

This work adds to this discussion in two ways. Firstly, we
utilized a larger and more advanced model, which was trained
on an expanded dataset that included diverse street types from
multiple countries. Secondly, we conducted a thorough and
detailed analysis of our results, specifically with regard to
the encoding space and the clustering outcomes.

This work makes the following key contributions:

(i) We propose a method to map traffic scenes, represented
as graphs, onto a low-dimensional embedding space.
(i) We conduct a comprehensive quantitative analysis of the
embedding space, focusing on the information content
of the mapped traffic scenes.
(iii) The resulting embedding space facilitates the clustering
of traffic scenes with similar themes.

The rest of the work is structured as follows. Section II
gives a short introduction to similar approaches in the context
of scenario or scene clustering. Section III describes the
principles of this approach and Section IV gives insight to
the developed architecture and the training process. After
that, Section V presents an evaluation and compares its
performance on a motion dataset. Finally, we conclude our
paper in Section VI



II. RELATED WORK

In this section, we present related work on data-based
clustering of unlabelled traffic scenarios and traffic scenes,
and we briefly introduce the graph description model used
in this work to depict traffic scenes.

A. Clustering of Traffic Scenes and Scenarios

In recent years, a number of works have been published
that address the clustering or categorisation of traffic scenes.
We have decided to divide the recent work into two categories.
Firstly, feature based approaches, where different attributes
and time series of features are compared against each other.
On the other hand, manoeuvre based approaches take this
further, using mainly the trajectories and movement patterns
of vehicles as input to describe the traffic scene.

1) Feature Based Approaches: The work of Kruber et
al. [4] uses features of a highway scenario in regard to an
ego vehicle (distances to other traffic participants, velocities,
...) to group similar traffic scenarios using a random forest
approach.

In [5] traffic scenes are compared over time by means of
an eight-car neighbourhood model to calculate the similarity
of highway scenarios. Scenarios are compared in pairs based
on the distances of other traffic participants in the eight areas
around the ego vehicle. Only scenarios in the same location
and with the same number of traffic participants can be
meaningfully compared. The resulting clusters contain similar
manoeuvres of both the ego and the surrounding vehicles.
Hauer et al. [6] uses a similar concept where the time series
of multiple features are compared by using Dynamic Time
Warping (DTW). To reduce the dimensionality a Principal
Component Analysis (PCA) is used to project the data to a
clustering space.

2) Manoeuvre Based Approaches: Bernhard et al. [7]
use the bag-of-words method to convert trajectories through
spatially divided clusters to histograms. The affinity of the
scenarios are described by the similarity of the corresponding
histograms. Another approach by Ries et al. [8] uses DTW
to compare trajectories of traffic participant. Scenarios are
similar and can be clustered once two scenarios exist with
the same traffic participant types and similar trajectories.

Another approach by Harmening et al. [9] presents two
autoencoder-based models that reconstruct traffic scenes based
on a grid map and traffic scenarios on temporally related
position and speed features. In each case, the embedding
space is used for clustering.

In the paper by Wurst et al. [10] the authors present a
machine learning based method that allows the grouping of
similar scenarios and novelty detection at the same time. The
road geometry is used on the basis of a birds-eye image and
road topology by means of a graph to mine samples for a
contrastive learning approach.

The survey by Bian et al. [11] provides an overall insight
into the possibilities of comparing trajectories and gives
a broad overview of recent work on clustering vehicle
trajectories.
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B. Semantic Scene Graph

To employ machine learning methods in processing traffic
scenes, it is necessary to convert them into a machine-
readable format. In this regard, we utilize the Semantic Scene
Graph (SSG) introduced in [12]. This approach strategically
disregards the absolute positions of traffic participants and
emphasizes their interactions. Based on the topology of the
road network and the relative positions of traffic participants,
a heterogeneous graph is generated, which encode the rela-
tionships between traffic participants. Each graph G = (V, E)
is defined by the nodes v € V which represent the traffic
participants and the edges ¢/ € E between two nodes (v*, v7),
which represent their relations. These edges fall into three
categories: longitudinal (for traffic participants on the same
lane), lateral (for traffic participants on two parallel lanes),
and intersecting (for traffic participants at intersections or
motorway ramps). Node attributes store velocity information
and traffic participant classification, while edge attributes
store information about edge type and the distance in Frenet
space along the lanes, between the two regarding traffic
participants. This abstraction allows traffic scenes to be
described independently of road geometry and focusing solely
on the traffic constellation, thereby enhancing comparability.
In order to preserve the information in the graph, that vehicles
are not exactly in the middle of a lane, projection identities
are introduced that represent the certainty (probability) that
a vehicle is in a given lane. In Figure 2a you can see an
exemplary traffic scene with five vehicles and a simple road
network. The corresponding SGG is shown in Figure 2b. We
refer the reader to the paper by Zipfl et al. [12] for further
details on the SGG and its implementation.
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Fig. 2. Exemplary traffic scene with five vehicles and six corresponding
projection identities m (a). The resulting scene graph, where each traffic
participant is represented by a node and the relations between its projection
identities as edges (b) [12].

III. METHODOLOGY

The objective of our methodology is to minimize the
distance between the embeddings sg, s4 of two similar graphs,
Gy and G4, in the embedding space S. In addition, it
is important that the embedding s_ of a dissimilar graph
G_ be as distant from sq as feasible. We achieve this by
implementing a contrastive learning approach to address this
graph representation problem.



A. Graph Augmentation

The object list data from a motion dataset serves as the
foundation for our methodology. Our approach involves
modifying the traffic scene by means of the object list,
as opposed to directly altering the graph features. This
offers the advantage of maintaining the consistency and
realism of the traffic scenes generated. By contrast, random
additions, deletions, or modifications of edges and nodes
within the graph representation might lead to traffic scenes
that are improbable or impossible in reality. During the
augmentation process, traffic participants are chosen at
random and subjected to modifications of their speed and
position that conform to a standard distribution. For further
information on the traffic scene augmentation, please refer
to the previous paper [3].

Afterward, both the augmented and original scenes are
converted into a graph representation using the SGG (see
Section II-B).

B. Model Architecture

The model architecture used for encoding a traffic scene
graph into an embedding is a Graph Neural Network with two
layers, a readout function in form of a summation over all

hidden node states and a projection head, as seen in Figure 3.

The principle of the message passing approach we use can
be explained with the following formula:

vk =i, @ (ma(vi_y,vi_y,e™)).
JEN(4)

ey

k represents the layer of the GNN, while ¢ specifies a
specific node. The first step in calculating the new state for
vl is to generate messages along all incoming edges to the
node. This message function my combines the features of
the incoming ¢ and outgoing j nodes, as well as the edge
features e/?. Afterwards, an aggregation function € is applied
to reduce the arbitrary amount of messages to one of fixed
dimensionality. The resulting vector is then fed through the
update function v, along with the incoming node features,
resulting in the final new node state v}.

The first GNN layer uses both node and edge features,
while the second one only operates on the hidden node
states. Instead of single linear layers in the message passing
and update function of the GNN layers, two layer MLPs
(Multi Layer Perceptrons) are used. Nonlinearity is added
through LeakyReL U activation functions. Regularization is
done through dropout in the GNN layers. The projection
head is a three layer MLP. All hidden node states have a
dimensionality of 60 and the embeddings s € S are 12
dimensional (D = 12).

IV. IMPLEMENTATION AND TRAINING
A. Dataset

We start our processing pipeline by utilizing traffic scenes
extracted from INTERACTION motion dataset [13]. The
dataset was considered suitable for our study due to its
diverse range of traffic scenarios that include intersections
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Fig. 3.  Contrastive learning model mapping graph-triplets onto the

embedding space [3].

TABLE I
COMPOSITION OF THE DATASET USED.

Road Type Country Name  Num. Scenes
Roundabout GER OF 1822
Merging GER MT 863
Intersection USA EPO 1651
Intersection USA EP1 1349
Roundabout USA EP 1769
Roundabout USA SR 1852
Total 9306

and other road sections from multiple countries. Additionally,
assigning individual scenes to specific locations provides a
useful pseudo label for validating our approach. The dataset
was recorded via a drone, allowing for consistent observations
of the same locations, across each sequence. Apart from object
tracks, the dataset also includes corresponding HD maps of
the roads. Each object in the dataset is defined by its pose in
Cartesian space, classification, and velocity, sampled at a rate
of 10 Hz. Table I displays an extract from the dataset under
investigation, featuring 9306 scenes categorized according to
their respective road types.

The dataset is first evenly split into a holdout set used for
clustering and evaluating the results (20%) and a train/test
(80%) set. The train test set is then again split into train
(80%) and validation (20%) for parameter tuning.

The graphs used have both node and edge features. For node
features, the object classification and its velocity are used. We
have excluded the directional information of vehicle velocities
or orientations in our approach, as the aim is to generalize
traffic scenes without relying on their absolute position. Our
emphasis is on the interdependent relationships between
the different traffic participants, rather than their absolute,
individual characteristics. Table II provides an overview of
the edge and node features utilized in our approach.

The original implementation of the SGG includes paral-
lel edges connecting two traffic participants with multiple
projection identities. However, in this study, we propose a
modification whereby the parallel edges are consolidated
into a single primary edge. Furthermore, we combine the
certainties of individual types and represent them as a three-
valued attribute vector, in the range of [0, 1] on the merged
edge. For more detailed information on the features, please
refer to the scene graph paper [12].



TABLE I

DESCRIPTION OF THE NODE AND EDGE FEATURES UTILIZED FOR

TRAINING.

Node Feature

velocity
object class

The norm of the objects’ velocity vector.

One-hot encoding of the object type [car, truck,
pedestrian, bike]

Edge Feature

lat/lon/int
certainty

path distance

int path distance

origin centerline
distance

target centerline
distance

int origin center-
line distance

int target center-
line distance

The normalized level of certainty regarding the
longitudinal, lateral, or intersecting relationship
between the origin and target objects.

Frenet space distance is calculated when there
is a longitudinal/lateral relationship (certainty
> 0) between the origin and target objects.

If intersecting certainty > 0, the distance from
the origin object to the intersection of its own
lane and the target object’s lane is calculated.
The distance to the centerline of the lane
associated with the origin object’s projection
identity having the highest certainty value
(either lateral or longitudinal).

The same as origin centerline distance but for
the target object.

Refer to origin centerline distance, which
is computed solely when there is a positive
intersecting certainty value.

The same as int origin centerline distance but
for the target object.

B. Training procedure

Learning is conducted using the triplet loss function £
from Equation (2).

L(s0,5+,5-) = max (d(so, s+) — d(so,s5_) + M,0) (2)

Our approach involves utilizing graph encodings sg, s,
and s_ (sg,S+,s— € S), where s serves as the encoding
for the original graph, also referred to as the anchor. The
augmented encoding, known as the positive sample, is
represented by s;, while s_ corresponds to a differing,
randomly sampled graph that serves as the negative example.
Negative samples in our study are uniformly sampled from
the remainder of the batch. The distance metric function d(-)
can be any suitable method, such as the Euclidean distance
or cosine similarity, and is used to distance negative samples
by a specified margin M. In our application we got the best
results with the Euclidean distance (Equation (3)), where D
defines the dimensionality of the S.

3

Our training conditions can be seen in Table III. Negative
sampling was conducted uniformly over the batch, excluding
the positive sample.

d(s0,5+) = |[s+ — sollp

V. ANALYSIS
A. Embedding Space

Our initial goal is to determine whether the trained model
effectively embed similar traffic scenes in the embedding
space S. In order to assess this, we conducted experiments
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TABLE III
THE TRAINING HYPERPARAMETERS

Parameter Value
Learning rate 0.001
Margin M 0.5
Embedding dimensionality D 12
batch size 400
Epochs 400
Optimizer ADAM

TABLE IV
CLASSIFICATION ACCURACY AND AVERAGE DISTANCES BETWEEN
ANCHOR, POSITIVE AND NEGATIVE SAMPLE

Street Type  Location  Accuracy  d(so,s+)  d(so,s—)
Roundabout OF 0.989 0.385 2.921
Merging MT 1.0 0.471 3.079
Intersection EPO 0.99 0.439 2.628
Intersection EP1 0.993 0.458 3.057
Roundabout EP 0.994 0.466 2.944
Roundabout SR 1.0 0.439 3.108
Total 0.993 0.439 2.927

on the holdout set, using previously unseen data. To test the
network’s discriminative ability, positive samples s should
be closer in distance to the anchor sy than negative samples
s_, thus correctly classifying them. We define this assumption
by Equation (4).

d(so, s+) < d(so,s-) @)

The accuracy of the trained model for various partial datasets
is presented in Table IV. d is the average distance measured
for each location. The overall accuracy of the model for
the test dataset is approximately 99.3%. For the locations
MT and SR, all samples of the holdout set are classified
correctly. Combined with the consistent distances between
anchor, positive and negative samples, we find that our model
has generalized its discriminative properties.

The task of labelling traffic scenes presents a challenging
problem in the field of research. While it may be feasible
to establish a concise set of rule-based labels, such as
"following" or "overtaking," for scenarios involving only
a small number of vehicles, the complexity of our traffic
scenes far surpasses this scale, often comprising several
dozen vehicles at maximum. Consequently, attempting to
manually label such intricate interactions or relying on rule-
based methods would prove to be unproductive. As a result,
an alternative approach becomes imperative for the purpose
of validation.

Our approach utilizes features derived from the graph
structure itself. These features, although not as discerning
as categorical labels, offer valuable aggregated information
regarding the defining characteristics of a given traffic scene.

We use those features to evaluate how well our embedding
space captures semantic information of the traffic scenes.
Again using the holdout set, we craft multiple features and
use a small four layer MLP (30 hidden dimensions) to regress
from S to the corresponding feature. For this, the holdout



TABLE V
REGRESSION PERFORMANCE OF THE EMBEDDING SPACE ONTO
HANDCRAFTED FEATURES.

Regr. Var. MSE MAE  Mean Std Min Max

|Elon| 0.572  0.553 1937 1.37 0.0 8.409
|Elqt| 0.885 0.218 0.243  0.388 0.0 2.067
| Eint| 0367 0.588 3.195  2.097 0.0 12.85
|E| 0.108 3490 5845 53.611 1.0 398.0
|Vear| 0289 0.772  8.160 3.75 1.0 22.0

mean(v) 0434  0.635 4.349 1.863 0.0 10.894

Fig. 4.
average velocity [T m/s of the cars present in the scene (left) and
according to the number of vehicles [ll#22 (right).

The PCA-reduced embedding space coloured according to the

set is split again into a train/test (80/20) and we report the
regression errors for the test set in Table V. Training was
conducted over 2500 Epochs, with a learning rate of 0.001,
10% dropout, optimized using ADAM. The model was trained
on Mean Squared Error (MSE). To bring the resulting errors
into context, we include the Mean Absolute Error (MAE)
of the prediction in combination with the Mean, Standard
Deviation (Std), Min and Max of the regressed feature in the
test dataset.

By evaluating the absolute error in relation to the usual
ranges of the corresponding regressed variables, we can
establish the considerable significance of our embeddings.
For example, the number of cars |V_,,.| can be estimated with
a deviation of less than one car on average. Similar results
can be observed for the number of edges, velocities of cars
and the number of interaction types (| Ejonls |Eiat|s |Fintl)s
that were normalized to the number of cars in the regarding
scene.

Once we have confirmed the meaningfulness of the
information encoded in the embedding space, our focus shifts
towards examining the distribution of this information. Of
particular interest is the continuity within the embedding
space. To visualize this high-dimensional space effectively,
we employ dimensionality reduction techniques, specifically
PCA, to reduce the dimensionality down to two dimensions.
Subsequently, we assign colours to the samples based on
certain handcrafted features previously utilized in the afore-
mentioned step (see Table V).

The first notable example can be seen in Figure 4 (left),
where the average speed of cars (mean(?)) is coloured. A
gradient from top-left to bottom-right is observable, from high
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Fig. 5.

Three examples of traffic scenes, each of two different clusters
(top/bottom) from Figure 6

speed to low speed. This indicates that some scene-describing
continuity is preserved by the embedding space.

The second important example is observable by colouring
the number of cars |V,,,.| that are present in the scene. This
can be seen in Figure 4 (right). Especially on the left-hand
side of the figure, around six clearly separated line shaped
clusters are visible. Just like before, a gradient is observable.
This time from left to right. What is interesting is that those
lines encode the number of cars in the scene in an ordinal
fashion. The left most line contains mostly scenes with one
car, and with every line, one more car joins the scenes. After
six lines, this pattern seems to disappear. The reason for this
could be the greater number of cars in scenes, which leads
to the possibility of more intricate interactions. In order to
distinguish between these scenes, the model would require a
more sophisticated approach. When observing further features,
similar observations could be made.

In concluding our examination of the embedding space,
we proceed to test and observe three significant properties of
our approach. Firstly, we verify that similar graphs exhibit
closer proximity to one another compared to dissimilar
graphs. Secondly, we establish that our fixed-dimensional
embedding space encompasses important information that
can be effectively leveraged in subsequent tasks. Lastly, we
confirm that the embedding space demonstrates continuity in
at least some of the traffic scene defining information.

B. Clustering

To qualitatively assess the encodings on a deeper semantic
level, we apply clustering of the test dataset. Firstly, dimen-
sionality reduction is performed using the UMAP algorithm
[14] (n_neighbors = 5, min_dist = 0.0, n_components =
2). On the resulting two-dimensional space, agglomerative
hierarchical clustering is executed (see Figure 6). The number
of clusters is determined by testing a reasonable range of
clusters ([2,25]) against their silhouette score and picking
the version with the highest score. Generally, we notice that
as the number of clusters increases, the silhouette score also
increases until approximately 250 clusters, reaching a score



Fig. 6. The embedding space S was dimensionally reduced to a two-
dimensional space using the UMAP algorithm. Hierarchical clustering was
employed to assign data points to 25 distinct clusters, which are represented
by different colours.

of approximately 0.75. After that point, the silhouette score
starts to decrease. In order to still being able to evaluate the
clusters by hand, we capped the number of clusters at 25
with a silhouette score of 0.617.

Figure 5 displays six traffic scenes chosen from two distinct
clusters of Figure 6. The top three scenes from the first cluster
show a small group of two traffic participants driving behind
each other, some individual participants in an intersecting
lane, in addition to one vehicle that does not interact with
any other vehicles. It is noteworthy, that our approach seems
to not only capture similar scenes for the same road type, but
transcends road types to even make scenes on different roads
comparable. The traffic scenes in the second cluster (Figure 5
bottom) exhibit long queues of traffic participants. In line with
the aforementioned clusters, the remaining clusters generated
exhibit analogous patterns within their traffic constellations.
In general, clusters depicting similar traffic scenarios were
discovered across diverse road configurations in various
locations.

This qualitative analysis serves as an illustration that the
model has successfully acquired a semantic representation of
the traffic scenes.

VI. CONCLUSION AND OUTLOOK

We show through quantitative and qualitative analysis,
that Graph Neural Networks combined with contrastive
learning are a viable approach for encoding complex traffic
scenes and making them comparable, without relying on
handcrafted labels and features, but instead build on the
underlying interaction graph structure between vehicles. More
specifically, we show the following different properties:

Firstly we show, that the resulting embedding space has
generalized to discriminate positive and negative samples
from an anchor.

Secondly we show that our embedding space encodes
important graph level properties that could be useful for
downstream tasks.

By qualitatively analysing formed clusters, we show that
our approach can even identify similar traffic scenes on
completely different street types successfully.

Those properties make our graph encoding a candidate to
employ in further downstream tasks. One application could be
the use of generative models. Often times, generative models
such as autoencoders necessitate a direct comparison between
samples to compute a loss. With our encoder, the loss could
simply be the Euclidean distance between graph encodings.
Another application is in testing of highly automated driving
functions. Embeddings like ours have various applications.
For instance, they can help in identifying gaps in training sets.
Additionally, they can generate new scenarios by swapping
street types or intersections while maintaining similarity to
existing ones.
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