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Abstract—Cardiovascular diseases are the leading cause of
death in the world, with arrhythmias being a significant symptom
and risk factor. Advancements in technologies such as low-
cost and low-power wearable devices, and machine learning
techniques for analyzing big volumes of data offer opportunities
to address this issue. However, low-cost devices may have limita-
tions, including reduced data quality due to lower sampling rates,
bit depth, and the number of leads recorded. These limitations
might produce a significant decrease in machine learning models’
performance in detecting arrhythmias. This study investigates
the impact of data quality reduction on arrhythmia classification
using deep neural network models. High-quality ECG data with
12 leads, 500Hz sampling rate, and 32-bits resolution were
transformed into low-quality versions with varying leads (from
one to six), 100Hz sampling rate, and 8-bits resolution. Training
a state-of-the-art deep learning arrhythmia detection model on
both high-quality and low-quality datasets revealed a decrease in
performance from 95.3% to 93.9% in the worst case, which is
concerning given the critical nature of the domain. To mitigate
this performance loss, we propose an ensembling method that
compensates for 42% of the loss, achieving an accuracy of 94.5%
even with the low-quality dataset. The analysis also identifies the
leads with the most promising classification performances. These
results can aid in making better design decisions when creating
cost-effective wearable ECG devices.

Index Terms—E-Health, Deep Learning, Remote Sensing

I. INTRODUCTION

According to the World Health Organization, cardiovascular
diseases are the leading cause of death worldwide. Currently,
these diseases account for a 16% of deaths globally [19].
Within the spectrum of possible cardiac issues, arrhythmias
contribute as a risk factor [12]. The most common method for
analyzing the heart’s electrical and rhythmic patterns, in order
to detect possible anomalies, is through an Electrocardiogram
(ECG). A traditional ECG has 12 cardiac leads which measure
the heart’s activity from different planes by placing several
electrodes on the chest and limbs and measuring the electrical
current between them [4].

The traditional ECG exam, performed and analyzed by
a physician in a medical facility, does not scale when the
objective is to monitor entire populations of people at risk.
In this context, telemedicine and wearable devices can aid
in monitoring cardiac patients, allowing for a more extensive
medical follow-up in a less invasive way, and even allowing
better health services access for people who live far away
from health facilities [18]. Wearable devices for these patients

have the potential to improve their diagnostic and follow-up
[10], especially when combining them with techniques for
automatic anomaly detection. Since telemedicine devices are
designed to report data over more extended periods of time
than a standard screening, it becomes unfeasible for physicians
to manually analyze a patient’s complete long-form records,
which could span days or weeks of monitoring. This makes
the deployment of automatic detection techniques important
for such devices.

Regarding automatic arrhythmia detection, multiple articles
have been published about utilizing Machine Learning tech-
niques to work on 12-lead, 2-lead and even 1-lead ECG signals
[1], [11], [13], [20], [21]. As we can see, there is a gap of
studies investigating the effectiveness of using a number of
leads in between two and twelve, which is important when we
think about the design and development of wearable devices.

The efficiency, accuracy and complexity of machine learn-
ing models depend highly on the quality of the training
data utilized [8]. On the other hand, wearable devices are
usually designed considering their cost, portability, energy
consumption, and data transfer and storage costs [9], [17],
which leads to lower-quality signals being captured by them.
From this conflict emerges the need to investigate the concrete
impact of data quality reduction on machine learning models’
performance, as well as ways to compensate for it. This
balance of cost and performance is dramatically important
in applications related to medicine, where even small per-
formance gains result in potentially more patients receiving
adequate care and treatment, which in practice may determine
life or death outcomes.

State-of-the-art arrhythmia classification models usually
work on high-quality ECG data and achieve maximum per-
formance using only one or two leads of ECG data [2],
[14], [15], [20]. However, in limited data quality scenarios,
such as when building and using low-cost wearable devices
for arrhythmia monitoring, measuring and using different
leads for classification can be a promising direction. Given
that every individual lead provides different information, it
is also important to analyze the models’ performances on
each lead separately and their accuracy when detecting each
specific arrhythmia class. This provides useful insight such
as considering which leads to include when designing a new
device, or how to best combine several available leads in order
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to increase classification performance.
This work presents a detailed analysis of the degradation of

classification performance when using lower-quality signals,
similar to those provided by wearable devices. The goal of
this study is to better understand the necessary parameters and
limitations for building more efficient monitoring devices. In
order to achieve this, a state-of-the-art classifier based on the
Convolutional Neural Network (CNN) architecture presented
in [21] was trained to detect and classify cardiac arrhythmias
of up to 4 classes. The dataset published by Zheng et al. [22]
was used for training the model. The dataset contains over
10,000 12-lead ECG records of cardiac patients recorded at
a 500 Hz sampling rate and a 32-bit resolution. Given that
the intended use for this model is to utilize the data provided
by wearable ECG devices, which usually do not provide the
same data as a full traditional ECG recording, the model
was also trained on downsampled and quantized signals to
better approximate the data provided by such devices. As a
reference device, the Galeno Sys [7] device as used, a 6-
lead (leads I, II, III, aVR, aVF and aVL) wearable ECG
device, which measures the heart’s activity with a frequency
of 100 Hz and a resolution of 8-bits. The results obtained
from this experiment, including complete analysis on a per-
lead and per-class basis, were then used to build a combinatory
model of the 6 leads in order to reach a better classification
efficiency. The results of our analysis show that the indeed
data quality downgrade creates a significant impact on the
model’s accuracy, which decreases from 95.3% to 93.9% on
the best-performing individual lead. However, by training a
new classification model using the 6 downsampled leads, the
loss of accuracy can be reduced by 42%, taking the detection
accuracy on the low-quality data back up to 94.5%.

II. METHODOLOGY

The methodology used in this work has been structured as
follows: first, the architecture and results of Yildirim et al.

TABLE I
REFERENCE ARCHITECTURE

Layer Type Parameters Output Shape

Conv1D Filters=64, Size=21, Strides= 11 453 × 64
MaxPooling1D Pool size=2 226 × 64
Batch Norm - 226 × 64
LeakyReLU Alpha=0.1 226 × 64
Dropout Rate=0.3 226 × 64
Conv1D Filters=64, Size=7, Strides= 1 220 × 64
MaxPooling1D Pool size=2 110 × 64
Batch Norm - 110 × 64
Conv1D Filters=128, Size=5, Strides= 1 106 × 128
MaxPooling1D Pool size=2 53 × 128
Conv1D Filters=256, Size=13, Strides= 1 41 × 256
Conv1D Filters=512, Size=7, Strides= 1 35 × 512
Dropout Rate=0.3 35 × 512
Conv1D Filters=256, Size=9, Strides= 1 27 × 256
MaxPooling1D Pool size=2 13 × 256
LSTM Unit=128, Return Sequences=True 13 × 128
Flatten - 1664
Dense Units=64, Activation=ReLU 64
Dense Units=4, Activation=Softmax 4

[21] were reproduced on single leads at the dataset’s original
500Hz frequency and 32-bit resolution. Afterwards, since the
objective of this work is mainly to study the potential per-
formance loss with lower-quality samples, the original signals
were downsampled and quantized and the same architecture
was utilized in order to compare performances. The per-lead
and per-class performances of both versions of the model were
studied as well in order to determine if particular leads provide
better results, or if any particular arrhythmia classes are harder
to identify. Afterwards, in order to check whether the per-
formance loss can be compensated, a multi-lead combinatory
model was proposed and tested on the downgraded signals.

A. Single original leads

Original signals were used to train the model presented
by Yildirim et al. [21]. Table I presents the architecture as
originally proposed by the authors.

Each lead’s model (leads I, II, III, aVR, aVF and aVL) was
trained 10 times in order to obtain average performances and
reduce the impact of stochasticity in the results, varying the
random split of train and validation sets (80% and 20% of
the previously split training set, respectively). The resulting
models were further evaluated on the separate test set.

All the models were trained for 25 epochs using a batch
size of 64 and Adam optimizer with a learning rate of 0.001.
The loss function used was categorical cross-entropy.

Since there appears to be some small overfitting on 25
epochs of training as pointed out by Yildirim et al. [21],
model checkpointing was set up in order to also preserve the
model on the epoch that performs best on the validation set.
Performance was evaluated on these models.

B. Single downsampled leads

After building and testing the classification model with
high-quality data, the original signals were downsampled to
100 Hz and quantized to 8-bits, repeating the training of the
original leads. The downsampling was performed through Fast
Fourier Transform [5]. The same architecture was utilized,
only modifying the strides of the first convolutional layer in
order to preserve the shape of the feature maps propagated
into the deeper layers, since the input dimensions are altered
during downsampling. The performance of each lead and its
downgraded counterpart were then compared to measure the
impact of this modification.

On both cases (original and downsampled single leads),
performance was also evaluated on a per-lead and per-class
basis, in order to determine if specific leads classify different
arrhythmias better than others, or if any lead in particular is
generally better at classification.

C. Combined model

After defining the best performances on each lead, a multi-
lead combinatory model (which combines the input of all
6 leads) was developed in order to determine if predictive
performance can be improved. This model utilize the down-
sampled and quantized versions of the data, and is built by
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TABLE II
RHYTHM TYPES AND DISTRIBUTION IN THE DATASET

Acronym Name Full Name Frequency (%)

SB Sinus Bradycardia 3,889 (36.53)
SR Sinus Rhythm 1,826 (17.15)
AFIB Atrial Fibrillation 1,780 (16.72)
ST Sinus Tachycardia 1,568 (14.73)
AF Atrial Flutte 445 (4.18)
SI Sinus Irregularity 399 (3.75)
SVT Supraventricular Tachycardia 587 (5.51)
AT Atrial Tachycardia 121 (1.14)

AVNRT Atrioventricular Node
Reentrant Tachycardia 16 (0.15)

AVRT Atrioventricular Reentrant
Tachycardia 8 (0.07)

SAAWR Sinus Atrium to Atrial
Wandering Rhythm 7 (0.07)

All All 10,646 (100)

removing the final dense and output layer from each lead’s
best models, and combining them with a new fully connected
and output layer. This new model was re-trained on the training
data, only updating the weights of the fully connected layers
(leaving the original models intact, preserving their previously
trained feature extraction and LSTM layers). Ten iterations
were trained in order to reduce stochasticity and obtain an
average performance. This training was performed over 10
epochs with a learning rate of 0.0001 as we saw that the
combined model overfitted earlier than the original model.

D. Model evaluation

The comparison between models and leads was done
through several metrics in terms of their predictive perfor-
mance.

In addition to the general metrics of each model, perfor-
mance on individual leads was analyzed in order to determine
if there is any difference in their classification capabilities.
Per-class performance is also presented to see if any particular
class is more difficult to classify.

Finally, since the aim of this work is medical diagnosis,
the kind of errors made by the classification process should
also be considered. In medical diagnosis, there are two types
of errors: Type I, where a patient is diagnosed with a disease
and is healthy, and Type II, where a patient has a disease but is
diagnosed as healthy. While both account for a misdiagnosis,
Type II errors are widely considered more harmful, as the
patient might miss the opportunity for a cure or treatment,
endangering their health [6].

In this regard, a recall measure will be created in order to
compare the correct classification as arrhythmia against normal
rhythm. For this case, True Positives are the examples correctly
labeled as any arrhythmia kind, while False Negatives are all
the arrhythmia examples identified as normal. This measure
will be higher as less examples are wrongly classified as
”healthy”, reaching 1 when no arrhythmia sample is classified
as a normal rhythm.

E. Data

This work uses a dataset created under the auspices of
Chapman University and Shaoxing People’s Hospital [22]. It is
composed of 10 second measurements of 12-lead ECG records
of 10,646 patients. Each segment was manually labeled by a
licensed physician in order to identify the presence of any
arrhythmias or other cardiac issues, and then validated by a
second physician.

The dataset consists of 5,956 male patients and 4,690 female
patients; among them, 17% present a normal cardiac rhythm
(Sinus Rhythm), while the rest possesses at least one anomaly.
Among these anomalies, 12 rhythms are recognized (1 normal
and 11 anomalous). The distribution of these rhythms is
presented in Table II.

Each record contains 10 seconds of every ECG lead, sam-
pled at a rate of 500 Hz and a resolution of 32 bits. There
are two versions of each record: one is the original recording
with noise, while the other is a version de-noised through a
Butterworth low pass filter, LOESS curve fitting and non local
means [22]; the latter is utilized in this work.

Since the reference point of this work the ECG data
provided by the Galeno Sys device, which has a sampling
rate of 100 Hz, the dataset needs to be downsampled from its
original 500 Hz rate. While some there are works indicating
that sampling rates as low as 62.5 Hz do not impact the
ability to perform automatic ECG delineation [16], there is
evidence supporting the fact that accuracy of such algorithms
is unsatisfactory beyond 120 Hz [3]. Furthermore, the device
has a resolution of 8 bits, which Ajdaraga and Gusev [3]
conclude is insufficient, at least for some QRS detection
algorithms. Since the device works at 100 Hz and 8-bits,
these variables will be tested to measure their impact on
performance.

As previously seen on Table II, some arrhythmia classes
have very few examples, which could impact the model’s
ability to generalize their classification. For this reason, and as
suggested by Zheng et al. [22], the classes are merged into 4
superclasses (AFIB,GSVT,SB,SR), following the recommen-
dations of cardiologists. An additional 58 records are discarded
because they are either empty or contain incomplete data. A
test set of 20% of the records is separated in order to measure
the models’ ability to generalize outside of the training set.
This test set is stratified in order to preserve the proportion
of classes of the entire dataset. Table III presents the fused
classes and their distribution.

III. RESULTS

A. Impact of data quality reduction on classification perfor-
mance

Before detailing the per-lead and per-class performances
on the original and downgraded signals, it is important to
first address the general performance loss across all leads. An
overview of the average performance across all leads on the
original and downsampled signals can be seen on Table IV. As
seen in these results, there is a nonnegligible performance loss
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TABLE III
RESULTING CLASSES AFTER MERGING AND SPLITTING TRAIN-TEST SETS

Original Classes Merged Class Total Examples (%) Training set (%) Test set (%)

AFIB, AF AFIB 2218 (20.94) 1774 (20.94) 444 (20.94)
SVT, AT, SAAWR, ST, AVNRT, AVRT GSVT 2260 (21.34) 1808 (21.34) 452 (21.34)
SB SB 3888 (36.72) 3110 (36.72) 778 (36.72)
SR, SI SR 2222 (20.98) 1778 (20.98) 444 (20.98)
All All 10588 (100) 8470 (100) 2118 (100)

TABLE IV
OVERVIEW OF PERFORMANCE LOSS ON DOWNSAMPLED LEADS

Model Accuracy Validation Accuracy Test Accuracy F1 Score (Test)

Original Signals 0.965
(0.008)

0.943
(0.011)

0.944
(0.01)

0.944
(0.01)

Downsampled Signals 0.941
(0.018)

0.923
(0.013)

0.927
(0.01)

0.927
(0.01)

Performance Loss 2.4% 2.0% 1.7% 1.7%

Note: Standard deviation in parentheses.

Fig. 1. Comparison of average F1 scores between each original and downsampled lead

when training the model on the 100 Hz and 8-bit signals that
ranges from 1.7% to 2.4% depending on the metric analyzed.
Further details can be found in the following subsections.

B. Single leads

1) Original signals: Each individual lead was trained 10
times on the original data at 500 Hz and 32-bit resolution with
varying train/validation splits. Table V presents the overall
average metrics.

As seen on Table V, every lead provides a good performance
of over 0.92 F1 score, with lead aVL performing the worst.

Class Sinus Bradycardia (SB) performs the best in all leads,
followed by Sinus Rhythm (SR), General Supraventricular
Tachycardia (GSVT) and finally Atrial Fibrillation (AFIB).
Lead II presents the best F1 score for AFIB, GSVT and SB,
while lead aVR has the best score for SR. This indeed confirms
that the combination of leads for improving classification is
promising. Finally, the average Arrhythmia Recall metric is
presented on Table VII.
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TABLE V
AVERAGE MODEL RESULTS ON SINGLE ORIGINAL LEADS

Lead Accuracy Validation Accuracy Test Accuracy F1 Score (Test)

Lead I 0.96
(0.0108)

0.943
(0.0026)

0.947
(0.0033)

0.946
(0.0033)

Lead II 0.975
(0.007)

0.951
(0.003)

0.953
(0.0019)

0.953
(0.0019)

Lead III 0.967
(0.0081)

0.943
(0.0038)

0.943
(0.004)

0.943
(0.004)

Lead aVR 0.971
(0.0067)

0.953
(0.0033)

0.95
(0.0032)

0.951
(0.0032)

Lead aVL 0.953
(0.0161)

0.923
(0.0062)

0.926
(0.0056)

0.926
(0.0058)

Lead aVF 0.962
(0.0067)

0.943
(0.0065)

0.947
(0.0045)

0.947
(0.0047)

Note: Standard deviation in parentheses.

TABLE VI
AVERAGE CLASS F1 SCORES ACROSS EACH ORIGINAL LEAD

Class Lead I Lead II Lead III Lead aVR Lead aVL Lead aVF

AFIB 0.902
(0.0094)

0.92
(0.0037)

0.898
(0.0087)

0.911
(0.0065)

0.853
(0.0172)

0.903
(0.013)

GSVT 0.919
(0.0062)

0.926
(0.0052)

0.918
(0.0062)

0.917
(0.0056)

0.906
(0.0058)

0.921
(0.0073)

SB 0.983
(0.0021)

0.986
(0.0016)

0.984
(0.0028)

0.985
(0.0025)

0.978
(0.0027)

0.983
(0.0026)

SR 0.954
(0.0033)

0.957
(0.0028)

0.942
(0.0067)

0.964
(0.0028)

0.928
(0.0061)

0.953
(0.0047)

Note: Standard deviation in parentheses.

TABLE VII
AVERAGE ARRHYTHMIA RECALL ACROSS ORIGINAL LEADS

Lead Arrhythmia Recall

I 0.989
(0.0017)

II 0.991
(0.0022)

III 0.989
(0.0032)

aVR 0.994
(0.0023)

aVL 0.984
(0.0035)

aVF 0.99
(0.0036)

Note: Standard deviation in parentheses.

Lead aVR presents the smallest number of arrhythmias
wrongly classified as a normal rhythm.

2) Downsampled signals: Next, new models were trained
with data downsampled to 100 Hz and quantized to an 8-bit
resolution. Each lead’s models were once again trained 10
times to obtain an average performance. Table VIII presents
the overall average metrics of the downsampled models, while
Figure 1 presents the comparison of average F1 scores between
the original and the downsampled signals.

As seen on Figure 1, every lead has worse performance
when trained on the downsampled data. The average F1

performance loss across all leads is 1.74%.
Per-class average F1 scores are presented on Table IX.

Finally, downsampled leads’ average Arrhythmia Recall is
presented on Table X. Overall, these results confirm that the
models trained on the downsampled data perform considerably
worse than those trained on the original signals.

TABLE X
AVERAGE ARRHYTHMIA RECALL ACROSS DOWNSAMPLED LEADS

Lead Arrhythmia Recall

I 0.983
(0.0071)

II 0.989
(0.0061)

III 0.982
(0.0066)

aVR 0.988
(0.0053)

aVL 0.979
(0.0031)

aVF 0.986
(0.0044)

Note: Standard deviation in parentheses.

C. Combined model

The combined model was created using the best models
for each lead. It was trained 10 times to obtain average
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TABLE VIII
AVERAGE MODEL RESULTS ON SINGLE DOWNSAMPLED LEADS

Lead Accuracy Validation Accuracy Test Accuracy F1 Score (Test)

Lead I 0.927
(0.0152)

0.926
(0.0074)

0.929
(0.0083)

0.929
(0.0086)

Lead II 0.953
(0.0099)

0.94
(0.0051)

0.939
(0.0046)

0.939
(0.0047)

Lead III 0.938
(0.0189)

0.911
(0.0055)

0.922
(0.0046)

0.922
(0.0045)

Lead aVR 0.958
(0.0182)

0.93
(0.0077)

0.931
(0.0064)

0.931
(0.0063)

Lead aVL 0.915
(0.0149)

0.904
(0.0037)

0.911
(0.006)

0.91
(0.0064)

Lead aVF 0.956
(0.0137)

0.927
(0.0046)

0.93
(0.0073)

0.93
(0.0073)

Note: Standard deviation in parentheses.

TABLE IX
AVERAGE CLASS F1 SCORES ACROSS EACH DOWNSAMPLE LEAD

Class Lead I Lead II Lead III Lead aVR Lead aVL Lead aVF

AFIB 0.855
(0.0233)

0.883
(0.0119)

0.844
(0.0094)

0.868
(0.0145)

0.812
(0.0142)

0.864
(0.0177)

GSVT 0.91
(0.0065)

0.914
(0.0087)

0.901
(0.0096)

0.903
(0.0119)

0.898
(0.006)

0.905
(0.0097)

SB 0.98
(0.003)

0.981
(0.0024)

0.978
(0.0027)

0.979
(0.0036)

0.972
(0.0064)

0.978
(0.0025)

SR 0.932
(0.0112)

0.945
(0.008)

0.924
(0.0086)

0.939
(0.0082)

0.913
(0.0086)

0.936
(0.0073)

Note: Standard deviation in parentheses.

performances. The results can be seen on Table XI.

TABLE XI
AVERAGE ACCURACY AND F1 SCORES OF THE COMBINED MODEL

Model Accuracy (Test set) F1 Score

Combined Model 0.946
(0.0052)

0.9456
(0.0054)

Downsampled Signals 0.926
(0.0053)

0.926
(0.0063)

Original Signals 0.944
(0.0037)

0.94
(0.0038)

Note: Standard deviation in parentheses.

This new model performs better than the best average
performance on a single downsampled lead (Lead II, with an
F1 of 0.939). Per-class average F1 scores of this model are
presented on Table XII.

TABLE XII
PER CLASS AVERAGE F1 SCORES FOR THE COMBINED MODEL

Class Combined Model Downsampled Signals Original Signals

AFIB 0.8983
(0.009)

0.854
(0.0015)

0.898
(0.0075)

GSVT 0.9268
(0.0055)

0.905
(0.0078)

0.918
(0.0061)

SB 0.9823
(0.0029)

0.978
(0.003)

0.983
(0.0024)

SR 0.9436
(0.007)

0.932
(0.0075)

0.95
(0.0044)

Note: Standard deviation in parentheses.

Finally, the average Arrhythmia Recall metric for the com-
bined model is 0.990 (with a standard deviation of 0.0026).

IV. DISCUSSION AND CONCLUSIONS

In this work, we present a study investigating the impact
of performing arrhythmia classification on lower-quality data
similar to that provided by wearable devices. We presented to
what extent the performance of state-of-the-art arrhythmia’s
classification models tested with lower-quality signal degrades.
We present detailed results on how the degradation happens
according to each class and ECG-lead used. We also proposed
methods which attenuate the impact on data quality reduction.
Using as a reference the ECG measurement parameters of
the Galeno Sys [7] device (100 Hz sampling rate and 8-bits
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resolution), a CNN model was trained on a public dataset with
over 10,000 ECG records in order to detect normal rhythms
and 3 arrhythmia classes.

First of all, the results obtained confirmed that there is
indeed a nonnegligible classification performance loss when
utilizing the lower-quality signals, diminishing the maximum
classification accuracy from 95.3% to 93.9%. In this scenario,
it is no longer enough to only consider the classification
provided by a single lead’s signal in order to diagnose patients.
It is noteworthy that while these differences in performance
may seem small, given the application to the medical diagnosis
field this difference could result in patients not receiving
adequate care.

Secondly, it was observed that different leads provide dif-
ferent performances, in some cases with varying classification
accuracies on different arrhythmia classes. This knowledge
can help build better models by taking into consideration each
lead’s strengths and weaknesses.

Thirdly, by considering the previously mentioned results,
leads can be combined in a way that allows to regain some
of the performance lost due to the lower quality signals. It
was shown that by training a new model combining all 6
leads, classification accuracy can be improved up to 94.5%,
attenuating 42% of the performance loss when using lower-
quality signals. Just to illustrate the impact of this result, in
absolute numbers, the amount of patients correctly classified
by this gain in comparison to the original network would
represent 600 per 100.000 cardiac patients evaluated.

As future work, the techniques presented in this work could
be tested with different datasets in order to determine if certain
leads are universally better for classification on average, or if
this difference is dataset and device-specific. Another possi-
ble direction for further research is to use patient’s clinical
information, such as gender and age, in order to improve the
predictive capabilities of these models.

The findings discussed here can help low-cost, wearable
ECG device designers decide which leads to track in order
to improve performance of arrhythmia classification, whether
it involves measuring single leads or choosing a specific
combination for optimal performance.
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