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Abstract—Brain-computer interfaces (BCI) allow for the
brain to communicate with electronic devices. Concerning the
BCI paradigms, motor imagery uses brain signals to decode an
imagined movement. However, this is a hard task given the low
signal-to-noise ratio. Usually, the main steps in BCI models
are pre-processing, feature extraction, and classification. In
recent years, Convolutional Neural Networks (CNNs) have been
gaining relevance in several areas of science due to their feature
extraction, translation invariance, and parameter sharing capa-
bilities. Another, more recent way of feature extraction is using
attention mechanisms, which are layers of neural networks
based on human attention and have the ability to highlight
important features. A variation of the attention mechanism is
the Convolutional Block Attention Module, which combines the
CNN structure with the attention mechanism. In this work,
we propose a new model that joins the core architecture
of EEGNet, a compact CNN widely used in the literature,
with the Convolutional Block Attention Module and residual
connections. The residual connections were introduced to lower
data degradation throughout the model. The results highlight
the residual connection’s importance for the performance of
the model. The proposed model obtained a kappa result 5.2%
better than the EEGNet with a p-value less than 0.01 on BCI
Competition IV dataset 2a, which is a well-known dataset for
Motor Imagery. Furthermore, the proposal was better than
EEGNet for most subjects and had the best-worst case.

Index Terms—Brain-Computer Interface, Motor Imagery,
Convolutional Neural-Network, Attention Mechanism, Elec-
troencephalogram

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) allow for direct com-
munication between the brain and electronic systems [1].
It Improves a wide range of fields, including rehabilitation,
healthcare, neuroscience, and entertainment [2]. Many brain
functions can be used in BCIs, such as visual information [3]
and motor imagery (MI) [4]. Each brain function has a scope
of usually used applications, for example, MI is used in post-
stroke motor rehabilitation [5] and prosthesis control [6].

The standard approach to BCI can be divided into five
main steps [7]: (i) signal acquisition: Brain signals acquisi-
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tion; (ii) Preprocessing: signal denoising and filtering pro-
cedures; (iii) Extraction and selection: procedures to capture
essential properties from the signals; (iv) Classification: clas-
sifies the signals using the features; and (v) Task Execution:
the classification label is used by the application. Each of
these steps requires distinct approaches depending on the
specific paradigm under investigation.

Several established approaches can be used in each step
presented above, such as filter bank [8], common spatial
pattern (CSP) [9], linear discriminant analysis (LDA) [10],
Support Vector Machine (SVM) [11], and Independent Com-
ponent Analysis (ICA) [12]. Filter Bank Common Spatial
Patterns (FBCSP) [8] is an example of a BCI model that uses
a filter bank as temporal filtering, CSP as spatial filtering,
LogPower as Feature Extraction, and Naive-Bayes Parzen-
Window (NBPW) as a classifier. Thus, expertise in the
field and careful consideration of the signal’s properties are
important to minimize losses of information.

Convolutional Neural Networks (CNNs) have emerged as
a popular choice for MI tasks due to their pattern recogni-
tion [13]. Notably, the EEGNet model [14] stands out as an
example of CNN architecture that effectively integrates the
FBCSP steps within its convolutional structure. EEGNet also
has a large number of works with Field Programmable Gate
Arrays (FPGA) due to its compact size [15], [16].

By leveraging neural network techniques, such as CNNs,
researchers can enhance the performance of BCI in some
applications. The attention mechanism [17] has gained pop-
ularity due to its powerful capabilities, especially in the
transformer structure [18]. The attention mechanism allows
for the network to focus on relevant features or regions of
interest within the input data, enhancing its ability to capture
important information [18]. A very successful variant of the
attention mechanism is the Convolutional Block Attention
Module (CBAM) proposed by Woo et al. [19]. Woo, also
proposed the use of residual connection [20] jointly with
CBAM, enabling the models to increase in depth and com-
plexity without degradation.
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In this paper, we propose a novel EEGNet-based model
approach that uses CBAM and Residual connections, aiming
to increase the quality of the solutions without compromising
EEGNet’s small size. The residual connections in our model
control the deterioration of the signal. Moreover, the proposal
extracts new features from the signal by using the attention
mechanism. The results indicate that the combination of
attention and EEGNet improves the previous models when
the residual connection is included. In addition, the proposed
model showed to have better results and with less variation
between different subjects.

The remaining of this paper is as follows: Section II
presents a summary of literature for EEGNet, Attention
mechanism, and their applications in BCI; Section III de-
scribes the dataset used in this work; Section IV describes
the EEGNET and CBAM models; Section V presents the
proposed method EEGRCBAM; Section VI describes the
experiment’s procedures and discusses the results obtained;
and Section VII - concludes this study and presents some
future works.

II. RELATED WORKS

This section describes published articles related to EEGNet
and attention mechanisms in BCI applications.

Attention mechanisms in neural networks have their roots
in natural language models and machine translation. The
concept of attention was first proposed by Bahdanau et al.
in 2015 [17]. In 2017, Vaswani et al. [18] extended the
application of attention mechanisms to the transformer ar-
chitecture. Transformers have achieved remarkable success in
various domains, including natural language processing [18],
computer vision [21]–[23], and speech recognition [24]. The
attention mechanism in transformers enabled the models
to capture long-range dependencies more effectively and
improved their ability to process sequential data.

In 2018, Woo et al. [19] introduced the convolutional
block attention module (CBAM), leveraging the strengths of
CNNs and attention mechanisms. CBAM enabled improved
localized feature extraction, enhancing the network’s ability
to capture fine-grained details and spatial relationships.

Building upon these advancements, attention mechanisms
started to find applications in BCIs. Zhang et al. [25] were
among the first to apply attention mechanisms in the BCI
domain, demonstrating its efficacy. Similarly, Li et al. [4]
explored the application of attention mechanisms in Motor
Imagery (MI) tasks, highlighting its potential to enhance
performance in BCI paradigms. After that, it was introduced
temporal and channel-wise attention-based neural networks
for MI analysis [26]–[28]. Zhang et al. [29] proposed a
filter bank approach together with attention mechanisms to
improve feature extraction. Lastly, Wen et al. [30] put forth
an attention-based 3d densely connected cross-stage-partial
network architecture. The use of attention mechanisms in
BCI already points to improvements in models, both in ac-
curacy and robustness between the subjects. However, more
experiments still need to be performed given the number of
possibilities that attention enables.

Therefore, several models have emerged as popular
choices with the growing use of neural networks in BCI
research. Among these models, DeepConvNet, and Shallow-
ConvNet proposed by Schirrmeister et al. [31] and EEGNet
proposed by et al. [14] have gained significant attention. No-
tably, EEGNet stands out as a compact model that manages
to maintain meaningful accuracy levels. Following that, Yu et
al. [32] analyzed the impact of a CBAM layer with EEGNet.

III. DATASET

The BCI competition IV 2A dataset [33] was selected
due to its wide use in motor imagery (MI) researches. The
experiments used a setup of 22 electrodes, with a sampling
rate of 250 Hz. The bandpass filter was set between 0.5-
100 Hz. During the MI tasks, each trial lasted for 6 seconds
followed by a short break time. During the initial 2 seconds,
a fixation cross is presented on the screen, followed by a
1.25-second cue. The cue overlapped with the subsequent 4-
second interval where the subjects performed the motor im-
agery. Four classes of MI tasks were considered: right hand,
left hand, feet, and tongue. A total of 9 subjects participated
in 2 separate sessions, with each session consisting of 288
trials equally distributed among the 4 classes.

IV. METHODS

In this section, we present the foundation core models for
our EEGRCBAM proposal, EEGNet, and CBAM.

A. EEGNet

EEGNet [14] is a CNN Inspired by the FBCSP algorithm,
highlighted by its concise structure of 2 main blocks. The
structure can be seen in further detail in Figure 1. In
block 1, the main steps are: (i) Reshape; (ii) Temporal 2D
convolution, with a kernel size of (1, 64), the length is half
the sampling rate (128hz), with F1 temporal filters; (iii) Batch
normalization; (iv) DepthWiseConv2D, with a kernel size of
number of channels and D ∗F1 filters; (v) Batch normaliza-
tion; (vi) ELU activation function; (vii) AveragePool2D with
size 4; and (viii) Dropout.

In block 2: (i) SeparableConv2d with a kernel size of 16
and F2 filters; (ii) Batch normalization; (iii) ELU activation
function; (iv) AveragePool2D with size (1, 8); (v) Dropout;
(iv) Flatten; and (v) Softmax.

B. Convolutional Block Attention Module

A variant of the attention mechanism, Convolutional Block
Attention Module (CBAM) [19], can be integrated into CNN
modules, combining the global feature extraction of the
attention mechanism with CNN’s inherent pattern recognition
capacity [34].

CBAM consists of 2 main modules, the first one is
the channel attention module, which applies the following
steps: (i) Parallel AvgPool and MaxPool; (ii) Both pooling
are passed through a shared Multilayer Perceptron (MLP);
(iii) Element-wise summation of the MLP outputs; (iv) Sig-
moid activation function; and (v) Initial input undergoes
element-wise multiplication with step’s iv output.
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Fig. 1. EEGNet structure. The letter A stands for Elu activation function. D
stands for dropout. D is crossed by a line as it’s not used in the test process.
Adapted from [14].

And the spatial attention module that has the following
steps: (i) Parallel AvgPool and MaxPool; (ii) 2D convolu-
tion that goes through both pools; (iii) Sigmoid activation
function; and (iv) The channel-attention output undergoes
element-wise multiplication with step Sigmoid layer output.

CBAM and its modules can be seen in Figure 2. It’s worth
noting that, the inputs are represented as 2D in BCI, despite
CBAM’s usual 3D inputs otherwise. This representation
choice is a consequence of the depthwise convolution in
EEGNet, which makes the EEG channels have always depth
1 and, as such, can be considered a 2D input.

V. PROPOSED APPROACH

The proposed EEGNet-Residual-CBAM (EEGRCBAM) is
a variant of the original EEGNet, built upon its core themes
of compactness and efficacy. Inspired by the architecture used
in EEGNet-CBAM (EEGCBAM) [32]. The main differences
from EEGRCBAM’s to EEGCBAM are the addition of a
residual connection and a concatenation layer. The inclusion
of CBAM accentuates features captured by the EEGNet-
Block, which is the EEGNet architecture without its final
flatten and softmax layers.

The residual connections [20] alleviate degradation as
the architecture goes deeper while facilitating the flow of
gradients, enabling efficient training. Finally, by concate-
nating the refined features with EEGNet-block’s output, it
improves the softmax classification layer, by not relying
solely on the attention layer. These processes can be summa-
rized into the following steps: (i) EEGNet-block; (ii) Layer
Normalization [35]; (iii) Residual CBAM; (iv) Layer Nor-
malization; (v) Concatenation of the normalization layers
outputs; (vi) Flatten; and (vi) Softmax. The Normalization

layers are important to parameter regularization and are not
dependent on mini-batches. Their inclusion ensures robust
regularization and enhances the generalization capability of
the network.

EEGRCBAM and EEGCBAM structures can be seen in
further detail in Figure 3.

VI. COMPUTATIONAL EXPERIMENTS

The BCI Competition dataset presented in Section III was
chosen to perform the experiments. Its pre-processing was:
downsampling to 128Hz and a bandpass filter of 4-40Hz,
following the experimental setup of EEGNet [14].

The evaluated models are EEGnet, EEGCBAM, and
EEGCRBAM. EEGNet and EEGCBAM were chosen as they
are networks that present good results for MI-BCI and have
similar sizes to the proposed model.

The temporal kernel sizes of 32 and 64 were chosen as
both were used in [14]. We defined the model with kernel
size equal to 32, 64 as (·)32 and (·)64.

The implementation and training were performed using
the PyTorch framework [36]. A batch size of 64 was used
as this value is widely adopted in the literature [37] and
1000 iterations, with a learning rate of 9× 10−4. We tested
and trained the model for each subject using both sessions
and 5-fold stratified cross-validation. For training and test,
the data was set from 0.5 to 2.5 seconds after the cue as
used in [14]. The training procedure employed the cross-
entropy loss function and the Adam optimizer. For statistical
hypothesis testing, the Wilcoxon test was used. The codes
and results are publicly available at https://github.com/Davi-
Esteves-dos-Santos/EEGRCBAM.

A. Results and Discussion

Table I presents the kappa values obtained for the models
tested here. The kappa score was chosen due to it being used
as the performance metric in BCI Competition IV 2a.

Overall, the proposed EEGRCBAM32 reached the best
average results when compared to the other approaches,
outperforming EEGNet64 in average kappa by 5.22%. One
can observe that EEGRCBAM32 is the only one that ob-
tained results statistically different to those found by (1)
EEGNet64 considering p-value ¡ 0.01, and (2) the other
methods with p-value ¡ 0.001. Moreover, EEGRCBAM32

maintained a higher or equal average kappa for most subjects.
The EEGRCBAM64 did not have a good result. A possible
reason is the increases in the number of trainable parameters,
thus, making it more susceptible to overfitting. However,
more experiments need to be performed to validate this
hypothesis.

EEGNet64 and EEGCBAM64 had similar results, as
in [32]. Another noteworthy comparison is its relatively
modest increase in size, with EEGNet64 having 1716 param-
eters, EEGRCBAM64 with 3286, and EEGRCBAM32 3030.
EEGRCBAM32 is 76.6% larger than EEGNet64, but it still
is concise compared to other popular approaches from the
literature, up to 13 times smaller than ShallowConvNet, and
50 times smaller than DeepConvNet.
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Fig. 2. Convolutional Block Attention Module. Adapted from [19].

TABLE I
KAPPA SCORE RESULTS FOR 5-FOLD STRATIFIED CROSS-VALIDATION. THE BEST VALUE FOR EACH SUBJECT IS BOLDFACE. P-VALUES FOR EACH

METHOD AGAINST EEGRCBAM32 : (1) P-VALUE < 0.01 AND (2) P-VALUE < 0.001

Subject Method
EEGNet64 EEGNet32 EEGCBAM64 EEGRCBAM64 EEGCBAM32 EEGRCBAM32

1 0.6759 0.7037 0.6759 0.6505 0.6898 0.7037
2 0.2940 0.2986 0.2940 0.2523 0.2917 0.3426
3 0.8009 0.7847 0.7963 0.8218 0.8287 0.8356
4 0.4329 0.4329 0.4282 0.4120 0.4005 0.4699
5 0.4236 0.3403 0.2708 0.2500 0.2870 0.3681
6 0.3796 0.3171 0.3542 0.3565 0.3657 0.3773
7 0.6042 0.6111 0.7176 0.7153 0.6829 0.6944
8 0.7384 0.7292 0.7500 0.7685 0.7593 0.7778
9 0.7894 0.8125 0.8241 0.8194 0.8125 0.8380

Average 0.5710 (1) 0.5589 (2) 0.5679 (2) 0.5607 (2) 0.5687 (2) 0.6008

For a better overall picture of the models, we used perfor-
mance profiles [38]. We defined the set S of models si, and
P as the set of problems pj . tp,s is the inverse average kappa
score results of each method and problem, as suggested by
Souza et al. [7].

The performance ratio rp,s is defined as:

rp,s =
tp,s

min{tp,s : s ∈ S}
, (1)

Defining the cardinality of a set by its absolute value, we
have:

ρs(τ) =
1

np
|{p ∈ P : rp,s ≤ τ}|, (2)

The three key insights shown in the performance profiles
are: (i) the largest ρ(1) is observed in the approach that
obtained the best results; (ii) the most robust approach is that
one that reaches ρ(τ ) = 1 with the smaller tau; and (iii) the
best overall approach is to have the largest area under the
performance profile curves.

Figure 4 shows that EEGRCBAM32 has the best perfor-
mance for most subjects. Also, it is the most robust method

as it is the first to reach ρ(τ ) = 1. Furthermore, it is the best
approach as it has the largest area. EEGNet64 is the second
most robust method, having very similar results to the other
approaches when τ < 1.2. The worst approach concerning
robustness is EEGCBAM64.

VII. CONCLUSION AND FUTURE WORKS

Brain-computer interfaces (BCI) have a wide range of
applications and uses, such as Field Programmable Gate
Arrays (FPGA), one of the tools to enable this is the
Neural Network EEGNet, which is a well-known approach
in the literature. One way to improve EEGNet is to use
attention mechanisms like Convolutional Block Attention
Module (CBAM) which highlights global features with the
attention mechanism while keeping itself compact. However,
residual connections were needed to keep some features
throughout the model and mitigate degradation.

In this paper, we proposed the EEGNet-Residual-
CBAM (EEGRCBAM) by introducing two new steps in
EEGNet-CBAM (EEGCBAM): (i) a residual connection in
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CBAM and (ii) a concatenation of the normalized layers
result. The proposed EEGRCBAM was evaluated for Motor
Imagery (MI) through the BCICIV2a dataset.

EEGRCBAM performed better in all evaluated subjects
compared to EEGCBAM and performed better in most of
the evaluated subjects compared to EEGNet. In addition,
EEGRCBAM presented the highest robustness between the
subjects among the evaluated models, having the best-worst
case. These results point to the importance of the residual
layer with CBAM in BCI applications.

All evaluated models showed sensitivity to the size of the
temporal kernel. EEGNet performed better with larger ker-
nels while EEGCBAM and EEGRCBAM performed better

with smaller kernels. More parameter sensitivity analysis can
be performed to improve the model. Additionally, further
testing with different datasets can be conducted to validate
the model’s generalization capabilities across various sub-
jects.

EEGNet has a large number of works with FPGA, this
is due to its compact architecture when compared to other
CNNs in the literature. Such as EEGNet, EEGRCBAM has
a low number of parameters and keeps competent accuracy
further enhancing its suitability for practical implementation,
even in FPGA, highlighting its potential for real-time appli-
cations and contexts with limited resources.
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