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Abstract—We study how to extend the use of the diffusion
model to answer the causal question from the observational
data under the existence of unmeasured confounders. In Pearl’s
framework of using a Directed Acyclic Graph (DAG) to capture
the causal intervention, a Diffusion-based Causal Model (DCM)
was proposed incorporating the diffusion model to answer the
causal questions more accurately, assuming that all of the
confounders are observed. However, unmeasured confounders
in practice exist, which hinders DCM from being applicable.
To alleviate this limitation of DCM, we propose an extended
model called Backdoor Criterion based DCM (BDCM), whose
idea is rooted in the Backdoor criterion to find the variables
in DAG to be included in the decoding process of the diffusion
model so that we can extend DCM to the case with unmeasured
confounders. Synthetic data experiment demonstrates that our
proposed model captures the counterfactual distribution more
precisely than DCM under the unmeasured confounders.

Index Terms—Diffusion Model, Causal Inference, Unmeasured
Confounders

I. INTRODUCTION

Causal inference is the study of identifying the causal
relationships between variables of one’s interest and
developing the estimator for the estimands, such as the
Average Treatment Effect (ATE), from the observational
data. With ATE, for instance, we can use observational data
to determine the personalized medicine [1] that maximizes
the outcome, such as recovery from a disease. There are
two mainstreams in causal inference: the Potential Outcome
(PO) framework [2] and the Directed Acyclic Graph (DAG)
framework [3]. In the DAG framework, Chao et al. (2023)
[4] proposed the algorithm called the Diffusion-based Causal
Model (DCM) that allows us to sample from the target
distribution of our interest, by which we can calculate the
approximation of ATE, outperforming the state-of-the-art
algorithms [5] and [6]. However, only under causal sufficiency
can the DCM sample from the target distribution, which
requires the complete observation of all the confounders,
which often does not hold in practice where confounders
are the variables that affect both the cause and outcome
variables of our interest. For instance, we often cannot
observe stress levels, physical activities, mental health, sleep
patterns, and genetic factors. To overcome the limitation of
DCM, we extend it and propose a new algorithm to be
able to estimate the ATE even under the existence of the
unmeasured confounders by including the nodes that satisfy

Fig. 1. DAG with three nodes and edges and the corresponding SCM with
three exogenous and endogenous nodes

the backdoor criterion [3] in both training and sampling
of the algorithm, which tells us which variables we should
adjust. To illustrate the applicability of a new algorithm where
unmeasured confounders exist, we conduct the synthetic data
experiment for both simple and complex underlying data-
generating processes. The experiment shows that our new
algorithm samples precisely from the ground truth target
distribution where DCM fails for both cases.

II. BACKGROUND

We formulate the data-generating process, intervention, and
causal effect in Pearl’s [3] framework. Firstly, DAG is the main
element of Pearl’s framework and is defined as follows.

Definition 1 (Directed Acyclic Graph). DAG G = (V, E) is
a pair of the set of nodes V and the set of edges E where
V = {1, · · · , d} and E = {(i, j) : ∃ edge from node i to j}.
DAG expresses variables by nodes and causal relationships by
edges.

DAG only represents the relationship between nodes on
which nodes affect which nodes. To quantify how the model
generates the variables in terms of distributions and functions,
we introduce a structural causal model (SCM). We assume that
we sample the observational data from the underlying SCM.

Definition 2 (Structural Causal Model). Structural Causal
Model (SCM) M = (U ,V, f) is the tuple of the set of
exogenous variables U = {U1, · · · , Ud}, the set of endogenous
variables V = {X1, · · · , Xd}, and the set of structural
equations f = {f1, · · · , fd} such that for each i ∈ [d],
the endogenous variable satisfies Xi = fi(Pa(Xi), Ui) where
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Fig. 2. do operator where we intervened in the node X2 = x2 in SCM with
three exogenous and endogenous nodes

Pa(Xi) is the set of the parent nodes of Xi and d is the number
of endogenous or exogenous nodes.

Fig. 1 illustrates the examples of DAG G = (V, E) where
V = {1, 2, 3} and E = {(1, 2), (1, 3), (2, 3)} and SCM M =
(U ,V, f) with three endogenous and exogenous nodes where
U = {U1, U2, U3}, V = {X1, X2, X3}, and f = {f1, f2, f3}.

In SCM, we assume that there exist unknown distributions
of exogenous variables. We generate n independent and
identically distributed samples from the distribution for each
exogenous variable, but we do not observe them. Then, we
observe endogenous variables according to the underlying
structural equation for each. Thus, the observational data is
X ∈ Rn×d where n is the number of samples and d is the
number of nodes

Only with the observational data X ∈ Rn×d are we not
sure about the parent nodes of each endogenous variable. Such
information can be defined by the topological order as follows.

Definition 3 (Topological Order). Topological order π =
(π1, · · · , πd) is a permutation of d nodes in SCM such that
πi < πj ⇐⇒ Xj ∈ De(Xi) for all Xi, Xj ∈ V such that
i ̸= j where De(Xi) is the set of the descendant nodes of i.

The problem of finding the topological order given the
observational data is called causal discovery [7], [8]. As this
problem is computationally intensive and NP-hard [9], most of
the methods focus on the approximation of it. We assume we
know the topological order of endogenous variables in SCM
from which we get the observational data as we can get the
estimated topological order by using the algorithm such as
SCORE [10] or DiffAN [11], which use the properties of the
leaf nodes and iteratively extract the leaf nodes to construct
the topological order from the observational data.

Furthermore, we introduce do-operator that represents the
intervention on SCM M as follows.

Definition 4 (do-operator). For any i ∈ [d], We define
do(Xi = xi) by setting the corresponding exogenous variable
to the intervened value Ui = xi and deleting all the edges
coming into Xi from the endogenous variables on SCM.

Fig. 2 shows the example of the do-operator where we
intervene in the endogenous variable X2 to x2 on the SCM in
Fig. 1.

The following defines the average treatment effect (ATE),
one of the causal effects we are interested in, using the do-
operator.

Fig. 3. Illustration of our problem: sampling from the target distribution after
the intervention on a node in the SCM given the observational data and the
underlying DAG

Definition 5 (Average Treatment Effect). For all Xi, Xj ∈ V
in SCM such that i ̸= j, we define the ATE of the variable
(cause) Xi on the variable (outcome) Xj when we compare
two counterfactual situations Xi = xi and Xi = 0 by

ATE(xi, 0) := E[xj | do(Xi = xi)]− E[xj | do(Xi = 0)]

=

∫
xj

xjν(Xj = xj | do(Xi = xi))dxj

−
∫
xj

xjν(Xj = xj | do(Xi = 0))dxj

where ν(Xj | do(Xi = xi)) is the probability density function
of Xj after the surgery on the SCM by do operator do(Xi =
xi).

As we aim to figure out the causal effect of an arbitrary
node on an arbitrary node, our problem boils down to
how to approximately sample from the target distribution
ν(Xj | do(Xi = xi)) given observational data X ∈ Rn×d and
underlying DAG for all i, j ∈ [d] such that i ̸= j shown in
Fig. 3. Note that we can estimate the underlying DAG by the
topological order π and edge pruning algorithm [12] that uses
the feature selection.

III. EXISTING ALGORITHM

We introduce a diffusion-based algorithm called Diffusion-
based Causal Model (DCM) proposed by Chao et al.
(2023) [4], that can sample from the target distribution
ν(Xj | do(Xi = xi)) more accurately than existing state-
of-the-art algorithms [5] and [6] under the following causal
sufficiency.

Assumption 6 (Causal Sufficiency). We say that the
data-generating process satisfies causal sufficiency if no
unmeasured confounders exist.

DCM uses Denoising Diffusion Implicit Model (DDIM)
[13], a more efficient sampling algorithm than Denoising
Diffusion Probabilistic Model (DDPM) [14] [15], which
attained the groundbreaking performance in generating image
and audio data [16], [17], [18]. DCM trains the diffusion
model at each node to capture the characteristics of the
exogenous nodes in SCM. In the forward diffusion process for
each endogenous node, where we gradually add the isotropic
Gaussian noise, we obtain the standard Gaussian distribution.
Then, in the reverse diffusion process, we decode it by adding
the Gaussian distribution with a learned parameter θ to sample
from the target distribution. As [19] shows that learning the
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Algorithm 1 Deci(Zi, XPai) [4]
Input: Zi, XPai
Sample X̂T ∼ Zi

for t = T, · · · , 1 do

X̂t−1
i ←

√
αt−1

αt
X̂t

i − ϵiθ(X̂
t
i , XPai , t)

×

√
αt−1(1− αt)

αt
−
√
1− αt−1


end for
Output: X̂0

i

Algorithm 2 DCM Training [4]
Input: target distribution ν, scale factors {αt}Tt=1, DAG G
whose node i is represented by Xi

while not converge do
Sample X0 ∼ ν
for i = 1, · · · , d do
t ∼ Unif[{1, · · · , T}]
ϵ ∼ N (0, 1)
Update the parameter of the node i’s diffusion model
ϵiθ by minimization of the following loss function by
Adam optimizer∥∥ϵ− ϵiθ

(√
αtX

0
i +
√
1− αtϵ,X

0
Pai , t

)∥∥2
2

end for
end while

parameter in the reverse diffusion process is equivalent to
learning how much noise we add at each step, we also
construct the neural network that captures how much noise
ϵ we should add according to the time t and the already
sampled values of the parent nodes X̂Pai where XPai is the
set of the parent nodes of Xi in SCM M. After the training,
we can sample from the target distribution. We sample the root
node Xi in SCM from the empirical distribution Ei. For the
intervened node Xi, we set it to the intervened value γi. For
other nodes Xi, we sample by the reverse diffusion process
Deci(Zi,Pa(Xi)) using the trained neural network ϵθ with
parent nodes Pa(Xi) and the corresponding proy exogenous
nodes Zi ∼ N (0, 1). Algorithms 1, 2, and 3 show the
comprehensive procedure of decoding, training, and sampling
processes, respectively.

One of the crucial limitations of DCM [4] is that we
cannot cope with the situation where there exist unmeasured
confounders, which is often the case with the data collection
for business, public health and social science where causal
inference makes a significant contribution.

Algorithm 3 DCM Sampling [4]
t

Input: Intervened node j with value γj , noise Zi ∼ N (0, 1)
for all i ∈ [d]
for i = 1, · · · , d do

if i is a root node then
X̂i ∼ Ei

else if i = j then
X̂i ← γi

else
X̂i ← Deci

(
Zi, X̂Pai

)
end if

end for
return X̂ =

(
X̂1, · · · , X̂d

)

IV. PROPOSED ALGORITHM

A. Backdoor Diffusion-based Causal Model

To overcome the problem of DCM and use the observational
data as much as possible, we introduce the novel Backdoor
Criterion-based DCM (BDCM) algorithm inspired by the
backdoor criterion proposed by Pearl [3]. To define the
backdoor criterion, we introduce the notion of blocking a path
in DAG.

Definition 7 (Block a Path). We say that the node Z blocks a
path P if the path P includes a chain L→ Z → R, or a folk
L← Z → R where L and R are the nodes in the path P .

Then, using Definition 7, we define backdoor criterion as
follows.

Definition 8 (Backdoor Criterion). A set of variables B
satisfies backdoor criterion [3] for tuple (X,Y ) in DAG G
if no node in B is a descendant of X and B blocks all paths
between X (cause) and Y (outcome) which contains an arrow
into X .

If unmeasured confounders exist, then the Backdoor
criterion tells us which variable to adjust concerning tuple
(X,Y ). Then, the idea of Backdoor DCM is that for each
node Xi in SCM, instead of having the parents XPai

and
corresponding exogenous nodes Zi as the input of the decoder
of the diffusion model, we include the nodes which meet
the backdoor criterion XBi

and the corresponding exogenous
nodes Zi and also include the intervened node Xj if it is the
child of the intervened node (Xj ∈ XPai

). Furthermore, we
change the training process accordingly. As the parent nodes of
the outcome node always satisfy the backdoor criterion under
Assumption 6 [3], including the nodes that meet the backdoor
criterion instead of the parent nodes in the decoder of BDCM
is the generalized algorithm of DCM. Algorithms 4 and 5 show
the training and sampling process of BDCM. Then, we have
the following conjecture.

Conjecture 9 (Applicability of BDCM). Suppose sets of
nodes satisfy the backdoor criterion for the intervened node
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Algorithm 4 BDCM Training
Input: target distribution ν, scale factors {αt}Tt=1, DAG G
whose node i is represented by Xi and intervened node j
with intervened value γj
while not converge do

Sample X0 ∼ ν
for i = 1, · · · , d do
t ∼ Unif[{1, · · · , T}]
ϵ ∼ N (0, 1)
Update the parameter of the node i’s diffusion model
ϵiθ by minimization of the following loss function
depending on the nodes.
if Xj ∈ XPai then

∥∥ϵ− ϵiθ
(√

αtX
0
i +
√
1− αtϵ,X

0
Bi
, Xj , t

)∥∥2
2

else

∥∥ϵ− ϵiθ
(√

αtX
0
i +
√
1− αtϵ,X

0
Bi
, t
)∥∥2

2

end if
end for

end while

Algorithm 5 BDCM Sampling
Input: Intervened node j with value γj , noise Zi ∼ N (0, 1)
for all i ∈ [d]
for i = 1, · · · , d do

if i = j then
X̂i ← γi

else if i is a root node then
X̂i ∼ Ei

else if Xj ∈ XPai
then

X̂i ← Deci
(
Zi, X̂Bi

, Xj

)
else
X̂i ← Deci

(
Zi, X̂Bi

)
end if

end for
return X̂ =

(
X̂1, · · · , X̂d

)

and other nodes. In that case, we can generalize DCM
to BDCM to sample from the target distribution even if
Assumption 6 is violated.

B. Experiment

To show that BDCM precisely samples from the target
distribution where we cannot use DCM, we conduct an
empirical analysis with the following settings where causal
sufficiency does not hold. Python code for the experiment is
available in https://github.com/tatsu432/BDCM.

Fig. 4 and Fig. 5 show the SCMsM1 andM2 respectively
that do not satisfy Assumption 6 where X1 and X4 in Fig.
4 and X2 in Fig. 5 are the unobserved nodes. Note that we
did not show the exogenous nodes in the figures for clarity.

Examples 10 and 11 show the concrete structural equations
for M1 and Examples 12 and 13 for M2. We create simple
and complex structural equations for both cases. The simple
cases are the additive noise models (ANM) [20], [21], [22],
[12] whereas the complex ones are not ANM.

Example 10. We define the set of simple structural equations
f = {f1, f2, f3, f4, f5} for SCM M1 in Fig. 4 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) = X2
1 + U2

X3 = f3(X1, U3) = 2X1 + U3

X4 = f4(X3, U4) = X3 + U4

X5 = f5(X2, X4, U5) = X2 + 2X4 + U5

Example 11. We define the set of complex structural
equations f = {f1, f2, f3, f4, f5} for SCM M1 in Fig. 4 as
follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) =

√
|X1|(|U2|+ 0.1)

2
+ |X1|+

U2

5

X3 = f3(X1, U3) =
1

1 + (|U3|+ 0.1) exp(−X2)

X4 = f4(X3, U4) = X3 +X3U4 + U4

X5 = f5(X2, X4, U5) = X2 +X4 +X2X4U5 + U5

Example 12. We define the set of simple structural equations
f = {f1, f2, f3, f4, f5, f6} for SCM M2 in Fig. 5 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) = X2
1 + U2

X3 = f3(X2, U3) = X2 + U3

X4 = f4(X3, U4) = X3
3 +X3 + U4

X5 = f5(X3, U5) = X2
3 + 0.1 + U5

X6 = f6(X2, X4, X5, U6) = X2X4 +X2X5 +X4X5 + U6

Example 13. We define the set of complex structural
equations f = {f1, f2, f3, f4, f5, f6} for SCM M2 in Fig.
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Fig. 4. SCM M1 where the unobserved confounders X1 and X4 exist
with five exogenous and endogenous nodes where we intervene in the node
X2 = x2

Fig. 5. SCM M2 where the unobserved confounder X2 exists with six
exogenous and endogenous nodes where we intervene in the node X4 = x4

5 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) =

√
|X1|(|U2|+ 0.1)

2
+ |X1|+

U2

5

X3 = f3(X2, U3) =
1

1 + (|U3|+ 0.1) exp(−X2)

X4 = f4(X3, U4) =
U4(|X3|+ 0.3)

5
+ U4

X5 = f5(X3, U5) =
1√

|U5X3|+ 0.1
+ U5

X6 = f6(X2, X4, X5, U6)

= X2
2X4 +X2X5 +X5X6 +X2U6

For Examples 10, 11, 12, and 13, we sample exogenous
nodes Ui from standard normal distribution N (0, 1) for all
i ∈ [5] in M1 and all i ∈ [6] in M2. We normalized each
endogenous variable as [4] did.

For both Examples 10 and 11 for Fig. 4, we aim to sample
correctly from the target distribution ν(X5|do(X2 = x2))
where X2 is the cause, and X5 is the outcome. For both DCM
and BDCM, we set the intervened node X2 to intervened value
x2 and sample X3 from the empirical distribution E3. For the
node of our interest X5, DCM takes X̂2 as the input for the
decoder Dec5(Z5, X̂2) whereas BDCM takes X̂2 and X̂3 as
the input for the decoder Dec5(Z5, X̂2, X̂3).

For both Examples 12 and 13 for Fig. 5, we aim to sample
correctly from the target distribution ν(X6|do(X4 = x4))
where X4 is the cause, and X6 is the outcome. For both
DCM and BDCM, we set the intervened node X4 to intervened
value x4, sample X1 and X3 from the empirical distribution
E1 and E3 respectively, and sample X5 by the decoder

TABLE I
AVERAGE ± STANDARD DEVIATION OF MMD (×10−3) OF DCM AND
BDCM COMPARED TO THE TRUE TARGET DISTRIBUTION IN EXAMPLES

10, 11, 12, 13

BDCM (ours) DCM
Example 10 1.24± 0.744 1.79± 1.54
Example 11 1.04± 0.835 2.34± 2.17
Example 12 4.98± 2.89 4.89± 2.42
Example 13 1.49± 1.56 2.86± 2.1

Dec5(Z5, X̂3). For the node of our interest X6, DCM takes
X̂4 and X̂5 as the inputs for the decoder Dec6(Z6, X̂4, X̂5)
whereas BDCM takes X̂3 and X̂4 as the inputs for the decoder
Dec6(Z6, X̂3, X̂4).

For parameters in the algorithm, we set them to the
following values, mostly the same as [4]. For the noise
schedule βt and αt, we set them to βt =

(
0.1− 10−4

)
t−1
T−1 +

10−4 and αt =
∏t

i=1(1− βt) where we set T = 100. For the
neural networks, we set the epochs to 500, batch size to 64,
and learning rate to 10−4 where each neural network consists
of three hidden layers whose numbers of nodes are 128, 256,
and 256 for the first, second and third layers, respectively. We
extract 500 samples via DCM and BDCM, where we train
them with 1000 samples. We calculate the Maximum Mean
Discrepancy (MMD) [23] between the empirical distributions
obtained from the algorithms and the ground truth target for
both DCM and BDCM. Note that the lower MMD is, the closer
the empirical distributions are, so the algorithm is more precise.
We set the intervened values to ten different values sampled
randomly from Unif(−3, 3). We also conduct the simulation
for five different seeds. Then, We output the average and
standard deviation of MMDs.

Table I shows the results of the experiments.
Table I demonstrates that BDCM output a more precise

distribution than DCM, where unmeasured confounders exist
for Examples 10, 11, 13. For Example 12, BDCM is almost
as accurate as DCM. For both SCMs M1 and M2, the more
complex the structural equations become in SCM, the clear
the difference in the performance between DCM and BDCM
is. For SCM M1 in Fig. 4, BDCM successfully considers the
backdoor path X2 ← X1 → X3 → X4 → X5 by including
the node X3 that blocks the backdoor path in the decoder
of the outcome meanwhile DCM does not consider this path
when we sample the outcome X5 where we intervene in the
node X2, which creates the bias. Furthermore, for SCM M2

in Fig. 5, BDCM carefully chooses the nodes X3 and X4 that
block all the backdoor paths concerning the pair of the cause
and outcome nodes as the input for the decoder of the outcome
X6 of our interest. In contrast, DCM takes the parent nodes
of the outcome we observe X4 and X5 without considering
one of the backdoor paths: X4 ← X3 ← X2 → X6, which
incurs the bias in the sample by DCM.

Furthermore, Fig. 6 and Fig. 7 show ones of the empirical
distributions sampled by DCM, BDCM, and target distribution
for SCMs M1 and M2 where the structural equations are
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Fig. 6. Empirical distributions of the X5 sampled from DCM (left) and
BDCM (right) compared to the ground-truth target distribution where we
intervened in the node X2 = 0.298 in Example 10

Fig. 7. Empirical distributions of the X6 sampled from DCM (left) and
BDCM (right) compared to the ground-truth target distribution where we
intervened in the node X4 = 2.858 in Example 12

complex. The blue histograms are the ground truth distribution
we want to sample from, whereas the red histograms are the
outputs of the DCM (left) and BDCM (right). From Fig. 6
and Fig. 7, we can see that BDCM can sample from the target
distribution ν(X5|do(X2 = x2)) in M1 and ν(X6|do(X4 =
x4)) in M2 precisely where unmeasured confounders exist
whereas DCM fails to do so.

V. CONCLUSION AND FUTURE WORK

We extended the Diffusion-based causal Model (DCM)
proposed by [4] to the case where unmeasured confounders
exist. We proposed Backdoor Criterion-based DCM (BDCM)
that can consider the unobserved confounders by including
the nodes that meet the backdoor criterion [3]. Synthetic data
experiment demonstrates that BDCM can precisely sample
from the target distribution of our interest where DCM fails
to do so.

For future work, one of the intriguing topics would be to
derive the convergence guarantee of BDCM. Implementing
the comprehensive algorithm of BDCM in Python would also
be interesting. Moreover, it would be intriguing to generalize
BDCM using the Front-door criterion [3], another criterion to
adjust the nodes where unobserved confounders exist.
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