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Abstract—Human gait prediction is an important task in
predictive exoskeleton control. However, if static models are used
to facilitate this task, two problems arise. First, the models cannot
adapt to new environments and terrains during deployment, and
second, the models cannot be personalized to any given end
user without costly involvement of a human expert. Incremental
models can alleviate these shortcomings, but they usually are
prone to catastrophic forgetting, which can be dangerous during
live deployment. In this work, we introduce an incremental
model, that can learn human gait from scratch without outside
interference, but does not fall prey to catastrophic forgetting. We
test and evaluate our model on a real world gait database and
show, that it delivers competitive results with regard to other
standard approaches.

Index Terms—incremental, online, catastrophic forgetting, per-
sonalization, human gait, exoskeleton

I. INTRODUCTION

Modern lower body exoskeletons are assistive devices that
use electric motors to adjust the actuators which support
the human end user during everyday gait movements [1].
Since, these motors need real physical time to adjust
themselves, they are driven by predictive control algorithms,
which rely on internal models, that forecast human gait
patterns slightly into the future, thus enabling the control unit
to always provide the best possible support at the correct time.

Human Motion Prediction is a research field in which algo-
rithms and models can be sorted into different groups based on
a number of criteria. First, one can make a distinction based on
the objective of the prediction. This leads to two model classes:
The first is used to predict movement trajectories or upcoming
actions of other agents in shared environments, which aims
to solve problems like effective navigation or collision risk
minimization [2]. The second is used to predict upcoming
movements of a specific agent in order to improve the support
that this agent receives from associated systems [3].

Human Gait Prediction is a sub-field of Human Motion
Prediction in which the models can be further divided based on
the data they operate on. Here, the main classes are visual data
obtained from cameras and motion capture systems, as well as
sensor data obtained from IMU or EMG sensors. Models that
work with visual data [4]–[6] are usually from the first class of
objectives, because they can only work in closed environments

that are equipped with motion capture systems or when a robot
with visual capabilities observes its immediate surroundings.
Models that are supposed to facilitate support functionality on
the other hand are much more likely to use sensor data.

Support with sensor models can either be done by
classifying the input time series into specific movement
patterns and then executing a specific routine per class
[7]–[10], or by predicting each upcoming time step through
regression and then using this prediction directly as input for
a predictive control scheme [11]–[13], or as a combination
thereof [14], [15]. What all of these approaches have in
common, is that they are offline trained models, which are
static in nature and can pose a challenge from an operational
viewpoint.

In Machine Learning, the term offline means, that a model is
learned based on a specific set of training data and then applied
during deployment without any subsequent changes to its
parameters. This can lead to problems in situations where the
distribution of the input data changes over time, a phenomenon
commonly referred to as concept drift [16], which often has the
effect of a reduction in model performance. In the context of
predictive control for lower body exoskeletons, this can happen
through a lack of personalization of the model to the end
user or the appearance of walking patterns in the environment,
that were not part of the training data (e.g. steep slopes). In
fact, it has recently been shown, that personalized models in
human movement classification perform much better than non-
personalized ones [17].

Of course, static models can be personalized easily by
including data from the specific end user into the training
process, but in practice this is less than ideal because it
requires human experts to obtain the data and create the
model which is a costly and unwieldy approach for a real
world deployment. Furthermore, even when these costs are
accepted, there still is the problem, that a training set of
limited size will most likely never contain all possibilities
that can arise in a real world environment (e.g. different floor
surfaces like gravel or other uneven terrain), which might
lead to subpar predictions in these situations and therefore
creates the necessity for other approaches that address these
challenges.
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A natural solution for these problems can be found in
incremental or online learning [18], which is a paradigm that
forms the counterpart to offline models. Incremental models
do not have an initial, one time training phase, but rather are
continuously updated with each new data instance that they
obtain throughout their deployment. This enables such models
to be easily and cheaply personalized to specific end users
as well as to adapt themselves to unforeseen environmental
conditions.

However, the extreme agility of incremental models also
has a significant drawback, which is commonly known
under the term catastrophic forgetting [19]. This means, that
continuously adapting models are prone to forget previously
learned concepts if they are not represented in the input data
for a while, because they are overwritten with new concepts.
This is a problem, especially when reoccurring concepts
appear in a data stream, because in that case these concepts
have to be relearned every time which leads to subpar
predictions around the change points of the data stream.
In the context of human gait prediction this can even be
dangerous because an incremental model could for example
forget the concept of going down the stairs which in the worst
case might lead to avoidable accidents. Therefore, building
incremental models that can safeguard against catastrophic
forgetting seems to be a promising research direction for
algorithms revolving around predictive exoskeleton control.

In this contribution, we present a Memory Management
(MM) approach for an incremental kNN model, that can
learn human gait predictions from scratch without human
interference but does not fall prey to catastrophic forgetting.
We evaluate our method on a large, real world human gait
database and show that it outperforms static state of the art
approaches as well as vanilla incremental models. Specifically,
we show that large improvements in prediction quality can
be made in regions of the data stream that are affected by
catastrophic forgetting under normal circumstances.

The rest of this paper is structured in the following way: In
the next section we briefly define the prediction problem math-
ematically and after that, Section III introduces our proposed
model and explains it in detail. Then, an overview of the data
that we use for evaluation is given in Section IV, which is
followed by the description of our experiments in Section V.
Afterwards, the results are presented in Section VI and then,
the paper is completed by a short conclusion in the end.

II. PROBLEM SETTING

Throughout this paper, incremental regression is used to
predict a data stream one instance after another. Hereby, a
data stream S = {s1, s2, s3, ..., st} is defined as a potentially
infinite set of data points si ∈ Rn.

Furthermore, an incremental model is defined as an al-
gorithm that receives a data stream instance after instance
and generates a sequence of models h1, h2, h3, ..., ht where

hi−1(si) = si+1 is a function that acts on the current instance
and predicts the value of the subsequent instance of the data
stream. After that, the true value si+1 is revealed and a new
model hi is learned.

To evaluate such an incremental regression task, usually the
Interleaved-Train-Test-Error (ITTE) is applied:

E(S) =

√√√√1

t

t∑
i=1

(hi−1(si)− si+1)2

This ITTE measures the Root-Mean-Squared-Error (RMSE)
over every model hi up to a given time point t.

III. MODEL

In a previous work [20], we compared a wide range of
incremental algorithms and evaluated them with regard to their
behaviour around sudden change points in data streams and
their overall suitability for regression problems in predictive
exoskeleton control. It turned out, that a simple kNN model
[21] significantly outperforms all other, more sophisticated
models, on all evaluation schemes. This is consistent with
other research from the classification domain [22], where
incremental kNN models also perform very competitively.

However, the problem with incremental kNN models is, that
their memories simply accumulate more and more data over
time, until the computation time at inference becomes so high
that predictions do not arrive in time anymore, which renders
the models useless for real world deployment. The common
remedy for this problem is to implement the memory as a
fixed length sliding window over the last n samples of the
data stream. In this way, inference time will always be limited
to a specific value that can be tuned to the available hardware
through the number of samples n.

Nevertheless, this setup has another drawback, as it gives
rise to the potential occurrence of the aforementioned problem
of catastrophic forgetting, because any concept in the data, that
is not expressed in the input stream for a time period that is
longer than the size n of the sliding window, will automatically
be forgotten. This is much less than ideal in the context of
predictive control, because it is not possible to guarantee a
certain minimum in prediction quality whenever long term,
periodic change points are contained in the data stream.

A. Basic Goals and Considerations

Therefore, we want to create a memory management ap-
proach, that aims at preserving at least a few samples of any
concept that has historically been observed in a data stream,
in order to be able to guarantee a minimum in prediction
quality, regardless of how long a historical concept has not
been expressed.

However, we also want to retain the sliding window, because
for any predictive task that runs over a time horizon, and is
not in a region of sudden concept change, the most useful
information is usually found in the direct vicinity in time of
the input stream.
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Since, there are no labels in incremental learning, we need to
resort to clustering, in order to extract meaningful information
about the existing concepts in the data stream, which is
necessary to determine the specific data samples that are to
be preserved in the memory. In the context of human gait
prediction, this is not possible on a single data sample basis,
because our tests have shown, that no naturally separable
clusters exist when all samples of a data stream are examined
individually. Therefore, we opt to using time series of discrete
physical steps, which are defined as the set of data samples
from the onset of the heel strike of one foot, until the onset
of the subsequent heel strike of the other foot.

Depending on the number of terrains that an exoskeleton
would finally be exposed to during deployment as well as the
bodily characteristics of the end user, the number of expected
clusters will change on a case by case basis. Therefore, the
clustering algorithm needs to determine the number of clusters
automatically. From the existing solutions in this realm, our
test showed that the Affinity Propagation (AP) [23] algorithm
works best.

Standard AP works only on vectorial input samples and
not on multi-dimensional time series. Therefore, we compute
meaningful pairwise distances between the time series rep-
resenting the physical steps from the human gait data stream
with the Dynamic Time Warping (DTW) [24] algorithm. While
it is possible to perform clustering directly on these distances,
our tests have shown, that using the distances to learn a low-
dimensional embedding of the time series with UMAP [25],
and performing clustering on that space, leads to better results
in practice. Furthermore, comparing the clusters that are found
through this process with ground truth obtained from labeled
data sets, confirms that the clusters are in fact meaningful and
correspond to different walking patterns in the data stream.

Since, the requirements for timely predictions in online
learning still apply, it is important that the memory manage-
ment can be run independently from prediction, as to ensure
that the heavier computations of concept extraction do not
interfere with punctual inference.

B. Memory Management Approach

A schematic overview of our Memory Management (MM)
approach is visualized in Figure 1. It consists of three distinct
paths, that a newly arriving input sample is traversing during
its processing.

1) Memory Path: In the path that leads to the preservation
of historical concepts, every new input sample is first fed into
a step buffer, where all instances of the current physical step
accumulate. After the physical step is finished, the time series
representing it is given to a reservoir with a fixed maximum
size where the time series are stored. If the maximum size
of the reservoir is reached, the oldest time series is discarded
for every new one that arrives. From there, the path only
continues in specific predetermined time intervals. Whenever
such an interval is over, all time series from the current
memory are added to the reservoir, in order to ensure, that

historical concepts that have already been preserved, but are
not expressed in the reservoir at the current moment, are
not forgotten. Then, pairwise distances of all time series in
the reservoir are computed with DTW, a low-dimensional
embedding is learned based on these distances with UMAP
and clustering is performed on this embedding with AP.
Finally, based on a predetermined number, a few time series
from each cluster are extracted with a simple strategy that
aims to cover as much of the data space as possible. These
time series then form the new memory of historical concepts.

2) Sliding Window Path: The path that is responsible to
provide accurate information about the local concepts in time
is a very simple sliding window with a fixed, predetermined
size. Whenever a new input sample arrives, it is added to the
sliding window and in return, the oldest sample from that
window is discarded.

3) Prediction Path: The final path is the one that provides
the predictions of the approach. Here, every incoming sample
is forecast based on the kNN rule, where the memory of the
model is a simple union of the current contents of the historical
memory and the sliding window. Note, that predictions can be
made as soon as more than k samples have accumulated in the
sliding window. In this regard, the Prediction Path is entirely
independent from the Memory Path, which means that they
can be run in parallel and the heavier computations of memory
extraction can be distributed over the whole time interval in
which new memories are computed.

IV. DATA

To evaluate our approach, we use data from the ’Multi-
Modal Gait Database of Natural Every-Day Walk in an Urban
Environment’ (MMGD) [26]. While there is a number of
other gait databases that are publicly available (see [26]
for a comprehensive list), the MMDG is the only one that
provides long, continuous data streams that are suitable to
simulate a real world setting for human gait prediction in
a regression context. The MMDG contains data from 20
people, who completed three different walking courses with
different terrain characteristics. In this work, we concentrate
on ’CourseB’ for evaluation, which is visualized in Fig. 2 and
contains eight segments of alternating walk modes from the set
{’Level Ground Walk’, ’Slope Down’, ’Slope Up’ and ’Stairs
Up’}. All participants completed three rounds of the course,
yielding data streams with an average duration of about 10
minutes. While the database provides a wide range of data
(eye-tracking, full-body Xsens IMU and foot insoles pressure
data), we only utilize data from the six lower body IMU
sensors located at the ankles, shins and thighs as well as the
data from the pressure insoles, which is used to segment the
data stream into physical steps. Note, that this can also be
accomplished by tracking the acceleration of the lowest IMU
in forward direction, but the pressure data is more accurate.
In addition to the evaluation on ’CourseB’ we also utilize data
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Fig. 1. Overview of the Memory Management (MM) approach. The Memory Path is shown in purple, the Sliding Window Path is shown in blue, and the
Prediction Path is shown in orange. Note, that the Prediction Path is completely independent from the Memory Path and both can be run in parallel. For a
detailed description see the text in section III.

from ’CourseA’ to train the offline models that are part of the
experimental setup.

V. EXPERIMENTS

In our experiments, we investigate two things. First, we want
to see, how well state of the art offline approaches perform on
the data and then compare them to a vanilla model and our
new approach from the online domain. Afterwards, we want to
test, how and where improvements in prediction quality can
be achieved by comparing our MM approach to the vanilla
online model.

A. Models

Judging from the literature [11]–[15], the state of the art in
Human Gait Prediction consists of deep neural architectures
of various flavours that are trained in an offline manner. As a
proxy of all of these approaches, we opt for a Gated Recurrent
Unit (GRU) [27]. In a real world scenario it will never happen,
that the training data of a predictive control model comes
from the same environment as the one observed during later
deployment. We simulate this by training the offline models
only on ’CourseA’ of the database, while evaluation is done
on ’CourseB’.

Based on the findings in [20] we settle on the kNN as the
best performing representative for online learners, while the
MM approach described above is our attempt at improving
this vanilla model by solving the problem of catastrophic
forgetting.

For evaluation, we create a specific model from each model
class for every participant in the MMGD database. All model

classes are listed in Table I and are described in the following:

TABLE I
ALL MODEL CLASSES THAT ARE COMPARED IN THE EXPERIMENTS.

EXPERIMENTS ARE CONDUCTED WITH ONE INDEPENDENT MODEL FROM
EACH MODEL CLASS FOR EVERY PARTICIPANT IN THE MMGD DATABASE.

OFFLINE MODELS ARE TRAINED ON THE DATA SETS FROM ’COURSEA’.
PERSONALIZED MEANS THAT THE TRAINING SET FOR THE OFFLINE

MODEL OF ANY PARTICIPANT INCLUDED DATA FROM THAT PARTICIPANT.

Model Classes used in the Experiments
Name Type Description

GRU-NP Offline Non-Personalized Gated Recurrent Unit
GRU-P Offline Personalized Gated Recurrent Unit

kNN Online k-Nearest-Neighbours Model
MM Online Memory Management Approach

1) GRU-NP: The Non-Personalized version (NP) of the
GRU is trained on data from ’CourseA’ of all participants,
but excluding the person that the current model is created for.
The models have a hidden state of 128 units and are fed time
series of 60 data points as input. Hereby, the size of the input
series was chosen to be roughly equivalent to two physical
steps (one left and one right) in the data sets, which is the
maximum number that has any meaning for the forecasting
problem, since a different walk pattern can always appear in
the environment.

2) GRU-P: The Personalized version (P) of the GRU is
trained on data from ’CourseA’ of all participants, including
the person that the current model is created for. Otherwise,
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Fig. 2. Outline of ’CourseB’ from the Multi-Modal Gait Database. The course
starts with a ’Slope Down’ segment (1), which is followed by ’Walk’ (2),
’Slope Up’ (3), ’Walk’ (4), ’Slope Down’ (5), ’Walk’ (6), ’Stairs Up’ (7) and
finishes with a final ’Walk’ (8) segment. The data stream from CourseB for
each participant contains three consecutive rounds of the course. Image taken
from [26].

the models are identical to GRU-NP.

3) kNN: The vanilla kNN model only sees data from
’CourseB’ of the person that it is created for. The memory
size is 5000 time steps and was chosen somewhat arbitrarily
as the maximum size that would still allow computations to be
fast enough, so that the whole data stream of a person could
be processed in the time the person needed to complete the
course, on the machine that was used during the experiments.

4) MM: The MM approach also only sees data from
’CourseB’ of the person that is it created for. To make the
comparison with the vanilla kNN fair, the total memory size is
also capped at 5000 but divided into a 4000 time step sliding
window and a 1000 time step historical memory. The size of
these models also allowed for fast enough computations to
handle all participants in the necessary time frame.

B. Online vs Offline

The first experiment evaluates the GRU-NP, GRU-P, kNN
and MM models on all participants using the data from

’CourseB’. The aim is to find out, how personalization affects
the average-person models of the offline domain, how online
and offline models stack up against each other, and what kind
of impact training in a different environment than deploying
can have on performance.

Evaluation is performed by comparing the RMSE of each
model over the whole data set from ’CourseB’ for every
participant.

C. kNN vs MM

In the second experiment, we want to examine, whether
our MM approach can outperform the vanilla kNN and if the
problem of catastrophic forgetting can be avoided.

Here, evaluation is performed in a more precise way. Since,
the MM approach is designed to only be beneficial in those
few regions of the data stream, where catastrophic forgetting
would be an issue, we specifically evaluate the performance of
both models in the two regions where catastrophic forgetting
is most prevalent. In the ’CourseB’ data streams, these regions
are the change points from Segment 6 to Segment 7 (see Figure
2) of the second and third iteration of the course. Segment 7
is the only segment of the course, where participants walked
up some stairs. Since, a complete traversal of the course is
much longer than the memory sizes of our online models,
there will not be any data from Segment 7 of the previous
round be left in the sliding windows, whenever this segment
is encountered again. Thus, this change point marks the best
spot to evaluate whether our MM approach can really deliver
on what it was designed to do. To measure the performance
we take the RMSE over the first two (one left and one right)
and the first six (three left and three right) steps of Segment
7 in the second and third round of the course.

VI. RESULTS

The outcomes of experiments one and two are reported in
Table II and Table III respectively, as well as visualized in
Figures 3, 4 and 5. A detailed description and interpretation
of the results is given below.

A. Online vs Offline

The results in Table II show, that the online models out-
perform the offline domain by a definite margin. The same
information is visualized in Figures 3 and 4 (since the kNN
and MM perform so similar, we plotted them separately with
a different scale).

On the online side, the MM model beats the vanilla kNN
on every participant, but as expected, only with a very small
margin. This is due to the fact, that the internal adjustments of
the MM approach are only beneficial in those regions of the
data set that revolve around change points, and these regions
constitute only a small portion of the stream as a whole.

In the offline domain, some clear differences between Per-
sonalized and Non-Personalized models can be observed, with
Personalization taking the clear lead on every participant. This
is in line with the findings in [17] where the same behaviour
is observed in the context of Human Movement Classification.
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model class for all participants on ’CourseB’. The Non-Personalized Offline
models were trained on the data from ’CourseA’ of all participants, excluding
the one being evaluated, and are shown in blue. The Personalized Offline
models were also trained on the data from ’CourseA’ of all participants, but
including the one being evaluated, and are shown in orange. Lastly, the Online
models only saw the data of each participant being evaluated and are shown
in green.
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Fig. 4. Root-Mean-Square-Errors (RMSE) of an Online kNN model and the
Online Memory Management (MM) approach. The Online kNN is shown in
blue and the Online Memory Managemnt is shown in orange.

Another thing that strikes out, is the much higher vari-
ance that the offline models exhibit in comparison with the
online ones. This finding is most pronounced for the Non-
Personalized models which could indicate that average-person
models can run into trouble, if the characteristics of the
person for whom they are deployed differs significantly from
people that were part of the training set (e.g. in height,
weight or specific bodily impairments). However, since the
Personalized models also exhibit this phenomenon (albeit to
a lesser degree), the fact that offline models can never be
trained in the exact same environments that they are deployed
in, might also play a role.

TABLE II
ROOT-MEAN-SQUARE-ERROR (RMSE) VALUES OF TWO OFFLINE AND

TWO ONLINE MODELS FOR ALL PARTICIPANTS OF THE MMGD
DATABASE. EVALUATION IS PERFORMED ON THE FULL DATA SETS FROM

’COURSEB’ (SEE FIG. 2). THE OFFLINE MODELS COMPRISE A
PERSONALIZED (GRU-P) AND A NON-PERSONALIZED (GRU-NP)

VERSION AND ARE TRAINED ON THE FULL DATA SETS FROM ’COURSEA’.
ALL VALUES ARE AVERAGED OVER 10 INDEPENDENT RUNS. THE LAST
TWO ROWS SHOW THE MEAN AND VARIANCE OVER ALL PARTICIPANTS.

RMSEs for all Models on ’CourseB’
Offline Models Online Models

Persons GRU-NP GRU-P kNN MM
1 0.681 0.533 0.281 0.272
2 0.651 0.413 0.260 0.253
3 0.730 0.437 0.232 0.225
4 0.643 0.421 0.316 0.307
5 0.498 0.460 0.287 0.280
6 0.538 0.408 0.263 0.255
7 0.621 0.328 0.281 0.272
8 0.723 0.391 0.261 0.255
9 0.506 0.326 0.266 0.261

10 0.418 0.371 0.243 0.236
11 0.955 0.625 0.215 0.211
12 0.596 0.502 0.279 0.275
13 0.558 0.468 0.275 0.268
14 0.453 0.403 0.272 0.264
15 0.494 0.454 0.213 0.206
16 0.501 0.336 0.262 0.254
17 0.605 0.503 0.281 0.276
18 0.472 0.367 0.263 0.259
19 0.544 0.319 0.248 0.239
20 0.470 0.365 0.241 0.234

Mean 0.583 0.421 0.262 0.255
Var 0.0150 0.0057 0.00058 0.00056

B. kNN vs MM

Table III contains the outcome of the second experiment.
These results show, that the MM approach delivers signifi-
cantly better results than the vanilla kNN in those regions of
the data streams, which are most susceptible to catastrophic
forgetting. More detailed, the MM model exhibits an average
decrease in RMSE of 24.25% on the first two steps of
Segment 7 compared to the kNN. After the first six steps,
the average decrease is still 18.68%. This number continues
to go down, because with each new step taken, there is more
new information about the current concept being added to the
sliding windows.

The higher performance of MM in this region of the data
stream derives from its refined internal memory structure, of
which a snapshot from the time point directly before the start
of the second iteration of Segment 7 is visualized in Figure 5.
The plots show the content of both, the vanilla kNN sliding
window, and the union of the MM sliding window and the
historical memory. Since, the kNN memory only contains data
from Segments 6 (’walk’) and 5 (’slope down’), which directly
precede the current time step, it can not adequately react to
the upcoming Segment 7 (’stairs up’).

The bulk of the data in the MM memory is also from Seg-
ments 6 (’walk’) and 5 (’slope down’). However, in addition
to that, the approach has managed to preserve a small amount
of data, representing the concepts ’stairs up’ and ’slope up’,
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Fig. 5. Content comparison of the kNN and MM memories directly before the second iteration of Segment 7 in ’CourseB’ (see Figure 2) for Person 1. Both
plots contain the same number of points. Each point is a 2-dimensional UMAP embedding of a time series representing a full physical step. Points are colored
according to the movement patterns they belong to (The green point in the blue cluster is most likely labeled wrongly). Note, that every movement pattern
has two clusters, one for each foot. The plot on the left shows the memory of the kNN sliding window. It only contains points from the segments 6 (’walk’)
and 5 (’slope down’), which come immediately before the snapshot. The plot on the right shows the union of the MM sliding window and the historical
memory. It holds less points from Segment 5 because the sliding window is shorter, but the historical memory adds points from other previous segments, so
that data from the patterns ’slope up’ and ’stairs up’ is also available for prediction.

from the first iteration of the data stream, thus enabling it to
react to the upcoming Segment 7 (’stairs up’) in a much better
way.

VII. CONCLUSION

In this paper, we used the recently published MMGD Hu-
man Gait Database, to investigate the problem of Human Gait
Prediction in the context of predictive exoskeleton control. In
particular, we examined how the state of the art, consisting of
neural architectures that are trained in a offline way, holds up
against more agile models from the online learning domain.

We saw, that within the offline realm, Personalization to the
end user plays a large factor with regard to prediction quality, a
finding that is in line with previous research on Human Motion
Classification [17].

Furthermore, we found that overall, the simple incremental
kNN models performed much better than the much more
sophisticated GRUs from the static model classes. We attribute

this behaviour at least in part to the circumstance that the
offline models were trained on data from a slightly different
environment, which is in line with most real world deployment
scenarios.

Since, incremental approaches were shown to be beneficial
to the problem at hand, we set out to mediate their most
problematic drawback, by proposing a Memory Management
(MM) model for an incremental kNN regressor, that parlays a
dual-memory architecture into a remedy for the catastrophic
forgetting problem. In a second round of experiments we
showed, that this architecture is in fact able to improve the
predictive performance in the regions of the data streams that
are most susceptible to catastrophic forgetting by a significant
amount.

Overall, based on the findings in this work, we think that
incremental approaches should be considered for at least some
applications of Human Gait Predictions. However, when ex-
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TABLE III
ROOT-MEAN-SQUARE-ERROR (RMSE) VALUES OF AN INCREMENTAL
KNN AND OUR MEMORY MANAGEMENT (MM) APPROACH FOR ALL

PARTICIPANTS OF THE MMGD DATABASE. EVALUATION IS PERFORMED
IN TWO WAYS: ON THE FIRST 2 (1 LEFT AND 1 RIGHT) AND THE FIRST 6 (3

LEFT AND 3 RIGHT) STEPS OF SEGMENT 7 IN ’COURSEB’ (SEE FIG.
2).THE THIRD COLUMN OF EACH EVALUATION SHOWS THE DECREASE OF

THE RMSE FROM KNN TO MM IN PERCENT (%). ALL VALUES ARE
AVERAGED OVER 10 INDEPENDENT RUNS AND OVER THE SECOND AND
THIRD REPETITION OF SEGMENT 7 IN THE DATA SETS. THE LAST ROW

SHOWS THE MEAN VALUES OVER ALL PARTICIPANTS.

RMSEs for Beginning of ’CourseB’ Segment 7
First 2 Steps First 6 Steps

Persons kNN MM % kNN MM %
1 0.555 0.462 16.78 0.501 0.394 21.37
2 0.447 0.296 33.77 0.378 0.285 24.45
3 0.338 0.198 41.40 0.333 0.234 29.65
4 0.459 0.320 30.28 0.354 0.269 23.93
5 0.593 0.485 18.02 0.481 0.403 16.29
6 0.590 0.465 21.18 0.462 0.365 21.10
7 0.384 0.272 29.06 0.320 0.266 16.86
8 0.384 0.292 24.07 0.307 0.269 12.24
9 0.370 0.334 9.751 0.336 0.307 8.627
10 0.461 0.354 23.12 0.430 0.354 17.76
11 0.404 0.341 15.41 0.355 0.312 12.29
12 0.474 0.373 21.34 0.407 0.323 20.69
13 0.499 0.339 32.05 0.425 0.346 18.65
14 0.401 0.308 23.28 0.327 0.282 13.99
15 0.444 0.345 22.41 0.442 0.362 18.16
16 0.559 0.457 18.23 0.545 0.472 13.43
17 0.563 0.416 26.04 0.421 0.328 22.06
18 0.352 0.294 16.57 0.287 0.255 11.12
19 0.557 0.354 36.41 0.446 0.317 29.01
20 0.505 0.375 25.68 0.441 0.345 21.93

Mean 0.467 0.354 24.25 0.400 0.324 18.68

oskeletons are supposed to be utilized in certain rehabilitative
scenarios for example, a purely incremental approach, that
learns entirely from scratch without any prior knowledge, is
also not a feasible proposition. Therefore, some effort could
be directed into investigating how online and offline models
can be made to work together, in order to build models that
are versatile in a wide range of real world environments. The
investigation of these topics remains the subject of future work.
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