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Abstract—The quality of individuals in evolutionary algorithms
(EAs) is usually measured in terms of their fitness. If an
individual has a good fitness, a good genome is assumed. However,
a good fitness value does not guarantee that the individual can
produce good offspring and guide the algorithm towards the
global optimum. Answering the question of what makes a genome
good is not trivial, especially when considering different types
of crossover operators, copying or combining genome values.
This work aims towards answering this question by evaluating
the influence of optimal gene values in the initial population
of EAs. In computational experiments, a random population is
seeded with generated individuals of different fitness qualities and
containing different amounts of optimal genetic material. Tests
are done for multiple dimensions and with crossover operators
copying or combining the parents genes to the offspring. Data
is evaluated both in terms of algorithmic performance and
population dynamics, clearly showing the influence of optimal
gene values.

Index Terms—evolutionary algorithm, initial population, seed-
ing, optimal gene values, population dynamics

I. INTRODUCTION

Individuals in evolutionary algorithms (EAs) are represented
in two spaces, the solution space represented by the fitness
value, and the search space, represented by the genome. The
quality of an individual is usually only measured in the
form of its fitness. This makes sense for measuring the final
performance, as the fitness function is designed to measure the
quality of the phenotype for a problem. However, individuals
in EAs do not only represent the solutions found by the
algorithm at any given time, but also build the base for the
ongoing search with the goal of finding the global optimum.
This is especially true for the initial population, which is the
starting point for each EA. It contains the genetic material
which will be recombined through crossover and mutated until
the termination criterion is met.

The question ”what makes a genome good” is not triv-
ial to answer. In previous works, the traceable evolutionary
algorithm (T-EA) was developed to evaluate the population
dynamics of EAs [1]. A first evaluation on the combinatorial
Knapsack problem showed the best fitness individuals to not
always feature the highest influence on the result [1]. Later
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extensions to the T-EA showed the same for continuous [2]
and multi-objective cases [3]. This raises the question of what
is a good genome at the beginning of the evolutionary process.

This paper starts towards this by evaluating the effect of
seeding the initial population in EAs with different types of
genome configurations. Individuals featuring optimal genetic
material but a few ”bad” genes far off their optimal value will
be compared to individuals where each gene is roughly the
same distance to their respective optimum. What configuration
will be better is not trivial, especially when considering
different crossover operators. For operators which are designed
to (partially) copy the genome values directly from the parents
to the offspring, such as uniform crossover (UX) [4], it is
intuitively better to have the already optimal genetic material.
However, for crossover operators that combine two genome
values, like the popular simulated binary crossover [5], this
is different. As the operator combines the genome of both
parents, it might be more desirable for all genes to be close to
their respective optimal value. Furthermore, if an individual
already has a good fitness, a good genome is assumed.
However, it is unclear if the algorithm can take advantage
of good genome values seeded into a bad fitness individual.

To answer these questions, this paper studies the effects
of seeding the initial population with individuals featuring
different genome distributions in computational experiments.
To achieve this, individuals with different amounts of optimal
genetic material need to be generated by solving the bench-
marking function for a specific target fitness. The experiments
are performed on a genetic algorithm (GA) featuring both the
genome copying UX [4] and the genome combining SBX [5]
operators in multiple dimensions. Evaluation of the results is
done both in terms of performance gains of the algorithm, and
in terms of population dynamics in the search space. With
this, we can directly link performance enhancements to the
seeded individuals. The results clearly show the differences in
performance and population dynamics when including optimal
genes in the initial population.

II. THEORETICAL BACKGROUND

Initialization techniques for EAs have been studied in the
past, for example in terms of seeding the algorithm with
specific solutions [6], [7]. Other, more general approaches
use gap search [8] or quasi-random sequences [9] to sample
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higher dimensional spaces more evenly. This includes the
well-known Latin hypercube sampling [10]. However, the
results are often evaluated only in terms of performance gains,
like accuracy and convergence speed, and not in terms of
population dynamics. This leaves a knowledge gap for why
some genome values produced for the initial population work
better than others.

In general, the field of evaluating population dynamics in
EAs has been gaining interest in the past years. Early attempts
use dimensionality reduction techniques to visualize the behav-
ior of EAs in the otherwise large dimensional search space in a
humanly understandable way [11], [12]. More recently, Ochoa
et. al. introduced the concept of search trajectory networks
[13], visualizing the path of a population in the search space
as a network-based model. This allows to evaluate how well
the algorithms traverse through the search space, showing
the frequently visited areas and deceptive points where the
algorithm gets stuck.

In this paper, the population dynamics are evaluated with the
genome heritage tracking approach of the T-EA [2]. The T-EA
was developed for combinatorial and integer representations
in [1] and later extended to real-valued problems in [2]. In
the T-EA, each gene in the initial population is initialized
with a traceID. In practical terms, the traceID is a marker
for a specific gene, which points back to the individual in the
initial population, where the gene was originated. Updating
the traceIDs alongside the genome in the crossover operation
allows for tracking the origin of a gene throughout the EA.
The influence of the mutation operator can also be tracked by
assigning a dedicated traceID for mutations.

With this heritage information, the influence of individuals
from the initial population can be calculated. In [2], the
counting impact metric is used to calculate the impact I(x)
of an individual x on the result. The impact is calculated by
counting the amount of genetic material found for a specific
individual. If an individual has a high impact on the result,
a high amount of genetic material was found in the final
population. If the individual had no impact on the result
(I(x) = 0), no genetic material of it was found.

III. GENERATING THE SEED INDIVIDUALS

To investigate the effect of optimal genes in individuals
on the population dynamics and performance of EAs, seed
individuals of the same fitness need to be generated to com-
pare their performance. For this, the benchmarking function
needs to be solved for a given genome. In this paper, the
sphere function (Equation 1) is used, as it allows for an easy
calculation of the genome from a given fitness. Furthermore, it
does not have locally optimal solutions, meaning the genome
of two individuals with the same fitness will also have the
same distance to the optimum in the search space. The
genome of an individual with the genome size n is notated
as x = [x1, x2, ..., nn].

f(x) =

n∑
i=1

x2
i (1)

The optimal solution for the sphere function is known as
xi = 0 ∀i ∈ n. This means the number of optimal genes in
a genome can be altered by setting them to zero. Assuming a
genome size of n, of which o genes are optimal, the value of
the r remaining genes for a given target fitness ftarget can be
calculated systematically with Equation 2.

xi =

√
ftarget

r
,∀i ∈ r (2)

The individual of a given target fitness can then be con-
structed by calculating the first r genes with Equation 2 and
setting the remaining o genes to zero. As an example, the value
of the not optimal gene for an individual with the target fitness
of ftarget = 2 and two not optimal genes (r = 2) would be√
2/2 = 1, resulting in the genome x = [1, 1, 0, 0]. The same

example with three optimal genes would result in the genome
x = [1.414, 0, 0, 0].

This means that individuals which have a high number of
optimal genes feature a few genes that are very far away from
their optimal value, dragging down the fitness of the otherwise
good individual. This might be desirable for crossover oper-
ators which copy the genome values directly from the parent
to the offspring, as the already optimal value is kept. If no
genes are optimal, the distance of each gene to their respective
optimal value is lower. In theory, this might be more desirable
for crossover operators that combine genome values instead
of copying them. However, the evaluation in section V shows
a different result.

IV. EXPERIMENTAL SETUP

To test the differences in the amount of optimal genes in an
individual, the performance when seeding the algorithm with
selected individuals is compared. For this, four types of seed
individuals of the same fitness are used, with 75%, 50%, 25%,
and 0% of optimal genes. In this way, it can be examined if
it is more desirable to have a few bad genes in an otherwise
optimal genome, or if it is better for no genes to be optimal
but each gene individually being closer to its optimal value.

Tests are repeated in four different dimensions d =
[4, 8, 16, 32]. For each dimension, an initial population with
the size of 19 is generated, resulting in a size of 20 when
adding the seed individual. The same initial population is used
for each dimension to keep the impact data comparable.

The seed individuals are generated for four different fitness
levels, depending on the initial population used for each
dimension. First, the seed is generated as the best individual in
the population, having half the fitness value of the otherwise
best individual. The other seed individuals are also generated
based on the fitness of the initial population, with the fitness
being the upper quartile, median and lower quartile. This way,
we can see the influence of optimal genes when they are found
in different fitness levels of the population.

The sphere function (Equation 1) is used as a test function,
with the bounds of xupper = 5 and xlower = −5.

All experiments are done using the pymoo [14] framework.
The standard implementation of the genetic algorithm (GA)
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is used. Tournament selection with a tournament size of 2
selects parents for recombination. Survival is done with a
fitness selection, which in practical terms selects the best
performing individuals to survive to the next generation. Two
crossover operators are used, uniform crossover (UX) [4] for
gene copying crossover and simulated-binary crossover (SBX)
[5] (η = 20) as the gene combining crossover operator. Poly-
nomial mutation (PM) [15] is used as the mutation operator
with η = 20 and a mutation probability of 1/dimension. Each
test was done over 50 generations and each configuration was
repeated 31 times.

V. RESULTS

Evaluating the results, first a single test case is shown in
more detail, followed by the accumulated results over all
dimensions and the different seed fitness levels.

A. Single Configuration in more Detail

Starting the evaluation, the results of a single configuration
are discussed in more detail as a case study for a better
understanding of the underlying population dynamics for the
later plots. The data shown was generated from a test in
dimension 8 using the UX operator. The fitness of the seed
individual was chosen as the median fitness of the population.
Four seed individuals were used, featuring 0 %, 25 %, 50 %,
and 75 % of optimal genes in their genome.

First, Figure 1 shows a comparison of the median of the best
result found in the 31 test runs for the four seeds. It can be
seen that with a larger amount of optimal genetic material (50
% and 75 %), a faster convergence and better average fitness
is achieved. However, overall the results between the 0 % and
25 % seeds as well as the results for the 50 % and 75 % seeds
are fairly close and do not always meet these expectations, for
example between the generations 30 and 40.

Figure 2 shows the impact for the traceID of each individual
from the initial population, the seed individual and the muta-
tion operator. It is clearly visible that increased amounts of
optimal genetic material also lead to a larger influence on the
result. The seed individual with no optimal genetic material
did not show any influence on the result, even though its fitness
was the same. While the performance data was still fairly
close, the population dynamics changed more dramatically
when introducing optimal genetic material.

Finally, Figure 3 shows the fitness of each individual in the
initial population used for the test in this section. Furthermore,
the median fitness of the seed individual is marked as a line.
Comparing this data to the final impact data in Figure 2, no real
correlation between the fitness of an initial individual and their
influence on the result can be found. Individual 13, which has
the best fitness of the population, does not show a particularly
high influence on the result. On the other hand, the individuals
16 and 18 both show the highest influences (besides the seed
individual), with a considerably worse fitness than the median
of the population. This is in line with the before mentioned
evaluations in [1] and [2] and again shows the importance of
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Fig. 1. Median fitness values of test in dimension 8 with a seed of median
quality.
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Fig. 2. Impact values in the final generation for the median quality seed
individual in dimension 8.
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Fig. 3. Fitness values of the initial population for the dimension 8. The line
is showing the median fitness.

studying the effects of the genome in more detail to better
understand the search behavior of EAs.
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Fig. 4. Fitness data of the upper quartile seed individuals over multiple dimensions. The top row shoes the results using the genome combining SBX, the
bottom row the results for the gene copying UX.
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Fig. 5. Impact data of the upper quartile seed individuals over multiple dimensions. Impact values for the individuals in the initial population are accumulated.
The top row shoes the results using the genome combining SBX, the bottom row the results for the gene copying UX.

B. Percentage of Optimal Genes

Evaluating the effects of different amounts of optimal genes
in a seed individual on a broader scale, test data for multiple
dimensions and different crossover operators are compared.

Figure 4 shows the minimum (best) fitness values in the final
generation of the lower quartile seed as a box plot. The top row
shows the results of the SBX (combining) and the bottom row
the results for the UX (copying) crossover operators. For the
higher dimensions, it can clearly be seen that the performance
of the algorithm improves with more optimal genes. This is
true both for the combining and copying crossover operators,
and can also be seen for the lower dimensions. However,
in lower dimensions the performance is more equal as the
algorithm has already converged more to the optimum value.
The positive influence of the optimal genetic material can
clearly be seen, as the fitness of the seed individuals as well

as the general distance to the optimal genome is the same.

Evaluating the impact data clearly attributes this effect to the
seed individual. Figure 5 shows the impact of the seed, initial
population and mutation operator. Again, the data is shown as
a box plot with the rows representing the different dimensions
and the columns the crossover operator used. Similar to the
performance plot, we can see that seed individuals with a
higher percentage of optimal genes contribute more to the
final result than with a lower percentage. As all seeds in
this test have the same fitness, their selection for offspring
creation is equal, so the higher influence can be linked to
the optimal genes performing better in crossover. This is to
be expected for the gene copying crossover, as it keeps the
already optimal genome value. However, this is also true
for the gene combining SBX. When the genomes of two
individuals values are combined, one could assume that each
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Fig. 6. Fitness data of the different seed individual configurations for dimension 8. Each column shows a different seed fitness. The top row shoes the results
using the genome combining SBX, the bottom row the results for the gene copying UX.
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Fig. 7. Impact data of the different seed individual configurations for dimension 8. Each column shows a different seed fitness. Impact values for the individuals
in the initial population are accumulated. The top row shoes the results using the genome combining SBX, the bottom row the results for the gene copying
UX.

gene individually being closer to the optimum would lead to
a better performance, but this is not the case.

The results overall clearly show optimal genome values
to be beneficial to the performance of an algorithm. This is
supported by the evaluation of the heritage information, as
more genetic material of seeds with more optimal genes were
found in the result. Furthermore, this holds true for both the
gene combining and copying crossover operators and can be
seen across all different dimensions.

C. Optimal Genes and Fitness

While the previous evaluation already shows that a higher
percentage of optimal genes is beneficial, the fitness of the
seed individual was kept as the median of the initial population
used. The following experiments are varying the fitness to
evaluate its effect on the performance gains and population
dynamics for better and worse individuals.

The fitness of the seed individuals is, as described in Section
IV, derived from the initial population. First the seed is
constructed as the best individual of the population (half of
the otherwise best individual in the population). Furthermore,

the lower quartile, median, and upper quartile are used as
fitness points. This way, we hope to capture a very good, good,
medium and bad individual. As the previous tests already
showed very similar results across different dimensions, this
section focuses on the results dimension 8.

Figure 6 shows the performance results of the tests in terms
of the best fitness found in the last generation. The columns
again show the different crossover operators used, the rows
this time show the different qualities of seed individuals. The
corresponding impact data of the different seed individuals can
be seen in Figure 7.

The effects observed in the previous Section V-C are again
found here. The performance data in Figure 6 clearly shows the
performance gains for including optimal fitness individuals.
However, these gains shrink with a worse fitness from the seed
individual. There are two possible reasons for this. On the one
hand, as the algorithm uses tournament selection for offspring
creation, meaning the optimal genetic material is less likely to
be chosen. On the other hand, it is also possible that the very
bad genes do not produce good offspring, even if some parts
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of the genome are already optimal. This is supported by the
impact data in Figure 7. It can clearly be observed that the
influence of the seed individual is going down with a worse
fitness.

Interestingly, for the median and upper quartile seeds with
25 % and 50 % of optimal genes, performance for SBX is
worse than no optimal genetic material (Figure 6). However,
the impact data (Figure 7) shows that the influence of indi-
viduals is still increasing with the amount of optimal genetic
material. Performance for the UX operator, on the other hand,
still improves with the higher amount of optimal genetic
material. This also indicates other influences on the population
dynamics, as already observed in the case study of the single
test configuration.

VI. CONCLUSION AND FUTURE WORK

This paper investigates the effects of optimal genetic mate-
rial in the initial population of EAs, aiming towards better
understanding the role of the genome in the evolutionary
process. For this, experiments were designed seeding a ran-
domly generated population with pre-computed individuals,
containing different amounts of optimal genetic material. This
results in the comparison of two types of genomes. First,
genomes containing optimal genetic material but also ”bad”
genes dragging down the fitness. Secondly, genomes in which
all genes are mediocre. The evaluation was done using the
sphere function for multiple dimensions. Furthermore, the
effects of different crossover operators, which combine or copy
the genome values, were assessed. Results were evaluated both
in terms of performance and population dynamics, using the
T-EA [2] to compute the influence of the seed individual on
the result.

The evaluation clearly shows the benefits of including
optimal genetic material. Increasing the number of optimal
genes in a genome resulted in a better performance of the
algorithm in most tests. Analyzing the heritage data clearly
links these performance gains to the optimal genetic material.
This is an interesting consideration when solving real-world
problems, seeding the initial population with problem knowl-
edge. However, it could also be shown that optimal genetic
material in individuals with a bad fitness has little effect, as
the individuals are less likely to be chosen for reproduction.
Finally, both the gene copying crossover operator (UX [4])
and the gene combining crossover operator (SBX [5]) did
show the mentioned effects. While this may seem trivial for
operators only copying the gene values, it is interesting to
see that the same effects are also found when combining the
genome values.

While this work clearly shows the benefits in performance
and effects on the population dynamics when including opti-
mal genetic material, it can only be seen as a starting point
towards a more profound understanding of the genome in EAs.
Tests are only done using the sphere function. One challenge
in this research is creating the seed individuals from a given
fitness, which is not trivial for other test problems. However, in
future works it will be necessary to evaluate a larger variety

of benchmarks with more diverse fitness landscapes. Using
the sphere function also means the generated seed individuals
all feature the same distance to the optimal genome. While it
can be seen as beneficial to remove this as a variable in the
evaluation of this paper, future work should study this effect.
Finally, this paper only focuses on including optimal genome
values. However, the quality of the genome in an EA can not
only be measured in the percentage of already optimal genes.
In future works, other aspects of what makes a genome good
need to be identified and studied, for example the effects of
near optimal or local optimal solutions on the result.
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