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Abstract—Self-Driving Automata (SDAs) are variations on finite
automata that both read and output symbols. They are versatile
and practical when used for the generation of data for a variety of
problems. In this study, we examine several questions regarding
their operation, using sequence matching as a test problem in the
analysis. We present a new mutation operator and four dynamic
mutation adjusters. We analyze these, along with crossover, for
their ability to solve the problem and their relative ability
to improve the population; in all of these, we also examine
population diversity over time. We find that using mutation
that implements a static quantity of changes outperforms one
with dynamic changes. Further, while population diversity does
decrease somewhat, evolution is still possible.

I. INTRODUCTION

A self-driving automaton (SDA) is a recently-introduced
construct capable of generating data. SDAs are variations of
finite state automata, such that when it reads symbols transi-
tions occur from one state to another, with each generating
response symbol(s). These response symbols are not just fed
back into the automaton as the subsequent input but also the
output. In this manner, the SDA generates an infinite series of
characters usable as data for numerous problems. In conjunc-
tion with evolutionary algorithms, SDAs have been applied
to generating biological sequences [4], contact networks for
epidemic modelling [1] [6] [7], and dungeon-level maps for
games [5]. In each case, the fitness of a given SDA relates
to how well the data it generates satisfies the given problem-
specific conditions. In all problems considered to date, SDAs
demonstrated an ability to be versatile and practical constructs
producing high fitness results. However, because they are so
new, many questions exist concerning the genetic operators
and their effect on evolution and population diversity.

To explore these questions we will be using sequence
matching as a test problem in this paper. Alone, this is a step-
ping stone towards investigating the ability to use SDAs and
evolutionary algorithms to discover potential patterns in a class
of proteins known as dehydrins, stress proteins in plants that
play a crucial role in surviving conditions which can lead to
dehydration [4] [17]. Gaining a better understanding of SDAs
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is necessary to achieve this grander goal, and also helps to
inform research on other problems. This involves investigating
the dynamics of a population of SDAs undergoing evolution.

To develop this knowledge we use an evolutionary algorithm
to evolve SDAs, investigating a new crossover operator and
two types of mutation that incorporate both static and several
dynamic mutation adjusters. We analyze the distribution of po-
tential fitness values of the children compared to their parents,
and examine the population diversity throughout evolution.

II. BACKGROUND

A. Self-Driving Automata (SDAs)

SDAs are modified finite state machines [8] that are inspired
by Kolakoski sequences [9] and use the Mealy architecture for
transitions between states [14]. The number of symbols in the
alphabet determines both the number of output symbols and
the number of transitions emanating from each state, each of
which points to another state or itself. Each symbol of output
is also added to an input queue which drives future transitions,
necessitating congruence between the size of the alphabet
and the number of transitions from each state because each
transition is triggered by one of the symbols in the alphabet.

Each SDA has an initial state S0 and an initial symbol c0
that triggers the first transition; this initiates the generation of
output. Each transition has a response of length one or two,
with equal probability, comprised of symbols in the alphabet.
Since a single symbol triggers a transition, and responses
are one or two symbols, the SDA can generate characters
indefinitely, for further details see [4]. An SDA can be used as
the representation in an evolutionary algorithm so long as one
can convert a series of symbols (i.e. as will be generated by
the SDA) into a solution to the problem under investigation.

The test problem utilized for the current study is sequence
matching, meaning output from the SDAs is compared to a
given target sequence. For SDAs, crossover entails exchanging,
between two parents, the transitions and responses associated
with a set of states, while mutation randomly modifies the
transitions and/or responses of one or more states. The specific
crossover and mutation operators analyzed in this study are
described in detail in Section III.

While previous work on evolving SDAs for various prob-
lems is mentioned in Section I, we now briefly mention some
related research into evolving similar structures. In [11] [12]
evolutionary algorithms were used to evolve finite automata
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using a fitness measure based on the proportion of correctly-
classified strings. Evolutionary algorithms that incorporated
testing, validation, and verification were applied in [19] to
evolve finite state machines’ ability to control elevator doors.
In [3], evolutionary algorithms evolved finite state classifiers
to classify polymerase chain reaction primers. Used to evolve
finite state machines for the Tartarus problem, the evolutionary
algorithm in [16] adapted the mutation rate during evolution;
in the current study we also adapt mutation using different
methods (see Section III-B).

B. Test Problem and Analysis

For our analysis, we use sequence matching as a test
problem. The goal is to generate a sequence S that matches,
as closely as possible, a given target sequence T , where S and
T have the same length n. A description of the problem is in
[4], in which it was used for matching DNA sequences. In
this paper we use the first two sequences from [4], shown in
Figure 1. Future analysis should include additional sequences.
The fitness function, Algorithm 1, is based on maximizing
the number of matches, symbol-by-symbol; a perfect match
between S and T has fitness equal to n.

Algorithm 1 Sequence Matching Fitness

function SEQUENCEMATCHES(S, T )
m← 0
for i = 1 to n do

if S[i] = T [i] then
m← m+ 1

return m

We examine several aspects in our analysis of the evolution-
ary algorithm used to evolve SDAs for sequence matching.
With the states, transitions, and responses of an SDA all
intrinsically linked, it is vital to examine how exchanging
information between two SDAs may or may not create im-
provements. For example, [2] shows a situation in which
crossover was routinely destructive, with a mutation-only
strategy being far more effective. We also analyze multiple
varieties of mutation and ascertain which operators tend to
lead to the most improvement. In all of this, we also study
the diversity of the population, which has long been known as
crucial in helping to prevent premature convergence [13] [18].

We note that the fitness function for sequence matching
is directly related to the output of the SDA, allowing for
close evaluation of the SDA and genetic operators. In some
applications, the fitness functions may have a much less direct
relationship, thus requiring further analysis.

III. METHODOLOGY

The steady-state evolutionary algorithm starts by randomly
generating an initial population of SDAs having Ns = 20
states. The population undergoes a maximum of 10 mil-
lion mating events with a statistical output generated every
10 000 mating events (the reporting interval). Each mating
event involves selection, crossover, and mutation. Evolution

terminates when the best population fitness value does not
improve for 50 reporting intervals. The experiment repeats for
a total of 50 runs. Size-seven tournament selection is used;
randomly selecting seven SDAs then sorting them according
to their fitness. The two with the best fitness are copied as
children. Next, the copies have a 50% chance of undergoing
crossover (see Section III-A), followed by a 100% chance of
mutation (see Section III-B), with one exception: if crossover
improves fitness over the current population’s best fitness and
then applying mutation would worsen fitness then mutation is
not applied. Following this step, the children replace the two
members of the tournament with the lowest fitness.

To increase the diversity of the population, we use culling as
follows: every CF reporting intervals, CR% of the population
is discarded and randomly regenerated. Culling was shown to
improve results in [4], with the best results achieved through
random culling of CR = 25% of the population every CF = 4
reporting intervals. For our experiments, we use a culling rate
of CR = 25%, while testing both CF = 1 and CF = 5.

A. Crossover

Two-point crossover on two SDAs starts by randomly se-
lecting two distinct crossover points cp1 and cp2 in the interval
[0, Ns − 1]. All transitions and responses within the interval
[cp1, cp2] are swapped between the SDAs; if cp1 = 0 then
the initial characters of the SDAs are swapped. In one-state
crossover, a state is randomly selected, and the two SDAs swap
transitions and responses for this state. Preliminary investi-
gation compared these two forms of crossover, and multiple
crossover rates. As no significant difference was observed in
these investigations, we selected two-point crossover with a
crossover rate of 50% for all further experiments.

B. Mutation

Previously in [4] a program parameter M specified the
maximum number of mutations, and a single mutation operator
was used which was applied m ∈ [1,M ] times on the two
children produced from a crossover event, using a uniform
distribution to determine m. Each application of mutation
would either re-select the SDA’s initial symbol c0, randomly
re-assign one transition, or randomly regenerate one response.

In the current work each mutation step begins with a 10%
chance of changing the initial symbol, then mt transition muta-
tions and mr response mutations. We performed a preliminary
investigation of mutation rates of 50% and 100%; as 100%
yielded better results this was used for all further experiments.

The values of mt and mr are given as input parameters.
These either remain static during the program’s lifetime, or are
adjusted dynamically during evolution. Four different dynamic
versions are defined based on methods d1, d2, d3, and d4 that
all adjust mt and mr at the end of each reporting interval.
For all adjusters, mt and mr are restricted to the range
[0, 50]. Method d1 simultaneously raises mt by one and lowers
mr by one. Method d2 mirrors d1, instead lowering mt by
one and raising mr by one. Method d3 compares the best
fitness between the previous and current report; if there is
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ID Length Sequence
0 57 ATGGGACGCAAGGACGAGCAGAAGCAAACGAGCGCCACAAGCACGCCGGGGCAGGGG
1 87 GGAAGTAAGGATAAGGACAAGGAGGAACACAAGGAAACCACCACCACCACCGCCACCGCCACGGCGGAAGAATCCCACCACGAACAC

Fig. 1: Target sequences used for sequence matching (see [4]).

no improvement then mt and mr both increase by two, else
both decrease by two. Finally, method d4 increases both mt

and mr by the number of reporting intervals since the last
improvement in the population’s best fitness; if improvement
occurs, then mt and mr are reset to their initial values.

C. Investigation into Effect of Genetic Operators

In [4] two population sizes were examined, with a popu-
lation of 500 SDAs producing the best results. In the current
work we again use a population size of 500. To allow investi-
gation into the effect of the crossover and mutation operators
throughout evolution, we also use a smaller population size
of 50 as follows. For crossover, every SDA was paired with
every other SDA in the population and then underwent 100
two-point crossover events on separate copies of these parents.
This resulted in 9800 children for every member of the
population, with the distribution of fitness assigned to these
children providing a picture of the potential outcomes from
the crossover operator. A similar investigation for mutation
was conducted, in which 100 copies of each SDA underwent
one application of mutation. This test was performed at the
start and end of evolution and every 500 000 mating events.

D. Experiments Performed

Table I shows all parameter settings, with all combinations
tested as separate experiments to determine which configura-
tion produced the best results. The justification for the selec-
tion of these parameters is explained above, with the exception
of the initial number of transition and response mutations (mt

and mr), the tournament size, and the number of states Ns.
As explained in Section III-B, in [4] the maximum number of
mutations was set to M , with 3 ≤M ≤ 10 typically producing
the best results. Now using the new mutation operator, values
of two and four were used for both mt and mr. In [4] several
tournament sizes were tested, with negligible differences in
results and so only tournament size-seven is used here. The
number of states is 20, as this achieved the best results in [4].

TABLE I: Parameter settings

Parameter Values Tested
Population Size 50, 500
Crossover Rate 50%

Crossover Operator 2-point crossover
Mutation Rate 100%

Mutation Static, d1, d2, d3, d4
Culling Rate CR Random 25%

Culling Frequency CF (Reporting Intervals) 1, 5
Initial # Transitions Mutations mt 2, 4
Initial # Response Mutations mr 2, 4

Tournament Size 7
# SDA States Ns 20

IV. RESULTS AND DISCUSSION

Box plots for the performance of the evolutionary algorithm
are shown in Figure 2, for both sequences and both population
sizes. Most glaring is the difference in performance between
the static and dynamic mutation methods. It appears that a
static quantity of each type of mutation produces better results
than any of the dynamic adjusters tested in this paper; we
note that it is likely that the range of allowed mutations (50)
is too large in the dynamic methods, so this needs further
investigation. For the static results there is a slight preference
for more frequent culling of the population whereas when
dynamic mutation is used there is a preference for less frequent
culling; this is stark for d1, d2, and d3. A change in culling
frequency has more impact on fitness when the population is
larger. For the static form of mutation, there is a slight negative
trend as the number of mutations (of either type) increases;
furthermore, no preference for transition or response mutation
is demonstrated. For sequence 0 the smaller population size
achieves the best results while for sequence 1 (which is
longer), the larger population produces better results. Overall
the spread of fitness values is larger when the population size
is larger.

A. Investigation into Effect of Crossover

The results from the investigation into the crossover operator
described in Section III-C are provided in Figure 3. Before
evolution, the majority of fitness values occupy the same low
range and it is common for children to have better fitness than
their parents. This indicates that growth is possible through the
exploitation of these parents. Conversely, parents with better
fitness tend to produce children with worse fitness, indicating
they could benefit from greater exploration. After 2 500 000
mating events the distributions once again mostly overlap and
obey the same pattern depending on the parent’s relative fitness
to the rest of the population. However, more-fit parents rarely
produce children with better fitness. This indicates that the
parents with the population best fitness would likely benefit
from an increased amount of exploration. Whereas, those with
worse fitness are still benefiting from exploitation.

B. Investigation into Effect of Mutation

Recall that every SDA (in this analysis, called the “parent”)
is copied 100 times and each copy undergoes a single mutation
to create 100 SDAs called the “children” in this analysis.
Details on the effect of mutation are shown in Figure 3. In
the initial population the violins encompass the fitness of the
parent with some children performing better and others worse.
Thus, mutation is able to improve fitness, although the more
fit parents are more likely to have children with worse fitness,
and vice-versa. For most parents many of their children have

1394



Fig. 2: Box plots of the best fitness from the 50 runs for each
experiment using the specified population size and sequence.
Each experiment is listed along the x-axis with its associ-
ated parameter settings for the initial number of transition
mutations, initial number of response mutations, whether the
number of mutations is static or dynamic, and the number of
reporting intervals between cullings.

the same fitness as they do. Later in evolution, the majority
of the population has fitness equal to the population best
fitness. For these experiments most of the children have a
significantly worse fitness than their parents while a few retain
the same or slightly worse fitness. No mutations result in
children achieving a better fitness than the population best.
For the SDAs with fitness below the population best, the
violins are nearly identical in shape to those before evolution.
Examining the average child fitness minus the parent’s fitness
it is observable that generally the child’s average fitness was
significantly worse than the parent’s fitness, with some outliers
having the child’s fitness being slightly better.

C. Genetic Operators and Convergence

To investigate how fitness changes over time we examine
two convergence plots. First, consider Figure 4a, correspond-
ing to experiment 10 with population size 50 for sequence 0,
one of the best-performing experiments. Each improvement
in population best fitness is depicted, and reveals that the
vast majority of improvement is attained during the initial
10 000 mating events, and largely a result of mutation. The
emphasis on mutation remains for the rest of evolution while
crossover still improves fitness a few times. Overall there are
only 33 improvements over the 1 680 000 mating events that
occur, meaning the likelihood of a given crossover or mutation
operation improving fitness is extremely rare. Now consider
Figure 4b, corresponding to experiment 8 with a population of
size 50 for sequence 0, an experiment with mediocre results.
This experiment uses dynamic mutation method d4 and is
emblematic of the effect all dynamic methods have on the
overall population: the mutation operator becomes destructive,
lowering the mean population fitness once the number of
mutations approaches 50; which should be considered in future
work. Most convergence plots show a decisive preference for
mutation and are similar to those provided here. To investigate
this preference the best experiment from each box plot in
Figure 2 was repeated without crossover and again without
mutation. Using only mutation yielded fitness of 48.6 ± 1.1,
47.5 ± 1.0, 65.7 ± 1.6, and 64.1 ± 2.0, respectively. Only
crossover yielded fitness of 25.9± 0.5, 28.5± 0.5, 35.3± 0.6,
and 41.3 ± 0.7. Mutation alone was similar to the best
experiments in each box plot while crossover drastically under-
performed, hence the preference seen in the convergence plots.

D. Population Diversity

The above investigations indicate that shortly after the start
of evolution much of the population coalesces to the popula-
tion best fitness. To investigate how similar the SDAs are to
each other, we generate heatmaps of the population that show
the concentration of transitions and corresponding triggering
symbols shared among the members of the population at
given points of evolution. Figure 5 shows the heatmaps for
experiment 9 with population size 50 for sequence 0.

Before evolution begins (Figure 5a) the majority of the
transitions and driving symbols are diverse, as few SDAs in
the population share the same connections. In fact no more
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Fig. 3: Violin graphs depicting fitness of children generated by the crossover and mutation investigations explained in Section
III for the best run of experiment 9 with a population size of 50 with sequence 0 before evolution and after 250 000 mating
events. This was the experiment leading to the best overall fitness for this sequence.

(a) Experiment 10 (Static with CE = 5)

(b) Experiment 8 (Dynamic4 with CE = 5)

Fig. 4: Convergence graphs depicting best and mean pop-
ulation fitness of the best run for the indicated experiment
with population size 50 using sequence 0. Every improvement
in fitness is indicated by the operator that improved it. The
vertical lines represent when cullings take place.

than 8 SDAs observed share a particular connection and there
is an adequate distribution of associations between the states
and transition-driving symbols in the population. After 1 500
000 mating events (Figure 5b), some significant changes to the
heatmap are observed. Most noticeably, the shared connections
have increased, as now all population members have several
transitions and triggering-symbols shared between them. Ad-
ditionally, many potential transitions within the population do
not exist, thus the diversity has decreased. Finally, the heat
map after 2 500 000 mating events (Figure 5c) shows a similar
pattern in the distribution and concentration of transitions and
triggering-symbols. However, note that in this heatmap, several
of the concentrations of connections have changed position
in comparison to Figure 5b while others remain in the same
location. This indicates that the population is still evolving.

V. CONCLUSIONS AND FUTURE WORK

In this paper we examined several questions regarding
evolution of SDAs, using sequence matching as a test problem.
It was revealed that using the static mutation method provided
better results than dynamically adjusting values, whose upper
bounds proved too high for the scenarios examined. Also, less
frequent culling events tended to produce better results, with
culling having a greater effect on larger populations. Further
investigation of the crossover and mutation operators revealed
both can be destructive, especially for parents having the best
fitness. However, SDAs with worse fitness see improved fitness
in some children. It was observed that most improvements
occurred in the first 10 000 mating events, predominantly
from mutations, with crossover contributing less frequently
to overall gains. In fact, forgoing crossover entirely yields
similar results to when both are used. Finally, the investigation
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(a) Initial Population (b) After 1 500 000 Mating Events (c) After 2 500 000 Mating Events

Fig. 5: Heatmaps depicting the frequency of transitions between states and the symbol driving these transitions for the population
of 50 SDAs at the indicated point of evolution for experiment 9 with population size 50 with sequence 0 in Figure 2.

into the population’s diversity revealed that before any mating
events occur, great diversity is present in the population.
As evolution progresses diversity decreases, but importantly,
transitions within the population still change over time.

Evolutionary algorithms using SDAs as a representation
have been applied to many problems, although the use of an
alphabet larger than two was introduced only recently. This
study provided some valuable information as to the underlying
dynamics influencing the evolution of SDAs, which can now
be employed in attacking problems mentioned in Section I,
and others. This serves as only the start of the investigation.
The dynamic methods used in mutation would likely perform
better with a smaller lower bound, and this should be tested.
Further it may be useful to reduce how quickly the numbers of
mutations increase. Investigating how the modifications used
in this work affect fitness of different problems would also
provide more insight into the underlying evolution of SDAs.

Investigating the distribution of all possible children gener-
ated by two parents was planned to be part of this study but
excluded due to page constraints. This can give a better under-
standing of potential diversity within the population, and could
be a restraint introduced in future work. The introduction of
multiple populations which evolve concurrently and reproduce
with one another sparingly could be another means to increase
overall population diversity. A further possible avenue would
be to include such concepts as Novelty Search [10] and MAP-
Elites [15], which attack this head-on by differently focusing
the search to ensure novelty and to “illuminate” regions of the
feature space, respectively.
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