
Search of Highly Selective Cells in Convolutional
Layers with Hebbian Learning

Fernando Aguilar-Canto
Computational Cognitive Sciences Laboratory-CIC

Instituto Politécnico Nacional
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Abstract—Deep Convolutional Neural Networks (ConvNets)
have demonstrated successful implementations in various vision
tasks, including image classification, segmentation, and image
captioning. Despite their achievements, concerns persist regard-
ing the explainability of these models, often referred to as black-
box classifiers. While some interpretability papers suggest the
existence of object detectors in ConvNets, others refute this
notion. In this paper, we address the challenge of identifying
such neurons by utilizing Hebbian learning to discover the
most associated neurons for a given stimulus. Our method
focuses on the VGG19 and ResNet50 networks with the Dogs-
vs-Cats dataset. During experimentation, we found that the most
associated hidden neurons to the labels are not object detectors.
Instead, they seem to encode relevant aspects of the category.
By shedding light on these findings, we aim to improve the
understanding and interpretability of deep ConvNets for future
advancements in the field of computer vision.

Index Terms—Interpretability, Convolutional Neural Net-
works, Hidden Semantics approaches, ResNet50, VGG19

I. INTRODUCTION

Deep Neural Networks (DNNs) are the state-of-the-art so-
lution in several tasks such as Image Classification [1], [2],
Image Captioning [3], Machine Translation [4], Natural Lan-
guage Understanding [5], among others. Nevertheless, Deep
Networks are usually labeled as black-boxes [6], in the sense
that they are less explainable solutions than other approaches,
which is critical in several areas such as Medical Imaging [7],
[8], Self-Driving Cars [9], Legal affairs [10], among others.

According to [11], interpretability and explainability both
refers to the ability to provide understandable explanations in
human terms. Different approaches have attempted to reduce
the mentioned lack of interpretability/explainability, such as
providing rules as explanations [12], [13], explaining hidden
semantics (see Related work), using attributes as explanation
[14]–[16], or by showing examples [17], [18]. As a con-
sequence, there is diversity in the proposed interpretability
methods, each of them aims to reveal different aspects of the
network, and evaluation, even if it exists (see, for instance,
[19]), it mainly remains in different criteria.

If DNNs are black boxes, the biological counterparts might
also be considered like that. Neuroscience, however, has
revealed many aspects of the inner operations of individual
neurons, thanks to the development of micro-electrodes. Most
experiments have been conducted in the mammal visual cortex,

measuring the firing-rate response of individual neurons given
a set of stimuli [20]–[22].

Similarities between DNNs, in particular, Convolutional
Neural Networks (ConvNets), have been highlighted by some
authors [23], although it is still debated in Computational Neu-
roscience [24]. One possible similarity relies on the presence
of highly selective neurons found in the Infratemporal Cortex
and Middle Temporal Lobe and the emergence of object-
detectors in deep layers [25]–[27].

Nevertheless, the presence of highly selective neurons has
led to the conclusion of the presence of grandmother-cells
[28], which have been challenged by neuroscientists [29]. In
the case of ConvNets, some authors have debated the actual
presence of the so-called object detectors, since they have a
high rate of false positives [30].

This paper addresses the problem of the existence of highly
selective neurons in Deep ConvNets, by applying the stimuli-
response framework previously used in Neuroscience, to verify
if similar results emerge. We propose a framework to search
the referred highly selective neurons by using Hebbian Learn-
ing if such neurons exist. Hebbian Learning is used to find
relevant associations in the data [31]. In addition, this paper
aims to evaluate critically the existence of real-object detectors
using different metrics to see whether such neurons can be
considered classifiers, in well-defined classification problems.
In this sense, we would like to verify if Transfer Learning
operates at a single neuron level.

This paper is structured as follows: Section II briefly intro-
duces related works in explainability and discusses pertinent
discussions found in the literature. Section III presents the
algorithms and methods for 1) detecting the most associated
units, and 2) analyzing and evaluating such units. Section IV
showcases relevant quantitative and qualitative results, while
Section V summarizes our findings.

II. RELATED WORK

The search for object detectors in hidden layers corresponds
to the Hidden Semantics as an Explanation approach in inter-
pretability. The dominant method in this approach is Activation
Maximization [32], which involves searching in a large domain
space, but the resulting images are not always interpretable in
human terms. Given neuron activity nij for neuron j in layer
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i, and network parameters θ, Activation Maximization aims to
find:

x∗ = arg max
x

(hij(x, θ)− λΩ(x)), (1)

where Ω is an optional regularizer, and λ controls the
importance of the regularizer. Activation Maximization has
been used in ConvNets [2], [33].

Another approach for revealing hidden semantics involves
searching for the emergence of object detectors in deep
convolutional layers, if such neurons exist. This stimuli-based
approach was implemented by [34] and found some units
with high precision in single object recognition. The neural
networks in this case were trained in Scene Recognition,
leading to the emergence of object detectors during the training
process.

A. Literature discussion about the existence of selective cells

The existence of object detection by a single hidden neuron
was supported by stimuli-based and Activation Maximization
approaches [35], [36]. However, Activation Maximization has
faced recent criticism [37]. Some authors challenged the idea
of object detectors in hidden layers. [38] found that ConvNets
can perform well without relying on single object detectors and
suggested using regularization techniques for better general-
ization. [30] questioned the existence of such object detectors
in classical ConvNets due to the lack of highly selective units
with high hit-rates or low false-alarm rates. Considering these
concerns, Fong et al. [39] proposed investigating vectorial
representations instead of single neurons.

III. METHODOLOGY

Broadly speaking, this proposal aims to identify hidden
neurons in convolutional layers that are highly associated with
specific stimuli classes and not associated with other classes.
Once these neurons are identified through Hebbian Learning
(see [31]), their performance in predefined classification tasks
can be evaluated. The process involves two steps: first, learning
associations between neurons and stimuli classes, and then
verifying their selectivity. This complete procedure combines
both Hebbian Learning and symbolic techniques to achieve its
objectives.

A. First step: Hebbian learning

The first step of this methodology involves selecting a layer
c from a Deep Network to study its output. In ConvNets, the
output of the convolutional layer with p neurons is represented
by a tensor Tc ∈ R`×`×p. To reduce the feature tensor to a
single vector u, the maximum values of each `× ` image are
taken, resulting in:

u[k] = max
i,j

Tc[i, j, k]. (2)

Next, for each training example with index e (from a
training dataset (xe, ye)

n
e=1), the index k∗e = arg maxk u[k]

is selected. Let q represent a specific class. The set Kq is
defined as:

Kq = {k∗e | ye = q}, (3)

which contains the indexes of the given class that maximize
u. To obtain the indexes that only maximize the class q and
not other classes, the set Pq is defined as:

Pq = Kq −
⋃
q′ 6=q

Kq′ . (4)

Once vectors u and v (one-hot encoding of labels) are
defined, a weight matrix H is trained using Hebbian learning:

H0 = 0 (5)

He+1 = He + uevT
e (6)

To retrieve the indexes that only maximize the given class,
a mask mq is defined as a vector such that mq[ι] = 1 for all
ι ∈ Pq and zero elsewhere. The operation vTH is used to find
the most associated index, denoted by κq , for class q. However,
to mitigate potential issues where κq could be associated with
other stimuli, the following operation is performed:

κq = arg max
k

(
vT
qH�mq

)
[k], (7)

where vq represents the one-hot encoding for class q.

B. Second step: analysis of the most associated units

κq represents the index of a highly associated unit in
the layer with class q, excluding indexes related to other
classes. Evaluation of these units’ classification ability requires
computing true and false positives and negatives, creating a
binary confusion matrix.

Deep Networks often use Rectified Linear Units (ReLU) as
activation functions, posing challenges for direct classification.
Thresholds can be applied to turn selective neurons into classi-
fiers. The threshold can be optimized using the validation set,
aiming to minimize false positives and maximize precision.
An algorithm is used to optimize θ:

θe+1 =

{
θe − α1 if false positive
θe + α2 if false negative

(8)

where α1 = 10, α2 = 1.

C. Evaluation

The following Deep ConvNets will be used for evaluation:
1) VGG19 [2] (selected layer: block5_conv4).
2) ResNet50 [40] (selected layer: conv5_block3_out).
We selected the final convolutional layers, since we are

interested on highly complex patterns. Tests will be performed
on the Cats-vs-Dogs dataset [41] to evaluate individual neu-
rons. The metrics to be reported are the following: precision,
accuracy, recall, specificity, and Class-Conditional Mean Ac-
tivation Selectivity (CCMAS) [38].
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IV. EXPERIMENTAL RESULTS

A. VGG19

The training of VGG19 resulted in a relatively low accuracy
(0.8293) compared to the findings in [31]. Logarithm regular-
ization seems relevant. Table I presents the main results of
VGG19 network evaluation.

TABLE I: Summary of quantitative results of the most asso-
ciated units of the VGG19 to the studied classes.

Metric B5C4[498] B5C4[314]
Class Cat Dog

Precision 0.7476 0.8987
Accuracy 0.5319 0.6109

Recall 0.2068 0.6389
Specificity 0.9906 0.9275
CCMAS 0.1374 0.7648

1) Neuron block5_conv4[498] (B5C4[498]): Unit
block5_conv4[498] is strongly associated with the label
“cat.” It shows a high proportion of false negatives and a
relatively low proportion of true positives (see Figure 1),
and a low CCMAS. Violin plots in Figure 2 display the
output distribution for both classes, indicating that a significant
fraction of dogs elicit a strong response for the detected fea-
ture. Qualitative analysis suggests that this neuron is selective
to “triangular ears”, evident in cat photographs (Figure 4).
Similarly, in dog pictures (Figure 5), the unit is selective
to triangular ears of some dogs, explaining the quantitative
results. Activation maximization (see Figure 3) supports this
observation, revealing that the image maximizing the neuron’s
response consists of a set of triangles in various directions.

Fig. 1: Scaled confusion matrix of unit block5_conv4[498].

Fig. 2: Violin plot of the distributions of activations for both
classes in block5_conv4[498].

Fig. 3: Activation Maximization of the unit
block5_conv4[498] with shapes of triangles.

Fig. 4: Examples of heatmaps of the output of the convolution
of the unit B5C4[498] in cats.

2) Neuron block5_conv4[314] (B5C4[314]): Unit 314
shows potential as a “dog detector,” with a measured precision
of 0.987. The confusion matrix (Figure 6) and violin plot
(Figure 7) present a more promising performance compared
to the previous neuron. The qualitative analysis indicates that
the neuron is selective to cats (Figure 9) and also recognizes
some dog faces (Figure 10). Activation maximization in Figure
8 appears like dog faces, further supporting its selectivity to
dogs.

B. ResNet50

The first step (Hebbian learning) resulted in an accuracy
of 0.9656, slightly lower than the results in [31] due to
the absence of regularization. Key quantitative results are
summarized in Table II.

1) Neuron conv5_block3_out[1353] (C5B50[1353]):
Unit conv5_block3_out[1353] is identified as the primary
candidate for a “cat detector.” The optimization procedure
yielded a precision of 0.9874 (see Table II), but the accuracy
is impacted by a relatively large number of false negatives.

Fig. 5: Examples of heatmaps of the output of the convolution
of the unit B5C4[498] in dogs.
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Fig. 6: Scaled confusion matrix of unit block5_conv4[314].

Fig. 7: Violin plot of the distributions of activations for both
classes in block5_conv4[314].

Fig. 8: Activation Maximization of the unit
block5_conv4[314] with dog-like patterns.

CCMAS is not low, although it might not be ideal. However,
the violin plot presents a more favorable outlook compared
to VGG19 (see Figure 11). Nonetheless, the resulting image
generated by Activation Maximization is less interpretable
(Figure 12). Qualitative analysis in Figures 13 and 14 indicates
that the neuron focuses on the texture of the cat, particularly
in the face area.

2) Neuron conv5_block3_out[742] (C5B50[742]):
Neuron 742 acts as a weak candidate for a “dog detector” with

Fig. 9: Examples of heatmaps of the output of the convolution
of the unit B4C5[314] in cats.

Fig. 10: Examples of heatmaps of the output of the convolution
of the unit B5C4[314] in dogs.

TABLE II: Summary of quantitative results of the most
associated units of the ResNet50 to the studied classes.

Metric C5B5O[1353] C5B5O[742]
Class Cat Dog

Precision 0.9874 0.8631
Accuracy 0.6332 0.5821

Recall 0.7310 0.4648
Specificity 0.9906 0.9259
CCMAS 0.6075 0.4355

Fig. 11: Violin plot of the distributions of activations for both
classes in conv5_block3_out[1353].

Fig. 12: Activation Maximization of the unit
conv5_block3_out[1353]. Interpretation of the resulting
image is not clear.

a precision of 0.8631. The metrics indicate that this unit is a
poor “dog classifier”. Increasing the threshold could enhance
precision but also raise the number of false negatives, as
we observe a relatively low CCMAS. The output distribution
is shown in Figure 15. Similar to neuron 1353, the result
of Activation Maximization is less interpretable (Figure 16).
Qualitative analysis in Tables 17 and 18 helps to understand
why this unit performs poorly. All the cats in Table 17 have
relatively low output values, while Table 18 indicates that only
one out of four dogs produces a significant output. However,
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Fig. 13: Examples of heatmaps of the output of the convolution
of the unit C5B5O[1353] in cats.

Fig. 14: Examples of heatmaps of the output of the convolution
of the unit C5B5O[1353] in dogs.

the activation for this example is considerably high. This
suggests that neuron 742 classifies well for a subset of dog
images.

Fig. 15: Violin plot of the distributions of activations for both
classes in conv5_block3_out[742]

Fig. 16: Activation Maximization of the unit
conv5_block3_out[742]. Interpretation here is left
to the reader.

V. CONCLUSIONS

This research aims to use the associations yielded by Heb-
bian learning to find systematically highly selective cells in the

Fig. 17: Examples of heatmaps of the output of the convolution
of the unit C5B5O[742] in cats.

Fig. 18: Examples of heatmaps of the output of the convolution
of the unit C5B5O[742] in dogs.

inner convolutional layers. In this context, Hebbian learning is
instrumentally used not to solve a fixed classification problem,
but to find the most associated neurons to a given class of
stimuli.

At least one neuron (C5B5O[1353]) was found to be a
highly selective cell to cat signals, with a precision of 0.9874.
Qualitative results show that, indeed, the neuron seems to be
selective to cat areas, in particular, to cat’s faces, and less acti-
vated to dog’s faces. Although the accuracy can be improved,
it was not the objective to optimize. As a consequence, the
accuracy of the unit was found to be low, but this is not
considered to be a problem since other cells might be used
to take appropriate decisions.

The preliminary results show that individual neurons are
indeed selective but to a subset of given classes, instead
of being complete object detectors. As previously discussed,
the network needs to eliminate the dependency on a single
neuron for classification, and the same scenario might hold
in Neuroscience. In the case of the dogs-vs-cats dataset, the
analysis of neuron 742 of the last convolutional layer indicates
that the unit is selective to only a proper subset of the class
dog, whereas in the case of cats, the found cell seems to be
a better classifier. This situation might be due to the higher
diversity of images of dogs.

In this sense, we do not see the problems found in [30],
since even when the classification of the unit has a high
number of false negatives, such misclassified examples might
be classified correctly by using other neurons. Therefore, the
results do not support the idea of a one-hot encoding in
convolutional layers, but a sparse and localist encoding.
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