

Distribution statement A: Approved for public release; distribution is unlimited.

Crowding and Mutation Improvements in an EA for
Flight Control Correction in a Flapping-Wing

Vehicle

John C. Gallagher
Electrical and Computer Enginnering

University of Cincinnati
Cincinnati, OH, USA

john.gallagher@uc.edu

Michael W. Oppenheimer
Autonomous Control Branch

Wright-Patterson Air Force Base
Dayton, OH, USA

michael.oppenheimer@us.af.min

Eric T. Matson
Computer and Information Technology

Purdue University
West Lafayette, IN

ematson@purdue.edu

Abstract – Small Flapping-Wing Micro Air Vehicles (FW-
MAVs) may be subjected to either or both of manufacturing
defects or in-service damage that render their pre-designed
controllers less than adequately effective. Even minor damage to
wings, for example, can remove the vehicle’s ability to reliably
follow waypoint trails even if that same damage does not result in
a catastrophic loss of altitude. One solution to this problem is to
adapt the core wing motion scripts (wing gaits) in an attempt to
use wing motion to compensate for losses of force and torque
generation due to in-service damage or manufacturing faults.
This approach presents a number of challenges - especially if it is
to be deployed in a resource restricted vehicle in an online mode
during an actual mission. Prior to this paper, we had presented
only anecdotal treatment of fully unrestricted, 3D flight. In this
paper, we will definitively establish the utility of EA adaptation of
flight control in unrestricted flight in a pendulum-stable FW-
MAV. We will, additionally, introduce mutation and crowding
modifications that provide demonstrable utility in a manner
amenable to implementation on a resource-restricted micro
vehicle. The paper will conclude with a discussion of open-issues
and the potential application of the reported methods to other
problems.

Keywords—Flapping-Wing Micro Air Vehicle; Evolvable and
Adaptive Hardware; Evolutionary Computation; Adaptive Control

I. INTRODUCTION
Consider a person treading water in a swimming pool by

sculling his arms across the surface of the water in rhythmical
arcs while his body extends straight down into the water and
perpendicular to the bottom of the pool. Assuming the arms
swept out fully-symmetric strokes aft to fore and further
assuming the strokes were identical between the two arms,
when averaged over a whole sweep cycle, all forces and
torques except for a single force pointed up and out of the pool
should cancel out. In a sense, the person could “hover” in
place in the water subject only to a small limit-cycle around
the fixed point that would occur during the arm sculling. One
could further imagine introducing selected and planned
asymmetries in those arm sculling motions to introduce
additional net forces and torques to not only support one’s self

at the surface of the water (lift), but also to produce net torques
that allow spinning in place (rolling) or moving forward or
backwards along the surface of the water (translation). In the
seminal works [1] – [3], the above strategy was formalized as
a means to control a small FW-MAV. An assumption was
made that the wings would flap with cosine gaits (motion
patterns). Knowing that pattern, and assuming symmetry
wing-to-wing, one could produce a model of lift and
determine a frequency with which to flap to counteract gravity
or move up and down in a controlled way. Likewise, one
could introduce shape parameters that modify the underlying
cosine motions differentially across the body to produce roll
and/or translation. Analytic model-based force and torque
controllers that compute desired motion shape parameters and
frequencies can be embedded in fairly traditional waypoint
controllers to produce full flight control. Once per wing flap,
the waypoint controller would determine a desired relative
position, the individual roll, translation, and lift controllers
would produce their suggestions for frequency and/or shape
parameter, these would be communicated to an allocator that
would decide what is most important to correct, and the
determined parameters would be sent to the wing motion
controllers. Over the next wing flap, efforts would be directed
at “correcting” the vehicle in space to be closer to what is
desired. This would repeat once per wing flap. The method
is, in our opinion, somewhat elegant and is definitely
amenable to implementation in simple on-board hardware.

What, however, happens when the derived models internal
to the roll, lift, and translation sub-controllers are not of
sufficient fidelity? Informal qualitative observations suggest
that the loss of even a few percents of what wing force
production is expected by the models prevents reliable
waypoint tracking. These observations were more formally
explored using model-checking methods in [4]. Perhaps
surprisingly, though the core control is brittle in ability to track
specific waypoints, it is robust in keeping the vehicle in the air
– if at the incorrect position. If one doesn’t mind being at “the
wrong place”, then the core model-based controllers can keep
the vehicle aloft even for somewhat significant wing force
production deficits of tens of percents. That one could stay in

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1096

the air at all under a fairly wide range of wing damage cases
suggested to us that it would be possible to apply online
machine learning to the core axis controllers (roll, altitude,
and translation) to adapt to ongoing wing damage and restore
the ability to properly track waypoints. The question, of
course, is just how to accomplish this feat.

From a hardware perspective, one must immediately
presume significant computational constraints. Especially at
insect-scales, there simply is not room for complex
computational hardware or power sources to run it. Any
methods used must be amenable to implementation in very
simple, very small, and very energy efficient hardware. From
a machine learning / evolutionary computation perspective,
the challenges are compounded by the fact that learning “new
axis controllers” – in whatever form that takes – represents a
hugely non-stationary online optimization problem.
Measurements of position accuracy would by definition be
corrupted by some level of random noise. If the learning is
being done online and the vehicle is flying normal missions,
one can expect some level of cyclic large-scale behavior (I.E.
hover station keeping, followed by transit, followed by hover
station keeping, etc.). We now have that form of non-
stationary optimization. Perhaps most insidiously, the random
ordering of optimization candidates effects the scores.
Presenting for evaluation a highly effective solution AFTER
a very poor solution will taint the score of the highly effective
solution simply because that poor solution leaves the vehicle
in such a bad state that the great controller can’t possibly fix
it in its given evaluation window. We now have presentation-
order instability. Note that, even with these challenges
present, we still must complete any learning without crashing
the vehicle and in an amount of flight time that is reasonable
to end users. Taking several months of flight time to correct
behavior is, for example, not acceptable under any practical
circumstances.

In previous work over the years, we struggled to improve
learning efficacy and learning speed in light of the significant
hardware and learning-environment challenges summarized
above [5]-[9]. The referenced work represents a wide variety
of approaches that were unified in two significant respects.
The first was that they could be arguably be implemented
using limited hardware resources and the second was that they
employed EA and EA-like methods to adapt the core wing
motion functions as a means of compensating for wing
damage (I.E. learn basic gait functions that, when combined
with broken wings, again produced forces that were
compatible with the system models already implicit in the
controllers instead of trying to relearn the models themselves).
Only very recently were we confident that we had a learning
method capable of providing such correction when the vehicle
was flying unconstrained trajectories in 3D space [9]. Our
previous report of success with the new algorithm, however,
was largely based on anecdotal observation and lacked any
significant amount of analysis into algorithm operation.
Further, that report focused on specific modifications required
for the method to function with the latest generation of FW-
MAV which places restrictions on legal wing gaits and, thus,
required significant reworking of the underlying learning
methods. This paper will take that new algorithm as a base

and, after a brief presentation of problem specific concepts
and discussion of previous work, provide the following further
analyses and introduction of additional modifications:

i. One can easily hypothesize that many critical
performance metrics (time to achieve of an acceptable
solution, percent yield of acceptable solutions, online
performance, etc.) would correlate strongly to the size of
the population. This paper will quantitatively explore
those effects.

ii. Smaller populations may show some benefits related to
efficiency of hardware implementation and less flight
time being spent culling out poor candidate solutions. On
the other hand, they may suffer deliterious effects from
the pre-mature loss of population diversity or simply lack
of sufficient diversity at the outset of optimization. After
conisdering the results of (i) above, this paper will
explore the use of a genotypic crowding-metric survivor
selection to combat any issues that may have been
uncovered.

iii. As the work presented here represents what is in our
opinion the first fully-functional method that achieves
appropriate balance of all our concerns across-the-board
for online FW-MAV adaptation, this paper will more
comprehensively address the next steps enabled by
having met this milestone.

II. BACKGROUND AND RELATED WORK

A. The Flapping-Wing Vehicle
 Detailed descriptions of kinematics, dynamics, basic

control, and basic evolved wing gait oscillator adaptation can
be found in [1] – [3]. Figure 1 provides an orthographic view
of the simulated vehicle. Each wing can be independently and
actively rotated around its wing root. We refer to the angular
positions of the left and right wings around its root as 𝜙! and
𝜙" respectively. For this work, the wing is modeled as being
hinged at the shoulder and it rotates to an attack angle of ±𝛼
under the influence of air pressure the wing sweeps through
its 𝜙 range. The vehicle itself may move freely into any
position or pose in 3D space under the influence of gravity and
lift and drag forces generated by the wings.

The vehicle is guided along a waypoint path under the
control of a “three-level” controller (Fig. 2). Once per wing
flap, the path planner would produce a desired relative roll
angle, relative altitude change, and relative translational
change. These desires are communicated, as appropriate, to
each of a model-based controller for each of the vehicle roll
angle (Body Roll Command Tracking Controller), altitude
(Body X Command Tracking Controller), and lateral
translation (Body Z Command Tracking Controller)
respectively. Each of these three tracking controllers
computes desired body frame torques and forces and, using an
inverted model of the vehicle, generates a flapping frequency
(BXCT) and candidates for shape parameters (BRCT and
BZCT) to modify the assumed cosine wing gaits stored in the
lowest level wing motion controller (left and right split-cycle
oscillators in Fig. 2). The allocator chooses from among the

1097

shape and frequency parameter alternatives provided by the
three model-based tracking controllers and instructs the left-
wing and right-wing oscillators to produce the required
modified cosine wing gaits on each wing. Due to mechanical
constraints imposed on the current generation of the physical
vehicle, the two wings must meet at the full forward angular
position at the beginning and end of each wing beat. They
must also move monotonically either to the front or back until
they achieve maximum magnitude, then they may reverse.
There is no strict condition that the wings meet simultaneously
at full backward extension. Of note here is that the standard
wing motion (split-cycle oscillators in Fig. 2) controllers have
cosines hard-coded in them and both the shape and frequency
parameters communicated to them modify the base cosines as
required.

The introduction already discussed what could go wrong
and suggested what we should do about it. One could attempt
to learn the system models inside each of the three tracking
controllers (horizontal green boxes in Fig. 2), but this, as an
exercise in online system identification, might incur
significant computational expense. In previous work, we
employed various EAs, in an online mode, to evolve the core
oscillation functions inside the wing oscillators instead. The
idea was to match the force generation behavior of the
wing/oscillation combination to vehicle models in the control
rather than match the models to what the broken wings were
doing when driven by cosines. Various reports or historical
efforts are available in [5]-[9]. For this work, we start from
the most recent and, prior to what we will report here, most
successful attempt reported in [9].

III. THE MINIPOP EA
In the Base MINIPOP EA Method, we represent wing

motion functions as lookup tables of 256 individual wing
angle positions each stored with a precision of eight bits. This
choice is consistent with the limitations of the actual hardware
used in several generations of the physical implementations of

these vehicles. The core controller, without learning, would
therefore store cosines in these tables and the wings would be
actuated by playing back those values at different speeds
(frequency shape parameter) or by introducing timing offsets
inside the table to distort the cosine according to the needs of
the body axis controllers (delta shift shape parameter). Our
learning method allows an EA to evolve these wing motion
tables (wing gaits) to optimize a performance based objective
function. For this purpose, we maintain a library of eight
precomputed “basis functions” (Fig. 3) that can be blended at
run time to generate a variety of periodic functions that can
replace the otherwise hard-coded cosine functions in the split-
cycle oscillators. Each possible base oscillation function is
specified by an array of eight integers each of which
corresponds to the identity of one of the basis functions. The
function used is the average of the identified functions, which
can be computed quickly at run time with integer arithmetic.
For each of 256 angular positions of the desired function, one
adds the values from eight identified basis functions and then
logically shifts right twice to divide by eight. This composed
function would then be used as the core wing gait. Why we
chose the specific bases shown is beyond the scope of this
paper, that said, those choices were influenced by safety
concerns and mechanical constraints of the current generation
physical vehicle. The genome we use to encode wing motions
is also shown in Fig 3. Each genome is the concatenation of
the base function indices for each wing (eight values for each
of the two wings shown in numbered LF and RF blocks of Fig.
3) as well as a learned gain multiplier that would be applied to
the frequency given to the oscillators by the allocator (shown
in the FM box of Fig 3.). The use of an evolved gain was also
added in response to constraints imposed by the mechanisms
of the current generation physical vehicle and represents a
way around the problem of not being able to reverse motions
in a wing flap in process. This physical wing-motion
requirement is more completely discussed in [9].

Fig. 1. Orthographic View of Conceptual FW-MAV.

3 mm

4 mm

4 mm

15 mm

11
mm

Top View

Back View

zb

xb

yb

4 mm

aa

Side View

Lz+

Lz-

Rz+

Rz-

Fig. 2. – Control Schematic

Body Z Command Tracking Controller

Left
Split-Cycle
Oscillator

€

g

€

∫

€

∫

€

mg
Body X Command Tracking Controller

m
1

px ox x

Body Roll Command Tracking Controller

€

∫

€

∫
xzxzoxzp

J
1
xx

€

−

€

+

1

2-DOF Control (Altitude and Roll)

TABLE I
FW-MAV PHYSICAL CONSTANTS AND CONTROL PARAMETERS

Symbol Description Value and Units
m vehicle mass 60x10�6 Kg

w vehicle width 4x10�3 m

g gravity 9.82 m/s2

IA wing moment of inertia 9.35x10�10 m4

⇧ air density 1.225 Kg/m3

� wing lift stop ⌅/4 rad

ywp
cp ?????? 0.0091 m

⌥0 vehicle hover trim frequency 757.104 rad/sec

k0 ?????? 1.4557x10�9 ???

Jxx vehicle roll moment of inertia 1.5x10�10 ???

CL (�) coefficient of lift 1.34222

J1 (1) bessel function of first kind 0.4401

⌥a ACTC natural frequency 5.0

⇤a ACTC damping ratio 1.0

⌥� RCTC natural frequency 40.0

⇤� RCTC damping ratio 1.0

TABLE II
FW-MAV AND CONTROLLER STATE VARIABLES

Symbol Description Units
x vehicle altitude m

ẋ vehicle velocity m/s

ẍ vehicle acceleration m/s2

⌃x vehicle roll angle rad

⌃̇x roll angular velocity rad/s

⌃̈x roll angular acceleration rad/s2

⌃ (t) wing sweep position rad

F̄Xdes
desired cycle-averaged force N

M̄Xdes
desired cycle-averaged roll moment N ·m

⌥Fx (t) instantaneous desired wing beat frequency rad/s

⌥̄Fx (nT) sampled desired wing beat frequency rad/s

⇥Mx desired split-cycle frequency shift rad/s

⇥̄R sampled right wing split-cycle frequency shift rad/s

⇥̄L sampled left wing split-cycle frequency shift rad/s

Fx (t) instantaneous force applied to vehicle N

Mx (t) instantaneous roll moment applied to vehicle N ·m

q
2

⇥IACL(�)

Jxx�2
⇤

€

+

1

2-DOF Control (Altitude and Roll)

TABLE I
FW-MAV PHYSICAL CONSTANTS AND CONTROL PARAMETERS

Symbol Description Value and Units
m vehicle mass 60x10�6 Kg

w vehicle width 4x10�3 m

g gravity 9.82 m/s2

IA wing moment of inertia 9.35x10�10 m4

⇧ air density 1.225 Kg/m3

� wing lift stop ⌅/4 rad

ywp
cp ?????? 0.0091 m

⌥0 vehicle hover trim frequency 757.104 rad/sec

k0 ?????? 1.4557x10�9 ???

Jxx vehicle roll moment of inertia 1.5x10�10 ???

CL (�) coefficient of lift 1.34222

J1 (1) bessel function of first kind 0.4401

⌥a ACTC natural frequency 5.0

⇤a ACTC damping ratio 1.0

⌥� RCTC natural frequency 40.0

⇤� RCTC damping ratio 1.0

TABLE II
FW-MAV AND CONTROLLER STATE VARIABLES

Symbol Description Units
x vehicle altitude m

ẋ vehicle velocity m/s

ẍ vehicle acceleration m/s2

⌃x vehicle roll angle rad

⌃̇x roll angular velocity rad/s

⌃̈x roll angular acceleration rad/s2

⌃ (t) wing sweep position rad

F̄Xdes
desired cycle-averaged force N

M̄Xdes
desired cycle-averaged roll moment N ·m

⌥Fx (t) instantaneous desired wing beat frequency rad/s

⌥̄Fx (nT) sampled desired wing beat frequency rad/s

⇥Mx desired split-cycle frequency shift rad/s

⇥̄R sampled right wing split-cycle frequency shift rad/s

⇥̄L sampled left wing split-cycle frequency shift rad/s

Fx (t) instantaneous force applied to vehicle N

Mx (t) instantaneous roll moment applied to vehicle N ·m

q
2

⇥IACL(�)

Jxx⇥2
⇤

Jxx2�⇤⇥⇤

�1
⇥IACD(�)⌅0[ywp

cp +wJ1(1)]

Cycle-Averaged Roll Torque Model

1

2-DOF Control (Altitude and Roll)

TABLE I
FW-MAV PHYSICAL CONSTANTS AND CONTROL PARAMETERS

Symbol Description Value and Units
m vehicle mass 60x10�6 Kg

w vehicle width 4x10�3 m

g gravity 9.82 m/s2

IA wing moment of inertia 9.35x10�10 m4

⇧ air density 1.225 Kg/m3

� wing lift stop ⌅/4 rad

ywp
cp ?????? 0.0091 m

⌥0 vehicle hover trim frequency 757.104 rad/sec

k0 ?????? 1.4557x10�9 ???

Jxx vehicle roll moment of inertia 1.5x10�10 ???

CL (�) coefficient of lift 1.34222

J1 (1) bessel function of first kind 0.4401

⌥a ACTC natural frequency 5.0

⇤a ACTC damping ratio 1.0

⌥� RCTC natural frequency 40.0

⇤� RCTC damping ratio 1.0

TABLE II
FW-MAV AND CONTROLLER STATE VARIABLES

Symbol Description Units
x vehicle altitude m

ẋ vehicle velocity m/s

ẍ vehicle acceleration m/s2

⌃x vehicle roll angle rad

⌃̇x roll angular velocity rad/s

⌃̈x roll angular acceleration rad/s2

⌃ (t) wing sweep position rad

F̄Xdes
desired cycle-averaged force N

M̄Xdes
desired cycle-averaged roll moment N ·m

⌥Fx (t) instantaneous desired wing beat frequency rad/s

⌥̄Fx (nT) sampled desired wing beat frequency rad/s

⇥Mx desired split-cycle frequency shift rad/s

⇥̄R sampled right wing split-cycle frequency shift rad/s

⇥̄L sampled left wing split-cycle frequency shift rad/s

Fx (t) instantaneous force applied to vehicle N

Mx (t) instantaneous roll moment applied to vehicle N ·m

q
2

⇥IACL(�)

Cycle-Averaged Body Axis X Force Model

€

+
€

−

1

2-DOF Control (Altitude and Roll)

TABLE I
FW-MAV PHYSICAL CONSTANTS AND CONTROL PARAMETERS

Symbol Description Value and Units
m vehicle mass 60x10�6 Kg

w vehicle width 4x10�3 m

g gravity 9.82 m/s2

IA wing moment of inertia 9.35x10�10 m4

⇧ air density 1.225 Kg/m3

� wing lift stop ⌅/4 rad

ywp
cp ?????? 0.0091 m

⌥0 vehicle hover trim frequency 757.104 rad/sec

k0 ?????? 1.4557x10�9 ???

Jxx vehicle roll moment of inertia 1.5x10�10 ???

CL (�) coefficient of lift 1.34222

J1 (1) bessel function of first kind 0.4401

⌥a ACTC natural frequency 5.0

⇤a ACTC damping ratio 1.0

⌥� RCTC natural frequency 40.0

⇤� RCTC damping ratio 1.0

TABLE II
FW-MAV AND CONTROLLER STATE VARIABLES

Symbol Description Units
x vehicle altitude m

ẋ vehicle velocity m/s

ẍ vehicle acceleration m/s2

⌃x vehicle roll angle rad

⌃̇x roll angular velocity rad/s

⌃̈x roll angular acceleration rad/s2

⌃ (t) wing sweep position rad

F̄Xdes
desired cycle-averaged force N

M̄Xdes
desired cycle-averaged roll moment N ·m

⌥Fx (t) instantaneous desired wing beat frequency rad/s

⌥̄Fx (nT) sampled desired wing beat frequency rad/s

⇥Mx desired split-cycle frequency shift rad/s

⇥̄R sampled right wing split-cycle frequency shift rad/s

⇥̄L sampled left wing split-cycle frequency shift rad/s

Fx (t) instantaneous force applied to vehicle N

Mx (t) instantaneous roll moment applied to vehicle N ·m

q
2

⇥IACL(�)

Jxx⇥2
⇤

Jxx2�⇤⇥⇤

�1
⇥IACD(�)⌅0[ywp

cp +wJ1(1)]

m2�a⇥a

m⇥2
a

1

2-DOF Control (Altitude and Roll)

TABLE I
FW-MAV PHYSICAL CONSTANTS AND CONTROL PARAMETERS

Symbol Description Value and Units
m vehicle mass 60x10�6 Kg

w vehicle width 4x10�3 m

g gravity 9.82 m/s2

IA wing moment of inertia 9.35x10�10 m4

⇧ air density 1.225 Kg/m3

� wing lift stop ⌅/4 rad

ywp
cp ?????? 0.0091 m

⌥0 vehicle hover trim frequency 757.104 rad/sec

k0 ?????? 1.4557x10�9 ???

Jxx vehicle roll moment of inertia 1.5x10�10 ???

CL (�) coefficient of lift 1.34222

J1 (1) bessel function of first kind 0.4401

⌥a ACTC natural frequency 5.0

⇤a ACTC damping ratio 1.0

⌥� RCTC natural frequency 40.0

⇤� RCTC damping ratio 1.0

TABLE II
FW-MAV AND CONTROLLER STATE VARIABLES

Symbol Description Units
x vehicle altitude m

ẋ vehicle velocity m/s

ẍ vehicle acceleration m/s2

⌃x vehicle roll angle rad

⌃̇x roll angular velocity rad/s

⌃̈x roll angular acceleration rad/s2

⌃ (t) wing sweep position rad

F̄Xdes
desired cycle-averaged force N

M̄Xdes
desired cycle-averaged roll moment N ·m

⌥Fx (t) instantaneous desired wing beat frequency rad/s

⌥̄Fx (nT) sampled desired wing beat frequency rad/s

⇥Mx desired split-cycle frequency shift rad/s

⇥̄R sampled right wing split-cycle frequency shift rad/s

⇥̄L sampled left wing split-cycle frequency shift rad/s

Fx (t) instantaneous force applied to vehicle N

Mx (t) instantaneous roll moment applied to vehicle N ·m

q
2

⇥IACL(�)

Jxx⇥2
⇤

Jxx2�⇤⇥⇤

�1
⇥IACD(�)⌅0[ywp

cp +wJ1(1)]

m2�a⇥a

m⇥2
a

€

∫

€

∫Z tb zQQ VV

X tb zQQ VV

tb zU QQ VV
M tx Q V

F tx Q V

F tz Q V m
1

+
-

zp zo

€

+
€

−
m2 f fg ~

m2 a ag ~

J 2xx g ~z z

mw f
2

FZDES
r

FXDES
r

Cycle-Averaged Body Axis Z Force Model

Right
Split-Cycle
Oscillator

tLz Q V

tRz Q VRd

Ld

LR~

LR~

Optional
Synchronizer

Al
lo

ca
to

r

z

xdesz

Pa
th

 P
la

nn
er

 /
Co

nt
ro

lle
r

zdes

xdes

I C J 1
4

A L 0 1t a ~
-Q QV VFZd

MXd

FX~

1098

Fig. 4 provides pseudo-code of the MINIPOP method
used in [9] and also, in modified form, in this paper. It is a
small population stochastic hill climbing, non-generational,
EA that employs a strict form of elitism and periodic
presentation of the current champion as a means of combating
deceptive candidate evaluations cause by the serialized
presentation of candidates in an ongoing task. In an offline
learning process, we would “return” the vehicle to a low error
state before presenting a truly novel candidate solution so as
to not corrupt the evaluation of that novel candidate with
blame inherited from a previously presented candidate. For
example, a previous candidate could put the vehicle so far
from a desired path that it couldn’t completely recover even
if a current candidate solution were of high quality. That
current candidate would inherit some of the blame for the
previously presented terrible candidate. One could, between
evaluation candidates, use a perfect controller to reset the
system to a good state to “clear the palate” between candidate
evaluations. Of course, we don’t know what that perfect
control solution is and if we did – we wouldn’t be running an
EA anyway. Therefore, as a heuristic we allow the current
champion to. Note that every call to govern the vehicle for a
period between candidate evaluations. evaluate_error() in
Fig 4. consists of sending the oscillator patterns represented
by the genome to the vehicle and allowing that controller to
control the vehicle for a user selected number of wing flaps
before returning. The objective function used is the absolute
positional error between the vehicle’s position at the end of
the evaluation period and the waypoint that is being attempted.

Of most interest, and novel to this paper, are evidence-
based modification to the mutation operation at line 21 of Fig.
4 and more careful study, and potential modification of, the

crowding-style survivor replacement mechanism implicit at
lines 44 and 45 of Fig 4.

In the one previous work where the current version of the
MINIPOP EA and presented genome encoding had been used
[9], we encoded the frequency gain (FM in Fig. 3) as a float
type and evolved that setting as a continuous value with a
Gaussian mutation. In the real vehicle, the idea of
continuously-variable gain settings is unrealistic, as we would
most likely implement that capability as discretized values
achieved by discretized clock frequency manipulations.
Therefore, in this work we limited gain values to eight discrete
levels of gain ranging from 1.0 to 1.4375 with a step size of
0.0625. We still employed Gaussian mutation with a standard
deviation of 0.125 – though with actual achieved gains being
binned into one of the legal values. As it is not clear that the
EA would reliably find solutions under these conditions,
through testing was obviously required.

Fig. 3 –Basis Functions and Genome Encoding

0 10.5 0 10.5
-1

1

0

-1

1

0

-1

1

0

-1

1

0

A

B

C

D

E

F

F

G

A
LF1

A
LF2

A
LF3

A
LF4

A
LF5

A
LF6

A
LF7

A
LF8

D
RF1

A
RF2

D
RF3

D
RF4

A
RF5

A
RF6

A
RF7

D
RF8

X
FM 1 done_evolving = FALSE;

2 initialize_population(&population);
3
4 // By convention, the champion genome will always be stored
5 // in slot zero of the population. Slots are indexed from 0
6 // to POPULATION_SIZE-1
7
8 while (!done_evolving)
9 { online_champ_error = 0.0;
10 champion_index = 0;
11 challenger_index = uniform_random(1, POPULATION_SIZE-1);
12
13 champion_genome = get_genome(&population,champion_index);
14
15 challenger_genome = get_genome(&population, challenger_index);
16
17 child_genome = uniform_crossover(champion_genome,
18 challenger_genome,
19 crossover_rate);
20
21 child_genome = mutate(child_genome, mutate_rate);
22
23 champion_error = evaluate_error(champion_genome);
24 online_champ_error += champion_error;
25
26 challenger_error = evaluate_error(challenger_genome);
27
28 champion_error = evaluate_error(champion_genome);
29 online_champ_error += champion_error;
30
31 child_error = evaluate_error(child_genome);
32
33 // If the child is better than the champion, copy the
34 // child genome into the champion slot of the population
35
36 if (child_error < champion_error)
37 put_genome(child_genome, &population, champion_index);
38
39 // If the child is better than the challenger, copy the
40 // child genome into the population slot that had been
41 // occupied by the challenger, then do nothing else to
42 // the population
43
44 if (child_error < challenger_error)
45 put_genome(child_genome, &population, challenger_index);
46
47 // If you are doing the following branch, then the child was not
48 // better than the challenger. Check to see if the champion is
49 // better than the challenger. If it is, copy the champion genome
50 // into the slot in the population that the challenger had
51 // occupied
52
53 else
54 if (champion_error < challenger_error)
55 put_genome(champion_genome, &population, challenger_index);
56
57
58 // Look at the average of the two champion evaluations done in
59 // this trip through the loop. If this "recent online champion
60 // fitness” is less than a target error level, then set the
61 // done_evolving flag to true so that the evolution loop can be
62 // exited
63
64 online_champ_error = online_champ_error / 2.0;
65 if (online_champ_error < ERROR_TARGET) done_evolving = TRUE;
66 } // end while loop

Fig. 4 – Pseudo-Code for Basis Function Learning EA

1099

Also in [9], we implicitly employed crowding-style
replacement. In lines 45 and 46 of Fig. 4., we can see that the
winner of the child/challenger tournament occupies (replaces)
the challenger slot in the population. Crowding mechanisms
attempt to promote extended population diversity and,
possibly, formation of niching, by ensuring that selected
survivors replace population members that are most alike to
them as measured by some genotypic or phenotypic metric.
We generate candidate children via crossover of a challenger
and the champion that is then mutated. Assuming that the
resultant child is similar to the challenger, then putting the
winner of a challenger and child into the challenger’s slot
represents a simplified crowding metric. When we first
implemented this idea, it was justified on an ad-hoc basis.
Here we will compare this implicit crowding to both an
explicitly computed crowding metric and to random
replacement in an effort to assess the wisdom and utility of
that previously ad-hoc decision.

IV. EXPERIMENTAL CONDITIONS AND DEFINITIONS
All runs reported here employed the following parameter

settings: Population size is swept through a range of 8 to 88
with a step size of 8. Wing Flaps per Evaluation is set to 120,
which represents approximately one second of flight time
when the vehicle is at hover. Mutation probability is set to
3.125% - which means that any slot of the genome has that
percent chance of mutating. Basis function slots mutate to any
of the eight legal basis function index values with uniform
probability. Gain mutates as previously described. The
uniform crossover probability is 50%, meaning that each
allele position of a child has a 50/50 chance of receiving its
value from one of the two parents. Each evolutionary trial
reported was ran until the average online error of the
champion, collected over one trip through the algorithm loop
starting at line 8 and ending at line 66, was less than 0.001
meters (1 mm) OR when five thousand evaluations of
candidates and champions had been completed. Those five
thousand evaluations would correspond to approximately
seventy minutes of flight time. Evolutions and candidate
evaluations are conducted online while the vehicle is
attempting to follow a path with 70 waypoints as quickly as
possible, but no longer than 70 minutes flight time. The target
flight path was designed to have multiple altitude changes as
well as a large number of distances between points and
sharpness of turns required. When a trial is run, each of the
wings of the vehicle was assigned a random damage
coefficient between 0.6 and 1.0 that is multiplied by the
amounts of drag and lift forces produced by that wing.
Modeling of wing damage in this way, on a cycle-averaged
basis, is supported by arguments made in [10] and [11].

For purposes of results evaluation, we define three disjoint
sets of qualitative behavior into which all evolved solutions
may fall into. These are: Full Failure – Solutions that are full
failures will not approach the first waypoint within 1 mm, in
any spatial dimension. In fact, they most often orbit some
random point far from the first waypoint or fly off to infinity
and beyond. Partial Failure – The vehicle can approach and
maintain desired altitudes withing 1mm of the first waypoint,
but it cannot maneuver to subsequent waypoints in the world
XY plane; Full Success – The vehicle during evolution makes

it to at least the second desired waypoint. For purposes of yield
results reported below, verification of failure or success status
was determined by exercising the champion genome after
evolution had completed. As actual evolutionary learning is
online and it is not switched off so that continuous
improvement is desired, we use as our “time to success” a
control achievement that predicts eventual full success of
whatever champion genome is present at the end of the trial.
We note that the ability to reach the 2nd of the desired
waypoints during evolution is a strong predictor of Full
Success and thus for current purposes use “2nd waypoint time”
as the time when the vehicle’s flight becomes viable – even if
additional learning can occur. Fewer than 1% of learning
trials that acquired the 2nd waypoint, over all of the learning
experiments presented in this paper failed to achieve a
champion capable of full success. Possible reasons for this
observation will be discussed in the conclusions.

When we use an explicitly computed crowding metric, it
is computed as follows: We first flattened each wing’s eight
elements to a discrete probability distribution over the relative
appearances of each of the eight possible basis functions. The
distance between any two genomes was computed as the
Euclidian distance between the two distributions. We chose
this distance metric because the calculation could be
accomplished with a modest number of integer additions,
shifts, and comparison operations.

V. EXPERIMENTAL RESULTS
Before delving into detailed investigations, it may be

prudent to at least qualitatively assess the need to evolve both
wing motion patterns (gaits) and oscillator gains -- as it is not
immediately apparent adapting both simultaneously is
required to restore proper flight control. For the experiments
underlying this preliminary discussion, we set the population

Fig. 5 – Yield Rates and Median Time to 2nd Waypoint for All
Replacement Variants

1100

size to sixty-four and left other parameters set as previously
indicated.

Over five thousand trials, when evolving wing gaits only
while freezing flapping frequency gains to 1.0, the vast
majority of evolved solutions were Full Failures. Under this
condition, full successes were rarely seen when the damage
to each wing was very slight (no more than 2%) as presumably
wing gait modification can provide at least some mild lift
enhancement and the drag forces are sufficiently balanced,
wing-to-wing, to enable controlled motion in the XY world
plane. Under this condition partial failures were also rarely
seen when damage to the wings was slight, but sufficiently
unbalanced as to ruin XY plan navigation. Over another five
thousand trials evolving gain only while leaving the wing
motion functions frozen at cosines, we again saw the vast
majority of results being Full Failures or Partial Failures. In
this set, the dividing line between Full and Partial Failures
seems to be whether or not one of the selectable, discrete, gain
levels was sufficient to boost lift enough to get one close to a
desired altitude. In the rare case that this condition is met and
when, additionally the deficits across the wings are very
similar (I.E. the damage is balanced), then Full Successes
could be observed. These ten-thousand trials strongly suggest
that in the vast majority of cases, both gait and gain learning
are required for success. With this need established, at least
empirically, we can move on to exploration of the full
algorithm with gain and gait learning enabled.

Fig 5. presents performance statistics for the presented
MINIPOP EA with discretized gain mutation and three
different survivor replacement options: random replacement
(random), implicit crowding replacement (i_crowd), and
genome distance crowding replacement (g_crowd). Perhaps
the statistic of most relevance to end users of a FW-MAV is
the failure rate, or the percentage of runs that did not achieve
fully successful waypoint flight control. Note that at smaller
population sizes, both crowding variants have smaller failure
rates than the random replacement. Also note that, at least in
terms of yield, the two crowding variants are indistinguishable
from each other. Looking at median time to achievement of
the 2nd waypoint, which is our chosen predictor of eventual
full success, we see a clear winner emerge. The implicit
crowding method, which corresponds to the original choice
made in [9], is consistently faster in achieving the 2nd
waypoint success condition under identical meta-parameter
settings across the three variants tested. The collected data
suggest that to achieve a failure rate of 2% or less one must
set population size to 32 or greater, with the price of higher
yields after that being paid by longer expected times to flight
success. At this point, we can conclude that the algorithm, as
presented with discretized gain levels, multiset encoding of
the wing gaits, and meta-parameters set as described can
restore flight control at least 98% of the time in eight minutes
or less 50% of the time (Q2) and in less than eleven minutes
75% of the time (Q3). This is within acceptable limits for
practical use of the method and this is the first time we have
established that with large data sets for fully unconstrained
flight. Of course, there are additional observations we can
make if we dig more deeply, and these observations may lead
to additional improvements.

VI. ADDITIONAL OBSERVATIONS OF EVOLVED SOLUTIONS
One could, and perhaps should, tune other EA parameters

to decrease learning time and increase yield. Simulations are
expensive to run, however, so sweeping through search
parameter spaces blindly may not be the best choice. So, let
us see what problem space information we can glean from
experiments already run and speculate on how that
information might inform what we do going forward.

First, let us examine what happens when evolve gain levels
are discretized, like we did in this paper, vs. what we see when
we evolved continuous valued gain values [9]. Fig. 6 shows
graphs of average wing damage multiplier across the two
wings vs. the actual gain value that evolved. Evolved gain is
shown on the y-axis and average wing damage across the two
wings is on the x-axis. Both graphs are based on 4000 trials at
population size 64 with only the fully successful individuals
shown. Note that if we allow for fully continuous gains to be
evolved, then we will see a continuously variable selection of
gaits will be evolved. Looking at the graph for the discretized
gains reveals something interesting, however. Note that for
large sections of average deficits, there are viable, fully
successful, solutions that draw from more than one possibility
for gain value. One such region runs from approximately 0.7
to 0.75 and in that region gains of 1.25 and 1.1875 are both
viable, presuming of course, they are paired with an
appropriate selection of evolved wing gaits. Although one
might be tempted to think that the wing gait adjustments’
primary value is in balancing drag forces so that world XY
plane navigation functions – the above provides some
evidence that boosts in lift are also possible via changes in
gait. If this is true, one might argue that at least in some cases
gain evolves to get altitude control “in the ballpark” and that
gait evolution provides additional fine adjustment of both
altitude as well as roll and translation control. It also implies

Fig. 6 – Evolved Gain Values for Discretized vs. Continuous Gain
Options

1101

that the amount of lift correction that can be provided spans
several of the levels of lift correction that can be achieved by
gain. We can presume, therefore, that this problem space is
somewhat target rich and that there are potentially many
genotypes – even those using significantly different gain
values – that correct for the same wing damage levels. To test
this idea, we created a variant of the simulation code that
attempted multiple independent evolutionary runs for each
damage case. At the time of the writing of this paper, we have
conducted six hundred damage case trials where each damage
case was given ten independent evolutionary runs. These trials
were run at our presumed optimal parameter settings of
implicit crowding and population 32. All of these trials had
at least 2 of 10 full successes with the vast majority of them
having 9 or 10 full successes. Further, we observed ranges of
successful gain values as well as ranges of wing gaits all being
successful for the same wing error conditions. Although this
is preliminary evidence only, it does strongly suggest that
failures to find solutions are more likely failures of the search
algorithm then they are indications that solutions don’t exist.
The representation supports plenty of solutions, we just need
to find them. These initial experiments also suggest several
other EA enhancements that could reduce failure rates while
still keeping population and time to success values small.
Adaptive hypermutation is one possibility. A more
sophisticated crowding metric might be another. Although our
implicit crowding currently seems the best choice, there is no
reason to think it is the ultimately best one.

Second, let us turn our attention now to anecdotal
observations about partial failures that occur when using
discretized gains. Partial failures, regardless of which EA
variant (base or crowding) produced them, end up with
genomes that are both highly symmetric across the wings (I.E.
the leaned gait functions are highly similar) and which are
dominated by basis functions A and B (Fig. 3). This implies
that the partial failures overwhelmingly learn to adopt gait
functions that are very close to the “normal” cosine function
or to a fairly similar triangle wave. In other words, in terms
of gait, the partial failures learn to do what the model-based
tracking controllers expect as being correct for undamaged
wings. Understanding this very consistent pattern in the
phenotype underlying partial failures will be instructive in
lowering the number of partial failures and increasing overall
yield of viable solutions.

VII. DISCUSSION AND CONCLUSIONS
We had made previous report of the success of online

evolution for restoring waypoint control in fully 3D flight [9].
That report, however, was limited in potential practical
application in that we previously allowed evolution of real-
valued gains. This would be impractical in our eventual use
case in which a requirement to implement in simple
computational hardware (presumably without floating-point
capability) would be paramount. Also, the assumption of
continuously variable gain control is problematic in its own
right. The algorithm version presented here overcomes those
final practical limitations. We also verify that crowding is
crucial to promoting acceptable yields while minimizing
computational resources. It is therefore not unreasonable to

conclude that we have delivered on promises (i) and (ii) from
this paper’s introduction. What about promise (iii)? Frankly,
this is the more interesting discussion, so let us proceed to
that.

First, the results here suggest that crowding has some
utility for this problem. We have yet to beat the implicit
crowding method, but there is no reason to think it can’t be
beaten. The genotypic crowding metric we used does account
for the redundancy effects of a multiset encoding as all
redundant genome variants would map to the same
Probability Distribution Function (PDF) that serves as the
endpoint for whatever distance metric is used. On the other
hand, it does not properly represent distance in the
phenotypic sense. The genome PDF distance between a
purely cosine gait function (Basis A), as represented by the
genome, and a purely triangle gait function (Basis B), as
represented by the genome, is the same as the distance
between a pure cosine and something that was made purely
of Basis E even though we know that phenotypically Basis E
is closer to Basis A than is Basis B. The obvious fix for this
is to compute the distance metric for crowding replacement
by comparing the phenotypes directly. As this would entail
computing and scanning through 256 element, rather than 16
element, tables, it would be more expensive – but perhaps not
prohibitively so. This is work under way and it might provide
better overall results at a larger, but perhaps still acceptable,
cost in onboard computational hardware.

Second, the persistent commonalities in the phenotypical
structure of all partial failures are obviously of interest. We
have an as of yet untested, but perhaps viable, hypothesis on
this matter that draws from observations made elsewhere in
this paper. The vehicle we are modeling here flies in a
pendulum stable mode. That means it flies with its body
frame x-axis (see Fig. 1 for axis definition) is parallel to the
world z-axis (world frame altitude). For a vehicle with the
bulk of its weight below its wings flying relatively slowly,
this is a reasonable assumption. Under these conditions, the
control of altitude is largely decoupled from the control of
other degrees of freedom. This can also be gleaned from an
examination of the control diagram in Fig. 2. What does this
mean from an EA perspective? Even if our objective function
does not reflect it directly, the nature of the problem itself is
somewhat multi-objective due to the nature of the controller.
Even if we are measuring a scalar objective, ultimately the
controller is implicitly solving altitude control as an issue
separate from roll and forward XY plane position control.
Note in Fig 2. That the axis controllers only ever provide one
gain and that allocation is only necessary for the delta shift
alternatives being provided by the body z and body roll sub-
controllers. Since our scalar objective function collapses
quality of altitude control and everything else into one value
(I.E. distance to target waypoint in three-space) one could
evolve wing gait functions that, in combination with a
specific gain value, are so effective at solving the altitude
problem that any searches off of that local “single objective”
optimal are of sufficiently low quality to make any moves off

1102

that localized optimal non-viable. Interestingly, for nearly all
such partial successes, we see the EA adopt wing gaits that
are very similar to the cosine gaits the core controller was
designed to work with. A perhaps simple expedient would
be to promote symmetry breaking during evolution by
encouraging the use of asymmetric wing gaits across the two
wings. Multiple mechanisms to accomplish this exist,
including using a replacement strategy that promotes
asymmetry of gaits across the wings. The use of this and
similar expedients, along with a detailed analysis of partial
success cases and how they arise, is currently underway.

Third, recall that we observed that reaching the second
waypoint during learning was a strong, but not perfect,
predictor of if the eventual champion genome achieved at
termination of learning were capable of providing quality
flight control using ONLY the champion genome going
forward. In fewer than 1% of all cases, this was not true and,
although with learning switched on the vehicle could follow
waypoints, it could not with learning switched off. This
implies that in rare cases, the population of wing oscillator
solutions actually contains sub-niches that are situationally
appropriate for specific flight modes and that are dynamically
selected as needed during flight as a side-effect of sampling
the population. We could detect this by monitoring flights on
an ongoing basis and noting if specific champion genomes
appeared on a cyclic basis correlated to specific modes of
flight. If this were occurring, we would have essentially
created a hybrid-state machine controller in which the
refinements were alternative wing motion oscillator settings
and the state switches were mediated by stochastic selection
and evaluation of state connected performance. Under some
conditions, we might actually desire controllers, so this
possibility is also currently under study so that we may
encourage or discourage its evolution according to the desires
of the end users.

Finally, we, in other work, developed and reported upon
a method to directly extract estimates of actual wing lift and
drag force deficits using multiple observations of wing gait
tests that we would be conducting anyway while evolving
better oscillator patterns [12] – [14]. It is ironic that the whole
reason for this EA learning exercise was to avoid doing any
system identification, but then we later find a way to leverage
not doing system identification into doing system
identification via a back door. One of the conditions for the
implicit system ID to function is that we must allocate forces
asymmetrically across the wings. The simple expedient of
using a crowding metric (phenotypic or genotypic) across the
wing gait functions for the two wings (compare two multisets
of 8 elements from one vehicle) might be able to
inexpensively constrain learning in a manner that is more
amenable to application of that method. Likewise, niching
would provide similarly independent solution samples that
could be used and would maximize the utility of the
entertainingly ironic backdoor system identification just
previously mentioned. Both expedients to that end are also
currently under study.

DISCLAIMER
The views expressed in this paper are those of the authors and do
not reflect the official views of the United States Air force nor the
Department of Defense.

REFERENCES
[1] D. Doman, M. Oppenheimer, and D. Sigthorsson, “Dynamics and

control of a minimally actuated biomimetic vehicle: part I –
aerodynamic model”, Proceedings of the AIAA Guidance, Navigation,
and Control Conference. 2009.

[2] M. Oppenheimer, D. Doman, and D. Sigthorsson, “Dynamics and
control of a minimally actuated biomimetic vehicle: part II – control.”
Proceedings of the AIAA Guidance, Navigation, and Control
Conference. 2009.

[3] D. Doman, M. Oppenheimer, M. Bolender, and D. Sigthorsson,
“Altitude control of a single degree of freedom flapping wing micro air
vehicle.” Proceedings of the AIAA Guidance, Navigation, and Control
Conference. 2009.

[4] J. Goppert, J. Gallagher, I. Hwang, and E. Matson, “Model checking
of a flapping-wing micro-air vehicle trajectory tracking controller
subject to disturbances”, The 2nd International Conference on Robot
Intelligence Technology and Applications (RiTA 2013). Dec 18-20,
Denver CO. 2013.

[5] J. Gallagher, D. Doman, and M. Oppenheimer, “The technology of the
gaps: an evolvable hardware synthesized oscillator for the control of a
flapping-wing micro air vehicle.” IEEE Trans. on Evolutionary
Computation, IEEE Press, vol. 16, no. 6. 2012

[6] J. Gallagher and M. Oppenheimer, “An improved evolvable oscillator
and basis function set for control of an insect-scale flapping-wing
micro air vehicle”, Journal of Computer Science and Technology, vol.
27, no. 5, pp. 966-978. Springer. 2012.

[7] J. Gallagher and M. Oppenheimer, “An improved evolvable oscillator
for all flight mode control of an insect-scale flapping wing micro air
vehicle”, IEEE Congress on Evolutionary Computation. IEEE Press.
2011.

[8] Gallagher, J.C., and Sam, M. (2021). Improvements to Speed and
Efficacy in Non-Stationary Learning in a Flapping-Wing Air Vehicle:
Constrained and Unconstrained Flight. In Proceedings of the 2021
International Conference on Evolvable Systems in the IEEE
Symposium Series on Computational Intelligence. (ICES 2021).
Orlando FL

[9] J. C. Gallagher, E. T. Matson and R. Slater, "Real-Time Learning of
Wing Motion Correction in an Unconstrained Flapping-Wing Air
Vehicle," 2022 Sixth IEEE International Conference on Robotic
Computing (IRC), Italy, 2022, pp. 26-33, doi:
10.1109/IRC55401.2022.00010.

[10] M.W. Oppenheimer, I.E. Weintraub, D.O. Sigthorsson, and D.B.
Doman, "Experimental Measurements of Cycle Averaged Forces for a
Flapping Wing Vehicle ," in AIAA SciTech - AIAA Guidance,
Navigation, and Control Conference, Kissimmee, 2015.

[11] M. Ol and K. Granlund, "Abstraction of Aerodynamics of Flapping-
Wings: Is it Quasi-Steady? ," in 50th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace
Exposition, Nashville, 2012.

[12] J. Gallagher, L. Humphrey, and E. Matson, “Maintaining model
consistency during in-flight adaptation in a flapping-wing micro air
vehicle”, Robot Intelligence Technology and Applications 2, Advances
in Intelligent Systems and Computing vol. 274, pp. 517-530, 2014.

[13] J. Gallagher, S. Boddhu, E. Matson, and G. Greenwood,
“Improvements to evolutionary model consistency checking for a
flapping-wing micro air vehicle”, 2014 IEEE International Conference
on Evolvable Systems (ICES), pp. 203 – 210. 2014.

[14] J. Gallagher, M. Sam, S. Boddhu, E. Matson, and G. Greenwood.
“Drag Force Extension to Evolutionary Model Consistency Checking
for a Flapping-Wing Micro Air Vehicle”, 2016 IEEE Congress on
Evolutionary Computation

1103

