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Abstract – Small Flapping-Wing Micro Air Vehicles (FW-
MAVs) may be subjected to either or both of manufacturing 
defects or in-service damage that render their pre-designed 
controllers less than adequately effective. Even minor damage to 
wings, for example, can remove the vehicle’s ability to reliably 
follow waypoint trails even if that same damage does not result in 
a catastrophic loss of altitude. One solution to this problem is to 
adapt the core wing motion scripts (wing gaits) in an attempt to 
use wing motion to compensate for losses of force and torque 
generation due to in-service damage or manufacturing faults.  
This approach presents a number of challenges - especially if it is 
to be deployed in a resource restricted vehicle in an online mode 
during an actual mission. Prior to this paper, we had presented 
only anecdotal treatment of fully unrestricted, 3D flight.  In this 
paper, we will definitively establish the utility of EA adaptation of 
flight control in unrestricted flight in a pendulum-stable FW-
MAV. We will, additionally, introduce mutation and crowding 
modifications that provide demonstrable utility in a manner 
amenable to implementation on a resource-restricted micro 
vehicle. The paper will conclude with a discussion of open-issues 
and the potential application of the reported methods to other 
problems. 

Keywords—Flapping-Wing Micro Air Vehicle; Evolvable and 
Adaptive Hardware; Evolutionary Computation; Adaptive Control 

 

I. INTRODUCTION 
Consider a person treading water in a swimming pool by 

sculling his arms across the surface of the water in rhythmical 
arcs while his body extends straight down into the water and 
perpendicular to the bottom of the pool.  Assuming the arms 
swept out fully-symmetric strokes aft to fore and further 
assuming the strokes were identical between the two arms, 
when averaged over a whole sweep cycle, all forces and 
torques except for a single force pointed up and out of the pool 
should cancel out.  In a sense, the person could “hover” in 
place in the water subject only to a small limit-cycle around 
the fixed point that would occur during the arm sculling.  One 
could further imagine introducing selected and planned 
asymmetries in those arm sculling motions to introduce 
additional net forces and torques to not only support one’s self 

at the surface of the water (lift), but also to produce net torques 
that allow spinning in place (rolling) or moving forward or 
backwards along the surface of the water (translation).  In the 
seminal works [1] – [3], the above strategy was formalized as 
a means to control a small FW-MAV.  An assumption was 
made that the wings would flap with cosine gaits (motion 
patterns).  Knowing that pattern, and assuming symmetry 
wing-to-wing, one could produce a model of lift and 
determine a frequency with which to flap to counteract gravity 
or move up and down in a controlled way.  Likewise, one 
could introduce shape parameters that modify the underlying 
cosine motions differentially across the body to produce roll 
and/or translation. Analytic model-based force and torque 
controllers that compute desired motion shape parameters and 
frequencies can be embedded in fairly traditional waypoint 
controllers to produce full flight control.  Once per wing flap, 
the waypoint controller would determine a desired relative 
position, the individual roll, translation, and lift controllers 
would produce their suggestions for frequency and/or shape 
parameter, these would be communicated to an allocator that 
would decide what is most important to correct, and the 
determined parameters would be sent to the wing motion 
controllers.  Over the next wing flap, efforts would be directed 
at “correcting” the vehicle in space to be closer to what is 
desired.  This would repeat once per wing flap.  The method 
is, in our opinion, somewhat elegant and is definitely 
amenable to implementation in simple on-board hardware. 

What, however, happens when the derived models internal 
to the roll, lift, and translation sub-controllers are not of 
sufficient fidelity? Informal qualitative observations suggest 
that the loss of even a few percents of what wing force 
production is expected by the models prevents reliable 
waypoint tracking. These observations were more formally 
explored using model-checking methods in [4]. Perhaps 
surprisingly, though the core control is brittle in ability to track 
specific waypoints, it is robust in keeping the vehicle in the air 
– if at the incorrect position.  If one doesn’t mind being at “the 
wrong place”, then the core model-based controllers can keep 
the vehicle aloft even for somewhat significant wing force 
production deficits of tens of percents. That one could stay in 
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the air at all under a fairly wide range of wing damage cases 
suggested to us that it would be possible to apply online 
machine learning to the core axis controllers (roll, altitude, 
and translation) to adapt to ongoing wing damage and restore 
the ability to properly track waypoints.  The question, of 
course, is just how to accomplish this feat. 

From a hardware perspective, one must immediately 
presume significant computational constraints. Especially at 
insect-scales, there simply is not room for complex 
computational hardware or power sources to run it. Any 
methods used must be amenable to implementation in very 
simple, very small, and very energy efficient hardware. From 
a machine learning / evolutionary computation perspective, 
the challenges are compounded by the fact that learning “new 
axis controllers” – in whatever form that takes – represents a 
hugely non-stationary online optimization problem. 
Measurements of position accuracy would by definition be 
corrupted by some level of random noise. If the learning is 
being done online and the vehicle is flying normal missions, 
one can expect some level of cyclic large-scale behavior (I.E. 
hover station keeping, followed by transit, followed by hover 
station keeping, etc.).  We now have that form of non-
stationary optimization.  Perhaps most insidiously, the random 
ordering of optimization candidates effects the scores.  
Presenting for evaluation a highly effective solution AFTER 
a very poor solution will taint the score of the highly effective 
solution simply because that poor solution leaves the vehicle 
in such a bad state that the great controller can’t possibly fix 
it in its given evaluation window.  We now have presentation-
order instability.  Note that, even with these challenges 
present, we still must complete any learning without crashing 
the vehicle and in an amount of flight time that is reasonable 
to end users.  Taking several months of flight time to correct 
behavior is, for example, not acceptable under any practical 
circumstances. 

In previous work over the years, we struggled to improve 
learning efficacy and learning speed in light of the significant 
hardware and learning-environment challenges summarized 
above [5]-[9]. The referenced work represents a wide variety 
of approaches that were unified in two significant respects.  
The first was that they could be arguably be implemented 
using limited hardware resources and the second was that they 
employed EA and EA-like methods to adapt the core wing 
motion functions as a means of compensating for wing 
damage (I.E. learn basic gait functions that, when combined 
with broken wings, again produced forces that were 
compatible with the system models already implicit in the 
controllers instead of trying to relearn the models themselves).  
Only very recently were we confident that we had a learning 
method capable of providing such correction when the vehicle 
was flying unconstrained trajectories in 3D space [9]. Our 
previous report of success with the new algorithm, however, 
was largely based on anecdotal observation and lacked any 
significant amount of analysis into algorithm operation. 
Further, that report focused on specific modifications required 
for the method to function with the latest generation of FW-
MAV which places restrictions on legal wing gaits and, thus, 
required significant reworking of the underlying learning 
methods.  This paper will take that new algorithm as a base 

and, after a brief presentation of problem specific concepts 
and discussion of previous work, provide the following further 
analyses and introduction of additional modifications: 

i. One can easily hypothesize that many critical 
performance metrics (time to achieve of an acceptable 
solution, percent yield of acceptable solutions, online 
performance, etc.) would correlate strongly to the size of 
the population.  This paper will quantitatively explore 
those effects. 

ii. Smaller populations may show some benefits related to 
efficiency of hardware implementation and less flight 
time being spent culling out poor candidate solutions. On 
the other hand, they may suffer deliterious effects from 
the pre-mature loss of population diversity or simply lack 
of sufficient diversity at the outset of optimization. After 
conisdering the results of (i) above, this paper will 
explore the use of a genotypic crowding-metric survivor 
selection to combat any issues that may have been 
uncovered. 

iii. As the work presented here represents what is in our 
opinion the first fully-functional method that achieves 
appropriate balance of all our concerns across-the-board 
for online FW-MAV adaptation, this paper will more 
comprehensively address the next steps enabled by 
having met this milestone. 

II. BACKGROUND AND RELATED WORK 

A. The Flapping-Wing Vehicle 
 Detailed descriptions of kinematics, dynamics, basic 

control, and basic evolved wing gait oscillator adaptation can 
be found in [1] – [3]. Figure 1 provides an orthographic view 
of the simulated vehicle.  Each wing can be independently and 
actively rotated around its wing root. We refer to the angular 
positions of the left and right wings around its root as 𝜙! and 
𝜙" respectively. For this work, the wing is modeled as being 
hinged at the shoulder and it rotates to an attack angle of ±𝛼 
under the influence of air pressure the wing sweeps through 
its 𝜙  range. The vehicle itself may move freely into any 
position or pose in 3D space under the influence of gravity and 
lift and drag forces generated by the wings. 

The vehicle is guided along a waypoint path under the 
control of a “three-level” controller (Fig. 2). Once per wing 
flap, the path planner would produce a desired relative roll 
angle, relative altitude change, and relative translational 
change.  These desires are communicated, as appropriate, to 
each of a model-based controller for each of the vehicle roll 
angle (Body Roll Command Tracking Controller), altitude 
(Body X Command Tracking Controller), and lateral 
translation (Body Z Command Tracking Controller) 
respectively. Each of these three tracking controllers 
computes desired body frame torques and forces and, using an 
inverted model of the vehicle, generates a flapping frequency 
(BXCT) and candidates for shape parameters (BRCT and 
BZCT) to modify the assumed cosine wing gaits stored in the 
lowest level wing motion controller (left and right split-cycle 
oscillators in Fig. 2). The allocator chooses from among the 
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shape and frequency parameter alternatives provided by the 
three model-based tracking controllers and instructs the left-
wing and right-wing oscillators to produce the required 
modified cosine wing gaits on each wing.  Due to mechanical 
constraints imposed on the current generation of the physical 
vehicle, the two wings must meet at the full forward angular 
position at the beginning and end of each wing beat.  They 
must also move monotonically either to the front or back until 
they achieve maximum magnitude, then they may reverse. 
There is no strict condition that the wings meet simultaneously 
at full backward extension. Of note here is that the standard 
wing motion (split-cycle oscillators in Fig. 2) controllers have 
cosines hard-coded in them and both the shape and frequency 
parameters communicated to them modify the base cosines as 
required. 

The introduction already discussed what could go wrong 
and suggested what we should do about it. One could attempt 
to learn the system models inside each of the three tracking 
controllers (horizontal green boxes in Fig. 2), but this, as an 
exercise in online system identification, might incur 
significant computational expense.  In previous work, we 
employed various EAs, in an online mode, to evolve the core 
oscillation functions inside the wing oscillators instead.  The 
idea was to match the force generation behavior of the 
wing/oscillation combination to vehicle models in the control 
rather than match the models to what the broken wings were 
doing when driven by cosines.  Various reports or historical 
efforts are available in [5]-[9].  For this work, we start from 
the most recent and, prior to what we will report here, most 
successful attempt reported in [9]. 

III. THE MINIPOP EA 
In the Base MINIPOP EA Method, we represent wing 

motion functions as lookup tables of 256 individual wing 
angle positions each stored with a precision of eight bits.  This 
choice is consistent with the limitations of the actual hardware 
used in several generations of the physical implementations of 

these vehicles. The core controller, without learning, would 
therefore store cosines in these tables and the wings would be 
actuated by playing back those values at different speeds 
(frequency shape parameter) or by introducing timing offsets 
inside the table to distort the cosine according to the needs of 
the body axis controllers (delta shift shape parameter).  Our 
learning method allows an EA to evolve these wing motion 
tables (wing gaits) to optimize a performance based objective 
function. For this purpose, we maintain a library of eight 
precomputed “basis functions” (Fig. 3) that can be blended at 
run time to generate a variety of periodic functions that can 
replace the otherwise hard-coded cosine functions in the split-
cycle oscillators.  Each possible base oscillation function is 
specified by an array of eight integers each of which 
corresponds to the identity of one of the basis functions.  The 
function used is the average of the identified functions, which 
can be computed quickly at run time with integer arithmetic. 
For each of 256 angular positions of the desired function, one 
adds the values from eight identified basis functions and then 
logically shifts right twice to divide by eight. This composed 
function would then be used as the core wing gait.  Why we 
chose the specific bases shown is beyond the scope of this 
paper, that said, those choices were influenced by safety 
concerns and mechanical constraints of the current generation 
physical vehicle. The genome we use to encode wing motions 
is also shown in Fig 3. Each genome is the concatenation of 
the base function indices for each wing (eight values for each 
of the two wings shown in numbered LF and RF blocks of Fig. 
3) as well as a learned gain multiplier that would be applied to 
the frequency given to the oscillators by the allocator (shown 
in the FM box of Fig 3.).  The use of an evolved gain was also 
added in response to constraints imposed by the mechanisms 
of the current generation physical vehicle and represents a 
way around the problem of not being able to reverse motions 
in a wing flap in process. This physical wing-motion 
requirement is more completely discussed in [9].  

 
 
Fig. 1.   Orthographic View of Conceptual FW-MAV. 
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Fig. 2. – Control Schematic 
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Fig. 4 provides pseudo-code of the MINIPOP method 
used in [9] and also, in modified form, in this paper. It is a 
small population stochastic hill climbing, non-generational, 
EA that employs a strict form of elitism and periodic 
presentation of the current champion as a means of combating 
deceptive candidate evaluations cause by the serialized 
presentation of candidates in an ongoing task. In an offline 
learning process, we would “return” the vehicle to a low error 
state before presenting a truly novel candidate solution so as 
to not corrupt the evaluation of that novel candidate with 
blame inherited from a previously presented candidate. For 
example, a previous candidate could put the vehicle so far 
from a desired path that it couldn’t completely recover even 
if a current candidate solution were of high quality.  That 
current candidate would inherit some of the blame for the 
previously presented terrible candidate. One could,  between 
evaluation candidates, use a perfect controller to reset the 
system to a good state to “clear the palate” between candidate 
evaluations.  Of course, we don’t know what that perfect 
control solution is and if we did – we wouldn’t be running an 
EA anyway. Therefore, as a heuristic we allow the current 
champion to. Note that every call to govern the vehicle for a 
period between candidate evaluations. evaluate_error() in 
Fig 4. consists of sending the oscillator patterns represented 
by the genome to the vehicle and allowing that controller to 
control the vehicle for a user selected number of wing flaps 
before returning.  The objective function used is the absolute 
positional error between the vehicle’s position at the end of 
the evaluation period and the waypoint that is being attempted.  

Of most interest, and novel to this paper, are evidence-
based modification to the mutation operation at line 21 of Fig. 
4 and more careful study, and potential modification of, the 

crowding-style survivor replacement mechanism implicit at 
lines 44 and 45 of Fig 4.   

In the one previous work where the current version of the 
MINIPOP EA and presented genome encoding had been used 
[9], we encoded the frequency gain (FM in Fig. 3) as a float 
type and evolved that setting as a continuous value with a 
Gaussian mutation. In the real vehicle, the idea of 
continuously-variable gain settings is unrealistic, as we would 
most likely implement that capability as discretized values 
achieved by discretized clock frequency manipulations.  
Therefore, in this work we limited gain values to eight discrete 
levels of gain ranging from 1.0 to 1.4375 with a step size of 
0.0625.  We still employed Gaussian mutation with a standard 
deviation of 0.125 – though with actual achieved gains being 
binned into one of the legal values. As it is not clear that the 
EA would reliably find solutions under these conditions, 
through testing was obviously required. 

 
 
Fig. 3 –Basis Functions and Genome Encoding 
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FM 1  done_evolving = FALSE; 

2  initialize_population(&population); 
3 
4  // By convention, the champion genome will always be stored  
5  // in slot zero of the population.  Slots are indexed from 0 
6  // to POPULATION_SIZE-1 
7 
8  while (!done_evolving) 
9   {  online_champ_error  = 0.0; 
10     champion_index      = 0; 
11     challenger_index    = uniform_random(1, POPULATION_SIZE-1);  
12    
13     champion_genome     = get_genome(&population,champion_index); 
14 
15     challenger_genome   = get_genome(&population, challenger_index); 
16 
17     child_genome        = uniform_crossover(champion_genome,  
18                                             challenger_genome,  
19                                             crossover_rate); 
20 
21     child_genome        = mutate(child_genome, mutate_rate); 
22      
23     champion_error      = evaluate_error(champion_genome); 
24     online_champ_error += champion_error; 
25 
26     challenger_error    = evaluate_error(challenger_genome); 
27 
28     champion_error      = evaluate_error(champion_genome); 
29     online_champ_error += champion_error; 
30 
31     child_error         = evaluate_error(child_genome); 
32      
33     // If the child is better than the champion, copy the  
34     // child genome into the champion slot of the population 
35      
36     if (child_error < champion_error) 
37       put_genome(child_genome, &population, champion_index); 
38      
39     // If the child is better than the challenger, copy the  
40     // child genome into the population slot that had been  
41     // occupied by the challenger, then do nothing else to  
42     // the population 
43      
44     if (child_error < challenger_error) 
45        put_genome(child_genome, &population, challenger_index);  
46      
47     // If you are doing the following branch, then the child was not  
48     // better than the challenger.  Check to see if the champion is  
49     // better than the challenger. If it is, copy the champion genome  
50     // into the slot in the population that the challenger had  
51     // occupied 
52      
53     else 
54        if (champion_error < challenger_error) 
55           put_genome(champion_genome, &population, challenger_index); 
56      
57   
58     // Look at the average of the two champion evaluations done in  
59     // this trip through the loop.  If this "recent online champion 
60     // fitness” is less than a target error level, then set the  
61     // done_evolving flag to true so that the evolution loop can be  
62     // exited 
63      
64   online_champ_error = online_champ_error / 2.0; 
65   if (online_champ_error < ERROR_TARGET) done_evolving = TRUE; 
66  } // end while loop 

 
Fig. 4 – Pseudo-Code for Basis Function Learning EA 
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Also in [9], we implicitly employed crowding-style 
replacement.  In lines 45 and 46 of Fig. 4., we can see that the 
winner of the child/challenger tournament occupies (replaces) 
the challenger slot in the population. Crowding mechanisms 
attempt to promote extended population diversity and, 
possibly, formation of niching, by ensuring that selected 
survivors replace population members that are most alike to 
them as measured by some genotypic or phenotypic metric. 
We generate candidate children via crossover of a challenger 
and the champion that is then mutated.  Assuming that the 
resultant child is similar to the challenger, then putting the 
winner of a challenger and child into the challenger’s slot 
represents a simplified crowding metric.  When we first 
implemented this idea, it was justified on an ad-hoc basis. 
Here we will compare this implicit crowding to both an 
explicitly computed crowding metric and to random 
replacement in an effort to assess the wisdom and utility of 
that previously ad-hoc decision. 

IV. EXPERIMENTAL CONDITIONS AND DEFINITIONS 
All runs reported here employed the following parameter 

settings:  Population size is swept through a range of 8 to 88 
with a step size of 8. Wing Flaps per Evaluation is set to 120, 
which represents approximately one second of flight time 
when the vehicle is at hover. Mutation probability is set to 
3.125% - which means that any slot of the genome has that 
percent chance of mutating. Basis function slots mutate to any 
of the eight legal basis function index values with uniform 
probability. Gain mutates as previously described. The 
uniform crossover probability is 50%, meaning that each 
allele position of a child has a 50/50 chance of receiving its 
value from one of the two parents. Each evolutionary trial 
reported was ran until the average online error of the 
champion, collected over one trip through the algorithm loop 
starting at line 8 and ending at line 66, was less than 0.001 
meters (1 mm) OR when five thousand evaluations of 
candidates and champions had been completed. Those five 
thousand evaluations would correspond to approximately 
seventy minutes of flight time. Evolutions and candidate 
evaluations are conducted online while the vehicle is 
attempting to follow a path with 70 waypoints as quickly as 
possible, but no longer than 70 minutes flight time.  The target 
flight path was designed to have multiple altitude changes as 
well as a large number of distances between points and 
sharpness of turns required. When a trial is run, each of the 
wings of the vehicle was assigned a random damage 
coefficient between 0.6 and 1.0 that is multiplied by the 
amounts of drag and lift forces produced by that wing.  
Modeling of wing damage in this way, on a cycle-averaged 
basis, is supported by arguments made in [10] and [11].  

For purposes of results evaluation, we define three disjoint 
sets of qualitative behavior into which all evolved solutions 
may fall into.  These are:  Full Failure – Solutions that are full 
failures will not approach the first waypoint within 1 mm, in 
any spatial dimension.  In fact, they most often orbit some 
random point far from the first waypoint or fly off to infinity 
and beyond. Partial Failure – The vehicle can approach and 
maintain desired altitudes withing 1mm of the first waypoint, 
but it cannot maneuver to subsequent waypoints in the world 
XY plane; Full Success – The vehicle during evolution makes 

it to at least the second desired waypoint. For purposes of yield 
results reported below, verification of failure or success status 
was determined by exercising the champion genome after 
evolution had completed. As actual evolutionary learning is 
online and it is not switched off so that continuous 
improvement is desired, we use as our “time to success” a 
control achievement that predicts eventual full success of 
whatever champion genome is present at the end of the trial.  
We note that the ability to reach the 2nd of the desired 
waypoints during evolution is a strong predictor of Full 
Success and thus for current purposes use “2nd waypoint time” 
as the time when the vehicle’s flight becomes viable – even if 
additional learning can occur.  Fewer than 1% of learning 
trials that acquired the 2nd waypoint, over all of the learning 
experiments presented in this paper failed to achieve a 
champion capable of full success.  Possible reasons for this 
observation will be discussed in the conclusions.   

When we use an explicitly computed crowding metric, it 
is computed as follows: We first flattened each wing’s eight 
elements to a discrete probability distribution over the relative 
appearances of each of the eight possible basis functions. The 
distance between any two genomes was computed as the 
Euclidian distance between the two distributions. We chose 
this distance metric because the calculation could be 
accomplished with a modest number of integer additions, 
shifts, and comparison operations.   

V. EXPERIMENTAL RESULTS  
Before delving into detailed investigations, it may be 

prudent to at least qualitatively assess the need to evolve both 
wing motion patterns (gaits) and oscillator gains -- as it is not 
immediately apparent adapting both simultaneously is 
required to restore proper flight control.  For the experiments 
underlying this preliminary discussion, we set the population 

 
 
Fig. 5 – Yield Rates and Median Time to 2nd Waypoint for All 
Replacement Variants 
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size to sixty-four and left other parameters set as previously 
indicated.  

Over five thousand trials, when evolving wing gaits only 
while freezing flapping frequency gains to 1.0, the vast 
majority of evolved solutions were Full Failures. Under this 
condition, full successes  were rarely seen when the damage 
to each wing was very slight (no more than 2%) as presumably 
wing gait modification can provide at least some mild lift 
enhancement and the drag forces are sufficiently balanced, 
wing-to-wing, to enable controlled motion in the XY world 
plane.  Under this condition partial failures were also rarely 
seen when damage to the wings was slight, but sufficiently 
unbalanced as to ruin XY plan navigation. Over another five 
thousand trials evolving gain only while leaving the wing 
motion functions frozen at cosines, we again saw the vast 
majority of results being Full Failures or Partial Failures.  In 
this set, the dividing line between Full and Partial Failures 
seems to be whether or not one of the selectable, discrete, gain 
levels was sufficient to boost lift enough to get one close to a 
desired altitude. In the rare case that this condition is met and 
when, additionally the deficits across the wings are very 
similar (I.E. the damage is balanced), then Full Successes 
could be observed. These ten-thousand trials strongly suggest 
that in the vast majority of cases, both gait and gain learning 
are required for success. With this need established, at least 
empirically, we can move on to exploration of the full 
algorithm with gain and gait learning enabled.  

Fig 5. presents performance statistics for the presented 
MINIPOP EA with discretized gain mutation and three 
different survivor replacement options: random replacement 
(random), implicit crowding replacement (i_crowd), and 
genome distance crowding replacement (g_crowd). Perhaps 
the statistic of most relevance to end users of a FW-MAV is 
the failure rate, or the percentage of runs that did not achieve 
fully successful waypoint flight control. Note that at smaller 
population sizes, both crowding variants have smaller failure 
rates than the random replacement.  Also note that, at least in 
terms of yield, the two crowding variants are indistinguishable 
from each other. Looking at median time to achievement of 
the 2nd waypoint, which is our chosen predictor of eventual 
full success, we see a clear winner emerge. The implicit 
crowding method, which corresponds to the original choice 
made in [9], is consistently faster in achieving the 2nd 
waypoint success condition under identical meta-parameter 
settings across the three variants tested.  The collected data 
suggest that to achieve a failure rate of 2% or less one must 
set population size to 32 or greater, with the price of higher 
yields after that being paid by longer expected times to flight 
success.  At this point, we can conclude that the algorithm, as 
presented with discretized gain levels, multiset encoding of 
the wing gaits, and meta-parameters set as described can 
restore flight control at least 98% of the time in eight minutes 
or less 50% of the time (Q2) and in less than eleven minutes 
75% of the time (Q3).  This is within acceptable limits for 
practical use of the method and this is the first time we have 
established that with large data sets for fully unconstrained 
flight.  Of course, there are additional observations we can 
make if we dig more deeply, and these observations may lead 
to additional improvements. 

VI. ADDITIONAL OBSERVATIONS OF EVOLVED SOLUTIONS 
One could, and perhaps should, tune other EA parameters 

to decrease learning time and increase yield. Simulations are 
expensive to run, however, so sweeping through search 
parameter spaces blindly may not be the best choice.  So, let 
us see what problem space information we can glean from 
experiments already run and speculate on how that 
information might inform what we do going forward.    

First, let us examine what happens when evolve gain levels 
are discretized, like we did in this paper, vs. what we see when 
we evolved continuous valued gain values [9]. Fig. 6 shows 
graphs of average wing damage multiplier across the two 
wings vs. the actual gain value that evolved.  Evolved gain is 
shown on the y-axis and average wing damage across the two 
wings is on the x-axis. Both graphs are based on 4000 trials at 
population size 64 with only the fully successful individuals 
shown. Note that if we allow for fully continuous gains to be 
evolved, then we will see a continuously variable selection of 
gaits will be evolved.  Looking at the graph for the discretized 
gains reveals something interesting, however. Note that for 
large sections of average deficits, there are viable, fully 
successful, solutions that draw from more than one possibility 
for gain value.  One such region runs from approximately 0.7 
to 0.75 and in that region gains of 1.25 and 1.1875 are both 
viable, presuming of course, they are paired with an 
appropriate selection of evolved wing gaits.  Although one 
might be tempted to think that the wing gait adjustments’ 
primary value is in balancing drag forces so that world XY 
plane navigation functions – the above provides some 
evidence that boosts in lift are also possible via changes in 
gait.  If this is true, one might argue that at least in some cases 
gain evolves to get altitude control “in the ballpark” and that 
gait evolution provides additional fine adjustment of both 
altitude as well as roll and translation control. It also implies 

 
 
Fig. 6 – Evolved Gain Values for Discretized vs. Continuous Gain 
Options 
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that the amount of lift correction that can be provided spans 
several of the levels of lift correction that can be achieved by 
gain.  We can presume, therefore, that this problem space is 
somewhat target rich and that there are potentially many 
genotypes – even those using significantly different gain 
values – that correct for the same wing damage levels.  To test 
this idea, we created a variant of the simulation code that 
attempted multiple independent evolutionary runs for each 
damage case. At the time of the writing of this paper, we have 
conducted six hundred damage case trials where each damage 
case was given ten independent evolutionary runs. These trials 
were run at our presumed optimal parameter settings of 
implicit crowding and population 32.  All of these trials had 
at least 2 of 10 full successes with the vast majority of them 
having 9 or 10 full successes.  Further, we observed ranges of 
successful gain values as well as ranges of wing gaits all being 
successful for the same wing error conditions.  Although this 
is preliminary evidence only, it does strongly suggest that 
failures to find solutions are more likely failures of the search 
algorithm then they are indications that solutions don’t exist.  
The representation supports plenty of solutions, we just need 
to find them.  These initial experiments also suggest several 
other EA enhancements that could reduce failure rates while 
still keeping population and time to success values small.  
Adaptive hypermutation is one possibility. A more 
sophisticated crowding metric might be another. Although our 
implicit crowding currently seems the best choice, there is no 
reason to think it is the ultimately best one. 

Second, let us turn our attention now to anecdotal 
observations about partial failures that occur when using 
discretized gains. Partial failures, regardless of which EA 
variant (base or crowding) produced them, end up with 
genomes that are both highly symmetric across the wings (I.E. 
the leaned gait functions are highly similar) and which are 
dominated by basis functions A and B (Fig. 3).  This implies 
that the partial failures overwhelmingly learn to adopt gait 
functions that are very close to the “normal” cosine function 
or to a fairly similar triangle wave.  In other words, in terms 
of gait, the partial failures learn to do what the model-based 
tracking controllers expect as being correct for undamaged 
wings. Understanding this very consistent pattern in the 
phenotype underlying partial failures will be instructive in 
lowering the number of partial failures and increasing overall 
yield of viable solutions. 

VII. DISCUSSION AND CONCLUSIONS 
We had made previous report of the success of online 

evolution for restoring waypoint control in fully 3D flight [9]. 
That report, however, was limited in potential practical 
application in that we previously allowed evolution of real-
valued gains. This would be impractical in our eventual use 
case in which a requirement to implement in simple 
computational hardware (presumably without floating-point 
capability) would be paramount. Also, the assumption of 
continuously variable gain control is problematic in its own 
right.  The algorithm version presented here overcomes those 
final practical limitations.  We also verify that crowding is 
crucial to promoting acceptable yields while minimizing 
computational resources. It is therefore not unreasonable to 

conclude that we have delivered on promises (i) and (ii) from 
this paper’s introduction.  What about promise (iii)?  Frankly, 
this is the more interesting discussion, so let us proceed to 
that. 

First, the results here suggest that crowding has some 
utility for this problem. We have yet to beat the implicit 
crowding method, but there is no reason to think it can’t be 
beaten. The genotypic crowding metric we used does account 
for the redundancy effects of a multiset encoding as all 
redundant genome variants would map to the same 
Probability Distribution Function (PDF) that serves as the 
endpoint for whatever distance metric is used.  On the other 
hand, it does not properly represent distance in the 
phenotypic sense. The genome PDF distance between a 
purely cosine gait function (Basis A), as represented by the 
genome, and a purely triangle gait function (Basis B), as 
represented by the genome, is the same as the distance 
between a pure cosine and something that was made purely 
of Basis E even though we know that phenotypically Basis E 
is closer to Basis A than is Basis B.  The obvious fix for this 
is to compute the distance metric for crowding replacement 
by comparing the phenotypes directly.  As this would entail 
computing and scanning through 256 element, rather than 16 
element, tables, it would be more expensive – but perhaps not 
prohibitively so. This is work under way and it might provide 
better overall results at a larger, but perhaps still acceptable, 
cost in onboard computational hardware. 

Second, the persistent commonalities in the phenotypical 
structure of all partial failures are obviously of interest.  We 
have an as of yet untested, but perhaps viable, hypothesis on 
this matter that draws from observations made elsewhere in 
this paper.  The vehicle we are modeling here flies in a 
pendulum stable mode.  That means it flies with its body 
frame x-axis (see Fig. 1 for axis definition) is parallel to the 
world z-axis (world frame altitude).  For a vehicle with the 
bulk of its weight below its wings flying relatively slowly, 
this is a reasonable assumption.  Under these conditions, the 
control of altitude is largely decoupled from the control of 
other degrees of freedom.  This can also be gleaned from an 
examination of the control diagram in Fig. 2. What does this 
mean from an EA perspective?  Even if our objective function 
does not reflect it directly, the nature of the problem itself is 
somewhat multi-objective due to the nature of the controller.  
Even if we are measuring a scalar objective, ultimately the 
controller is implicitly solving altitude control as an issue 
separate from roll and forward XY plane position control. 
Note in Fig 2. That the axis controllers only ever provide one 
gain and that allocation is only necessary for the delta shift 
alternatives being provided by the body z and body roll sub-
controllers. Since our scalar objective function collapses 
quality of altitude control and everything else into one value 
(I.E. distance to target waypoint in three-space) one could 
evolve wing gait functions that, in combination with a 
specific gain value, are so effective at solving the altitude 
problem that any searches off of that local “single objective” 
optimal are of sufficiently low quality to make any moves off 

1102



 

 

that localized optimal non-viable. Interestingly, for nearly all 
such partial successes, we see the EA adopt wing gaits that 
are very similar to the cosine gaits the core controller was 
designed to work with.  A perhaps simple expedient would 
be to promote symmetry breaking during evolution by 
encouraging the use of asymmetric wing gaits across the two 
wings. Multiple mechanisms to accomplish this exist, 
including using a replacement strategy that promotes 
asymmetry of gaits across the wings. The use of this and 
similar expedients, along with a detailed analysis of partial 
success cases and how they arise, is currently underway. 

Third, recall that we observed that reaching the second 
waypoint during learning was a strong, but not perfect, 
predictor of if the eventual champion genome achieved at 
termination of learning were capable of providing quality 
flight control using ONLY the champion genome going 
forward.  In fewer than 1% of all cases, this was not true and, 
although with learning switched on the vehicle could follow 
waypoints, it could not with learning switched off.  This 
implies that in rare cases, the population of wing oscillator 
solutions actually contains sub-niches that are situationally 
appropriate for specific flight modes and that are dynamically 
selected as needed during flight as a side-effect of sampling 
the population.  We could detect this by monitoring flights on 
an ongoing basis and noting if specific champion genomes 
appeared on a cyclic basis correlated to specific modes of 
flight. If this were occurring, we would have essentially 
created a hybrid-state machine controller in which the 
refinements were alternative wing motion oscillator settings 
and the state switches were mediated by stochastic selection 
and evaluation of state connected performance. Under some 
conditions, we might actually desire controllers, so this 
possibility is also currently under study so that we may 
encourage or discourage its evolution according to the desires 
of the end users. 

Finally, we, in other work, developed and reported upon 
a method to directly extract estimates of actual wing lift and 
drag force deficits using multiple observations of wing gait 
tests that we would be conducting anyway while evolving 
better oscillator patterns [12] – [14].  It is ironic that the whole 
reason for this EA learning exercise was to avoid doing any 
system identification, but then we later find a way to leverage 
not doing system identification into doing system 
identification via a back door. One of the conditions for the 
implicit system ID to function is that we must allocate forces 
asymmetrically across the wings.  The simple expedient of 
using a crowding metric (phenotypic or genotypic) across the 
wing gait functions for the two wings (compare two multisets 
of 8 elements from one vehicle) might be able to 
inexpensively constrain learning in a manner that is more 
amenable to application of that method.  Likewise, niching 
would provide similarly independent solution samples that 
could be used  and would maximize the utility of the 
entertainingly ironic backdoor system identification just 
previously mentioned. Both expedients to that end are also 
currently under study. 

DISCLAIMER 
The views expressed in this paper are those of the authors and do 
not reflect the official views of the United States Air force nor the 
Department of Defense. 
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