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Abstract—We propose the concept of ”explainergy”, a new
way of including explainability in the metaheuristic perfor-
mance of algorithms solving problems in the energy domain.
To this end, we open the discussion around eXplainable Com-
putational Intelligence (XCI), focusing on using metaheuristic
optimization for complex energy-related problems. It is well
known that computational intelligence applied to optimization
cannot guarantee optimality theoretically and also faces issues
related to premature convergence, tuning parameters, and
variability of the results. These aspects slow the adoption of
such methods by energy industry practitioners. Our proposal
considers incorporating ideas already applied to the artificial
intelligence paradigm, namely those related to eXplainable
AI, to motivate current research in this field and provide
solutions from metaheuristics with explainability character-
istics. Through a case study solving a bidding problem in
local electricity markets, we shed light on some ideas that
might be advantageous to understanding the metaheuristic
performance for energy experts unfamiliar with approximate
algorithms. If an XCI framework is successfully developed, it
can increase metaheuristic adoption, reliability, and broader
success.

Index Terms—artificial intelligence, explainergy, explain-
able decision support systems, explainable computational
intelligence, metaheuristics.

I. INTRODUCTION

Power energy systems are rapidly incorporating new
resources for consumption and production, such as electric
vehicles (EVs) and renewable sources. Moreover, new
entities, such as aggregators, prosumers (consumers with
generation capabilities), and distributed generation and
demand response, are emerging, evolving the current tra-
ditional grid and changing its characteristics in new ways
[1], [2]. Considering that integrating these resources brings
higher dimensionality and uncertainty to energy-related
problems, conventional optimization methods might lose
their efficiency, reaching their limit for this new paradigm.

As a result, energy experts are exploring innovative ways
to manage and operate power distribution systems properly.
In this context, Computational intelligence (CI), includ-
ing metaheuristic optimization, is gaining more visibility
currently. Metaheuristics are high-level methods used to
explore solution search spaces. These methods should have
a dynamic balance between the utilization of collected
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search knowledge (often known as intensification) and the
exploration of the search space (which is commonly called
diversification) [3]. Metaheuristics can find good solutions
to complex problems and are effective problem-solvers
even when non-linearities and uncertainty are considered,
finding a good result in a reasonable time without requiring
the computational effort more traditional mathematical
models need [4].

Although several studies have demonstrated the effi-
ciency of metaheuristics in real-world applications [5], [6],
energy experts are hesitant to use these approaches to
deal with the sector’s growing complexity. This reluctance
comes in part from the lack of a theoretical background
guaranteeing the optimality of solutions. Due to this, we
hypothesize that novel methods to explain metaheuristic
performance and how those attain acceptable results in
situations where other strategies fail might be the key to a
broader acceptance of the methods. As the ”No Free Lunch
Theorem” states, it is impossible to design an algorithm
that can effectively deal with all different problems out
there [7]. However, CI practitioners can borrow methods
similar to the ones used in eXplainable AI (XAI) [8] and
use them in the field of CI, given rise to the idea of
eXplainable CI (XCI) to achieve successful metaheuristic
applications.

The concept of XCI can be a nice step towards the
explainability of metaheuristic performance and improve
the acceptance of metaheuristic optimization applied to
energy-related problems. We propose incorporating a new
framework with a layer that explains the solution obtained
in a given problem in a more user-conventional way. As
such, this paper provides; first, i) insight into energy-related
problems incorporating XCI techniques for an explainable
decision support system (DSS); and second, ii) a case study
based on a bidding optimization problem to show some
features that can be added into the description and analysis
of metaheuristic solutions.

The article is organized as follows: after this introductory
section, Section II briefly describes what is intended with
XCI applied to the energy domain. In Sections III to V, we
use a problem already solved with metaheuristics in [9] to
show how, through the use of figures and tables, we can
provide a better understanding of solutions in an energy-
related problem. Final remarks and conclusions taken from
this article are described in Section VI.
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II. FROM METAHEURISTICS TO EXPLAINERGY

In a nutshell, ”eXplainergy” is a concept that arises from
the combination of some well-developed lines of research
in computer science applied to a specific application do-
main. Figure 1 positioned the concept idea of ”eXplain-
ergy”. As can be seen, XCI comes from the combination
of explainability (i.e., using the same concepts applied in
artificial intelligence (AI) [10]) and CI. While the term
XCI can be referred to any application of explainability
into any of the CI areas (e.g., artificial neural networks
(ANN), evolutionary computation (EC), Fuzzy Systems
(FZ), probabilistic methods, etc.), in this article, we focus
on the optimization component of CI. More specifically, we
do not only restrict the optimization component of CI to the
EC, but we give it a more general character through the use
of metaheuristics. This narrows the scope of the proposed
concept and allows us to center our ideas on the topics that
are interesting in our application domain, namely energy-
related problems and the use of metaheuristics.

Fig. 1. The eXplainergy idea.

The development of our proposed idea will certainly
benefit from a formal mathematical definition of the type
of problems we are dealing with and how metaheuristics
can be used as an alternative solution method. Thus, a
deterministic combinatorial optimization problem (DCOP)
can be defined as [11]: Given a finite set S of feasible
solutions x, and a real-valued cost function G(x), find min
G(x). Notice that the set S is the solution space, and its
structure may be complex by constraints on solutions or
by uncertain, stochastic, and dynamic information in the
formulation. The global optimal solution x∗ is the one with
minimal objective function value (i.e., G(x∗) ≤ G(x)∀x ∈
S).

Many of the problems faced not only in energy but in
real-world applications belong to the class NP-hard, and
thus, algorithms that guarantee to find the optimal solution
(i.e., exact algorithms) in bounded time might require too
much or prohibitive time to return a solution for practical
applications. In this situation, designing algorithms that
find approximate solutions in reasonable times becomes
relevant. Metaheuristics belong to this class of ”approxi-
mate algorithms”.

The optimality of metaheuristic optimization cannot
be theoretically guaranteed so far. This aspect can give
place to worries about the stability and robustness of
such approaches. For instance, practitioners unfamiliar with
metaheuristics and their ”approximate” search procedures
might find it odd that new solutions are generated every

time the algorithms are run. In fact, one of the primary
drawbacks of applying CI in optimization is the difficulty
in understanding metaheuristic performance using sound
mathematical foundations.

To overcome this issue, we propose the exploration of
topics that are being studied in the field of AI, for example,
post-hoc explainability techniques [8] such as text, visual,
local, and simplification explanations could be applied to
give a better understanding of how the metaheuristic solves
a specific problem. Transparent Machine learning (ML)
methods could be integrated into the metaheuristic frame-
works providing the needed explainability without needing
post-hoc analysis. In [12], multiple surrogate models using
ML: linear regression, decision tree, and random forest
were used to provide a variable ranking index representing
their importance for numerous binary benchmark problems.
These ML techniques were integrated with a genetic algo-
rithm, and the variable ranking suggested which variables
were not needed and could be discarded for the given
problems. Authors in [13] present a methodology toward
understanding the metaheuristic decision process through
which a combination of variables greatly influences so-
lution quality, similar to what we offer in this work.
Solutions are extracted from a surrogate fitness model
(Markov network fitness model), and the authors analyze
the local sensitivity of solutions regarding the minimal cost
and mean coefficient energy values for a building’s facade.

Thus, XCI emerges as the combination of CI and
explainability in an attempt to provide transparency to
metaheuristics by including a rigorous analysis, such as
fitness, drift, and exploration/exploitation analysis, into the
metaheuristic design. Classical metaheuristics such as the
particle swarm optimization (PSO) [14], genetic algorithm
(GA) [15], differential evolution (DE) [16], to name a few,
can be enhanced by different means (for instance using
parameter tuning, adaptive operators, combination with
other heuristic-mathematical techniques, etc.), achieving
better flexibility of implementation for different problems.
These improvements, however, might not increase the trust
and acceptance of these methods compared to mathematical
techniques.

A. Incorporating XCI algorithms in the energy domain

Problems in the energy field, for example, the energy
resource management or the optimal bidding in local mar-
kets, need to consider multiple sources of uncertainty, in-
cluding renewable generation (wind and photovoltaic (PV)
generation), EVs (standard and autonomous), various forms
of load consumption, and local electricity transactions.
Moreover, those problems generally have many variables
to optimize (high dimensionality) and a small window
time for making decisions (from day-ahead to real-time),
requiring effective and efficient solution methods. In this
context, metaheuristics can be used and integrated into
the optimization process. However, due to the stochastic
nature of those techniques, algorithms incorporating an
explainable framework for solution transparency would be
key to understanding algorithm performance.

Another aspect that needs to be explained is how the
choice of parameters and the problem’s structure to be
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addressed significantly impact metaheuristic performance
[4]. For instance, metaheuristics can incorporate starting
solutions from deterministic techniques and combine oper-
ators from multiple algorithms. However, how to do it in a
simple manner, to give confidence to the user applying such
techniques, has been barely discussed in the specialized
literature.

But not all are bad news regarding using metaheuris-
tics in the energy domain. In fact, novel CI optimiza-
tion algorithms have already been developed and im-
plemented to solve mathematical models formulated for
various energy problems involving uncertainty. Algorithms
such as Cellular Univariate Marginal Distribution Algo-
rithm with Normal-Cauchy distribution (CUMDANCauhy)
[17], Hybrid-Adaptive Differential Evolution (HyDE) [18],
and Vortex Search (VS) [19], to name a few, already
showed good performance for problems in the energy field.
Therefore, through XCI, integrating a new framework that
provides explainability techniques would further enhance
the applicability and acceptance of such methods, enabling
a better understanding of why these algorithms work well
in such problems.

III. EXPLAINERGY USE CASE

We now present an energy application where eXplain-
ergy can be used. The problem, in turn, published in
[9], considers a local electricity market with consumers,
prosumers (consumers with PV generation), and local
producers (combined heat and power (CHP) generators)
trading energy to minimize costs and maximize incomes.
In addition, the problem considers a distribution system
operator that validates the transactions in the network and
detects voltage and line violations.

The problem is modeled as a bi-level optimization prob-
lem, considering a set of consumers I = {1, 2, . . . , Nc},
and producers J = {1, 2, . . . , Np}. The details of the
mathematical formulation can be found in [9]; what is
essential for us here is to consider that, at the upper-
level, consumers search for the optimization of the bids
of quantity and price into the local market (si,t, di,t), to
minimize costs as:

minimize
si,t,di,t

Ci =

T∑
t=1

∑
j

cpt · xj,i,t + cagg
t · E

buy
i,t

 (1)

where si,t represents the price bid, and di,t represents the
quantity of energy in that bid, for consumer i at time t.
xj,i,t is the energy bought by agent i from j (kWh); Ebuy

i,t

is the energy bought by agent i from the grid (kWh); cpt
is the clearing price in the local market resulting from the
bidding process (EUR/kWh); and cagg

t is the aggregator
tariff (EUR/kWh).

Similarly, still in the upper-level, producers search for
the optimization of incomes resulting from their bids
(sj,t, gj,t):

maximize
sj,t,gj,t

Pj =

T∑
t=1

(∑
i

cpt · xj,i,t + cF
t · Esell

j,t − cm
t ·Gj,t

)
(2)

where sj,t is a variable representing a price bid again, and
gj,t represents the quantity of energy to offer in the LEM
for producer j at time t. xj,i,t is the energy sold by agent j
to agent i (kWh); Esell

j,t is the energy sold by agent j to the
grid (kWh); cpt is the same clearing price obtained by the
market mechanism and used for consumers (EUR/kWh); cF

t

is the feed-in tariff (EUR/kWh); and cm
t ·Gj,t is the marginal

cost associated to the production of agent j (EUR).
The bids and offers in the upper level are constrained by

the lower-level optimization problem defining the clearing
price cpt. The lower-level problem (single leader) repre-
sents a symmetric pool-based market. First, supply and
demand curves are obtained by the sets GE (including
offers of energy (gj,t) in ascending order by their price sj,t)
and DE (including bids for energy (di,t) in descending
price order si,t) respectively. With those sets, a linear
problem is defined as:

maximize
d∗
i ,g

∗
j

Nc∑
i=1

λd
i · d∗i −

Np∑
j=1

λg
j · g

∗
j (3a)

st.

Nc∑
i=1

d∗i −
Np∑
j=1

g∗j = 0 : cpt (dual variable) (3b)

0 ≤ d∗i ≤ DEi i = 1, ..., Nc (3c)
0 ≤ g∗j ≤ GEj j = 1, ..., Np (3d)

where d∗i and g∗j are the demand and supply bids ordered
by price (i.e., belonging to sets DE and GE), and λd

i and
λg
j are the corresponding bid/offer prices. It can be seen

that Eq. (3a) maximizes the social welfare of market partic-
ipants; Eq. (3b) is the balance constraint (matching supply
and demand), and its dual variable is the clearing price
cpt; Eqs. (3c) and (3d) guarantee the supply and demand
limits. From the solution of this optimization problem, it is
possible to determine the upper-level parameter cpt and the
transacted energy xi,j from the accepted bids/offers d∗i , g

∗
j .

Simplifying the modeling of the problem, a solution
needs to provide the best decisions for those variables
considering the constraints of the problem and the bounds
defined for the variables. The problem can be optimally
solved under the assumption of perfect competition and
complete information, an assumption that is far from real-
ity in a LEM. Therefore, [9] proposes using ant colony
optimization (ACO) to learn the best bidding strategies
for the agents without sharing information. To solve the
problem with ACO, the authors need to define the encod-
ing of solutions and the fitness function of the problem.
These two steps are straightforward for a metaheuristic
practitioner, but they can be hard to follow for people
not used to working with these techniques. While we
use ACO as an example in the case study, the approach
can be easily extended to other metaheuristics. In fact,
in [9], the same encoding is used in other algorithms,
namely, CUMDANCauhy [17], [20], HyDE [18], VS [19].
Therefore, the analysis performed here can be applied to
other metaheuristics straightforwardly.
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IV. ENCODING OF SOLUTIONS USING EXPLAINERGY

As can be seen, a solution will include all the quantity
and price bids/offers from agents into the LEM. It is easy
to see that the dimension of the problem will be D =
Nk ∗ 2 ∗ T , i.e., one variable of quantity and one of price,
for each agent k, for each period t. A complete solution
to the problem is encoded as a vector x⃗ = {[qk,t]∪ [pk,t]},
including all bids/offers registered. The variables for the
problem are also bounded, meaning that a bid/offer of price
can be made only between the feed-in tariff cF

t and the grid
tariff cgrid

t . In contrast, a bid/offer of quantity depends on
the type of agent (i.e., either a consumer or a producer),
yet, those values are also bounded between 0 and the load
or maximum generation capacity.

While the explanation of the encoding of individuals
might be easy to understand for people working with meta-
heuristics (please see [21] for more details on the ACO and
encoding), it might be hard to follow this transformation
of solutions. Thus, eXplainergy proposes the use of other
resources, in this case, Tables I-III, to clearly show how the
solutions are encoded and, at the same time, show some
characteristics of the solutions that are not evident from
the original publication.

For instance, in the case study presented in [9], the
optimization of bids/offers of 61 agents (13 consumers,
42 prosumers, and 6 CHP producers) for the day-ahead 24
hours (i.e., T=24) is done. That means that the dimension
of the solution will be D = Nk∗2∗T = 61∗2∗24 = 2928.
Showing the whole vector solution can be hard to visualize
by someone that has not worked on the problem; however,
the entire vector solution x⃗ = {[qk,t]∪[pk,t]} can be broken
into different parts to understand better how a solution is
encoded.

Thus, Table I shows the set of variables in the vector
solution that represent the quantities to buy in the LEM
by each consumer for each time t. Here, it is easy to
appreciate that variables 1 to 312 of x⃗ are the concatenation
of quantities searched in the LEM by consumer agents.
Another characteristic that is mentioned in the article is
that consumers are inelastic loads, which means that the
bounds of that variables are closed to a single demand
value dTotal

k,t .

TABLE I
VARIABLES IN THE SOLUTION x⃗ REPRESENTING ENERGY QUANTITIES

FOR CONSUMERS.

Agent Variable number
Variables Bounds

Agent
ID from up to type

1 1 24 [q1,1, ..., q1,24] closed Consumer
2 25 48 [q2,1, ..., q2,24] closed Consumer
...

...
...

...
...

...
12 265 288 [q12,1, ..., q12,24] closed Consumer
13 289 312 [q13,1, ..., q13,24] closed Consumer

The next part of the solution corresponds to the quan-
tities of energy to be bid in the LEM by prosumers. The
resulting table will be similar to the previous one, showing
the variables corresponding to an agent bidding in the 24
periods with bounds as a single value dTotal

k,t − gPV
(k,t), taking

a negative value (representing production) when there is an
excess of PV generation for the agent k.

The next group of variables corresponds to the quantities
CHP producers can offer in the LEM. Table II shows the
variables corresponding to the quantity offer of each CHP
producer at each time t. For these agents, the bounds
of variables change since those are not fixed as with
consumers (inelastic loads) and prosumers (forced to self-
consumption and to inject into the LEM the excess of
PV generation). Thus, the variables in this group can take
values in the range [−g(k,t), 0], where g(k,t) represents the
maximum generation capacity of the kth CHP producer.

TABLE II
VARIABLES IN THE SOLUTION x⃗ REPRESENTING ENERGY QUANTITIES

FOR CHP PRODUCERS.

Agent Variable number
Variables Bounds

Agent
ID from up to type

56 1321 1344 [q56,1, ..., q56,24] [−g(k,t), 0] CHP
57 1345 1368 [q57,1, ..., q57,24] [−g(k,t), 0] CHP
...

...
...

...
...

...
60 1417 1440 [q60,1, ..., q60,24] [−g(k,t), 0] CHP
61 1441 1464 [q61,1, ..., q61,24] [−g(k,t), 0] CHP

Tables I-II include the information of half of the vari-
ables in the solution x⃗, corresponding to the quantities
bid/offered in the LEM [qk,t]. The second half of the
solution is similar but includes the variables representing
prices sent to the LEM [pk,t]. In the formulation of the
problem, it is set that agents can bid/offer in the LEM
with price bounded by the feed-in tariff cF

t and the grid
tariff cgrid

t . However, consumers are assumed to be price
takers, so they are forced to always bid to the grid tariff
cgrid
t . Prosumers are price takers when acting as consumers

and can bid to any price when acting as producers. Finally,
CHPs can bid to any price between the established bounds.

TABLE III
PRICES FOR CHPS

Agent Variable number
Variables Bounds

Agent
ID from up to type

1 1465 1488 [p1,1, ..., p1,24] closed Consumer
...

...
...

...
...

...
13 1753 1776 [p13,1, ..., p13,24] closed Consumer
14 1777 1800 [p14,1, ..., p14,24] depends Prosumer
...

...
...

...
...

...
55 2761 2784 [p55,1, ..., p55,24] depends Prosumer
56 2785 2808 [p56,1, ..., p56,24] [cF

t, c
grid
t ] CHP

...
...

...
...

...
...

61 2905 2928 [p61,1, ..., p61,24] [cF
t, c

grid
t ] CHP

With this information, it is easier to approach a user and
explain how a solution is encoded. Also, by showing the
tables, it is easy to understand that the variables related
to CHPs are the most interesting ones when inelastic loads
and price takers are considered (an assumption made in the
original publication).

V. EXPLAINERGY POST-OPTIMIZATION ANALYSIS

For post-optimization analysis, we take some ideas from
[12], analyzing the solutions found post-optimization. To
do this, first, we recover the best solution found in [9],
to later apply some post-processing and determine the
importance of variables in the solution.
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So, in the first step, the best-found solution with the
metaheuristic, x⃗best, is recovered, and its fitness value
(assumed to be near-optimal) is computed as:

Sfit = f(x⃗best) (4)

where f() is the fitness function that associates a value to
a given solution. After that, a simple procedure varying the
value of each variable one by one is employed to evaluate
new solutions in the neighborhood of x⃗best. Taking into
account the lower and upper bounds of the variables x⃗lb

i

and x⃗ub
i , we provoke two changes in each variable as:

clb
i = min(x⃗lb

i , x⃗i − 0.01(x⃗ub
i − x⃗lb

i )) (5)

cub
i = max(x⃗ub

i , x⃗i + 0.01(x⃗ub
i − x⃗lb

i )) (6)

These two values are replaced independently in the
solution x⃗best, generating two new solutions, x⃗move1 =
x⃗best
i ← clb

i , and x⃗move2 = x⃗best
i ← cub

i in the vicinity of
x⃗best and variable i. In fact, the value of 0.01 is used to set
a movement of 1% around a given variable i. The solutions
are evaluated in the fitness function, and the modification
or effect that those movements have in the fitness reference
value is computed as:

Smove
i = |Sfit − f(x⃗move1)|+ |Sfit − f(x⃗move2)| (7)

The 1% movement effect on the fitness function is
recorded in Smove, and we proceed to rank the importance
of the variables in the function of these values to grasp
some sense of the importance of the variables. Figure
2 shows the variables ranked in function of the values
obtained by Eq. (4). Notice that, as expected, the most
important variables are the ones related to the CHPs energy
offers in the LEM (variables from 1321 to 1464 from Table
II), and CHPs price offers (variables from 2785 to 2928 in
Table III).

0 500 1000 1500 2000 2500 3000

Variable number

0

20

40

60

80

100

120

R
a
n
k

Fig. 2. Variables ranked in function of the disturbance occurred in the
fitness value. A higher rank indicates that the fitness value is more affected
by a change in that variable.

Since it is evident that the most important variables are
the ones associated with CHPs, the concept of eXplainergy

can focus deeper on analyzing these variables. To do so,
Fig. 3 shows only the rank of variables corresponding to
the CHPs energy offers (i.e., variables 1321 to 1464). The
intuition can already indicate that a trend can be inferred,
noticing that some variables with high rankings follow
a group of variables with no relevance. If we recall the
ordering of the variables, a group of T = 24 successive
values correspond to one CHP (we have put the tick
markers in the variables that correspond to a new CHP
agent in the plot).

1321 1345 1369 1393 1417 1441

Variable number (CHPs quantities)

0

20

40

60

80

100

R
an

k

CHP

ID 56

CHP

ID 57

CHP

ID 58

CHP

ID 59

CHP

ID 60

CHP

ID 61

Fig. 3. Variables corresponding to the CHPs energy offers ranked by the
effect a movement in the solution has in the fitness function value.

In any case, since this does not give us the information
we are looking for, we plotted the effect in the fitness
function by period, also showing the impact by each of
the CHPs in Fig. 4. While this figure contains information
on the analysis of the importance of variables, it can
already be linked to the interpretation of the values to
the specific case study and, therefore, can be used to
explain what is happening with the proposed values to
an energy practitioner. For instance, we can see that the
impact in values is relatively low (the most significant
change in the fitness function is around 0.04), and it is
almost null between periods 10 and 16. Looking at the
original publication [9], those periods, in fact, correspond
to the hours where PV generation is satisfying the demand
in the LEM. Hence, it makes sense that the optimization
variables corresponding to CHPs have low importance in
those periods.

A similar analysis can be done by considering the
variables associated with the CHPs’ prices. However, due
to space limitations, we will provide this analysis in further
research.

VI. CONCLUSIONS

We introduce ”eXplainergy,” a novel concept to ex-
plain metaheuristic performance for energy problems, more
specifically, an optimal bidding problem in LEM. Prema-
ture convergence, tuning challenges, and stochasticity are
widely recognized barriers to adopting such methods in
the energy sector. We explore ideas previously applied,
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Fig. 4. Relative change (Eq. (4)) in the fitness function of variables
representing energy offerings ordered by periods and CHP.

such as eXplainable AI, encouraging current research in
this field to propose solutions using explainability features
to comprehend CI performance and its results (XCI). We
used a case study with a local environment and multiple
players for this bidding problem to explain metaheuristic
performance to energy specialists unfamiliar with stochas-
tic algorithms. With XCI, it was possible to identify which
variables would most affect the objective function accord-
ing to their rank. It was also possible to verify the impact
of CHP’s bids on the final operation cost (fitness function).
Even though we used this problem and case study, the
proposed approach can be applied to different energy
problems and case studies, consolidating the applicability
of such analysis.

Other ventures such as quality diversity [22], fitness
landscape analysis [23], and even algorithm configuration
procedures [24] can be exciting topics and ideas for imple-
mentation in the energy domain that allow a better under-
standing of metaheuristic behavior in the optimization pro-
cess. In future implementations, our idea for eXplainergy
is to make it run in real-time rather than post-optimization,
analyzing the variations of actual results over time. Such
a procedure will allow users to understand better what is
affecting the method’s performance. Also, the discussion
should be extended to other domains of CI, for instance,
considering the implementation of ”explainability” into
application in the energy field of artificial neural networks
or fuzzy systems.
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[20] Ansel Y Rodrı́guez-González, Fernando Lezama, Yoan Martı́nez-
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