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Abstract—In the energy field, the ”WCCI(CEC)/GECCO
Competition Evolutionary Computation in the Energy Do-
main: Risk-based Energy Scheduling” is a platform for testing
and comparing new evolutionary algorithms (EAs) to address
complex energy problems. Nonetheless, the current competi-
tion ranking metric is not statistically significant in assessing
algorithm performance and only considers the mean fitness
value associated with the objective function. Thus, this work
undertakes a statistical analysis using the Shapiro-Wilks test,
the Wilcoxon pair-wise comparison, and the Kruskal-Wallis
technique to comprehensively study algorithm performance
based on statistical grounds. The results reveal that, according
to the Wilcoxon test, the top three algorithms demonstrate
significant superiority over the other algorithms. In contrast,
the Kruskal-Wallis test shows that the top four algorithms
belong to the same group based on the ranks resulting from
the test. This rigorous analysis provides valuable insights into
the stochastic performance of algorithms, contributing to a
deeper understanding of their capabilities in the context of
the competition.

Index Terms—Energy resource management, Evolutionary
computation, Optimization, Statistical analysis, Smart grid

I. INTRODUCTION

Power and energy systems have become complex envi-
ronments due to the continued development of the electrical
grid, which includes the integration of smart grid (SG)
technologies and the rising penetration of distributed gen-
erators (DGs) and new resources such as electric vehicles
and energy storage systems [1], [2]. This paradigm shift
in the energy field has led utilities, governments, and re-
search centers to look for innovative approaches to address
the challenges posed by this complex dynamic environ-
ment [3], [4]. Accounting for the uncertainty associated
with stochastic renewable generation presents difficulties
in formulating optimization problems, making real-world
solutions unrealistic without significant assumptions and
simplifications [5].

In response to the complexities in the energy domain
and to attract research centers’ interest in tackling these
issues, worldwide competitions held at major events and
conferences have emerged as viable alternatives. Among
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these initiatives is the ”2022 WCCI(CEC)-GECCO Compe-
tition on Evolutionary Computation in the Energy Domain:
Risk-based Energy Scheduling” [6], which has gained
recognition as a relevant platform for testing and comparing
cutting-edge computational intelligence (CI) algorithms.
This article introduces the benchmark launched during the
competition, continuing the tradition of fostering cutting-
edge solutions for complex energy problems.

In this 2022 edition, the organizers proposed a test bed
focusing on optimizing aggregators’ risk-based day-ahead
energy resource management (ERM) [7]. This complex en-
ergy domain problem considers uncertainties arising from
the significant integration of distributed energy resources
(DERs) [8]. The test bed follows the same framework
of previous competitions, allowing former participants to
easily adapt their algorithms to this new test bed [6]. The
problem, in turn, involves a centralized day-ahead ERM
scenario within a smart grid operating in a 13-bus distri-
bution network. A case study with 15 scenarios is used,
with three being extreme occurrences with a substantial
influence on the value of the objective function, even with
a low probability of occurring. To assess the risk associ-
ated with these extreme events, a conditional value-at-risk
(CVaR) mechanism is employed with a confidence level
(α) of 95%, a typical value in the literature for economics
[9], [10]. The proposed track has been constructed using
the same framework as prior competitions. Still, several
changes have been made to improve its efficacy and prevent
algorithm initialization heuristics from being tweaked.

The paper is structured as follows: after this introduction
section, section II describes the competition track regarding
the proposed ERM problem. In section III, we show the
MATLAB implementation of the simulation framework
and the participants’ algorithms and affiliations. The sta-
tistical analysis of the competition results is made in
section IV, and the drawn conclusions are presented in the
last section.

II. COMPETITION SCHEDULE AND TEST BED

The 2022 Competition on ”Evolutionary Computation
in the Energy Domain: Risk-based Energy Scheduling”
was launched at prestigious events, including the IEEE
World Congress Computational Intelligence (WCCI) and
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the ACM Genetic and Evolutionary Computation Con-
ference (GECCO). Its primary goal is to converge and
assess cutting-edge algorithms implemented for complex
problems in the energy sector. These innovative approaches
have attracted significant interest among practitioners be-
cause they can tackle the intricacies of mathematical prob-
lems characterized by high-dimensionality, non-linearity,
non-convexity, multimodality, and discontinuity within the
search space [5]. However, following the ”no-free lunch
theorem” [11] stating that there is no one algorithm that
performs best for every problem, we have created a co-
hesive simulation framework that enables users to test
computational intelligence (CI) metaheuristics solving real-
world problems, surpassing conventional and standardized
benchmarks.

The 2022 competition introduces one single test bed
(the 2021 edition had two) and received support from
esteemed organizations, including the IEEE CIS (Computa-
tional Intelligence Society), the IEEE WGMHO (Working
Group on Modern Heuristic Optimization), and the IEEE
ISATC (Intelligent System Application Technical Commit-
tee) Task Force 3 on Computational Intelligence in the
Energy Domain. To account for the uncertainty from the
high penetration of distributed energy resources (DER),
the test bed replicates the risk-based optimization prob-
lem surrounding aggregators’ day-ahead energy resource
management (ERM).

Detailed guidelines, rules, and the conference
schedule are available at ”http://www.gecad.isep.ipp.
pt/ERM-competitions/2022-2/.” The website also provides
access to the simulation framework and algorithms used
during the competition, presenting an open challenge
for CI practitioners interested in tackling these complex
problems. The MATLAB© software was used to develop
and test the competition’s platform. The competition
timeline, along with significant occasions where results
were taken into account and presented, are as follows:

• 01/01/2022: First call to competitors.
• 02/21/2021: Open submissions for Special Session 44

on EA for complex optimization in the energy domain
at CEC 2022.

• 04/11/2022: Open submission for short papers to
GECCO 2022.

• 30/06/2022: Deadline for Submitting results and codes
to the organizers.

• 09-13/07/2022: Announcement of the winner algo-
rithms at GECCO 2022.

• 18-23/07/2022: Announcement of the winner algo-
rithms at WCCI 2022.

• 03 August 2022: Final results have been published on
the competition site.

In the proposed test bed, we address the ERM problem
while accounting for uncertainty in market pricing, re-
newable energy production, load consumption, and electric
vehicle travels. This problem was originally proposed in
previous works [12]. We consider several scenarios with
a corresponding probability of occurrence to fully por-
tray these parameters’ stochastic character. This new test
bed’s innovation lies in incorporating risk strategies into

the formulation, which enables the aggregator to plan its
operation while taking into account various levels of risk
associated with various scenarios, including risk-neutral
and risk-averse concerns [13].

In summary, the new proposed test bed considers the
following key aspects:

• A day-ahead ERM model that considers uncertainties
in market pricing, renewable energy production, load
consumption, and electric vehicle travels.

• The use of risk analysis approaches that address pa-
rameter uncertainty and produce solutions that protect
the aggregator from extreme events using tools like
Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR).

• Participants will implement solution methods based
on modern metaheuristic optimization techniques to
handle the computational demand posed by numerous
possible scenarios of uncertain parameters and the
large number of variables considered.

• Utilizing realistic data from power and energy sys-
tems, the outcomes will enable us to evaluate the
impact of VaR and CVaR metrics across various
scenarios.

The suggested test bed is shown in Figure 1. The VaR
and CVaR values are calculated based on the expected cost,
the cost of each scenario, and their respective probabilities,
following the formulation in [7]. The aggregator then
engages in a decision-making process impacted by the
risk aversion element. The optimal strategy is chosen by
evaluating the objective function (OF) based on these risk
measures.

Fig. 1. Representation of the considered risk-based ERM problem.

Within a set number of iterations, the metaheuristic
seeks to reduce the value of the OF. When β = 0, the
metaheuristic minimizes the expected cost. On the other
hand, when β = 1, the metaheuristic aims to minimize
both the expected cost and the CV aRα, as described in
[13].

The aggregator’s schedule is created based on the ex-
pected scenario without considering risk. The expected
cost, whose formulation is as follows, determines the cost
and value of the OF without a risk aversion strategy:
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ztot
s = zOC

s − zIn
s + Ps (1)

zEx =

Ns∑
s=1

(ρs · ztot
s ) (2)

The total objective function (OF) value of each scenario
s, denoted as ztot

s , is determined by the difference between
operational costs (zOC

s ) and income (zIn
s ) in that scenario,

along with the penalty for any variable bound violations
(Ps). The expected OF cost, zEx, is computed considering
the probabilities ρs of the respective scenarios.

Incorporating a risk-aversion strategy accounts for the
uncertainty associated with the aforementioned technolo-
gies. An additional cost, CV aRα, is added to the scenarios
with the highest costs. The calculation is determined using
the following formulation [7]:

CV aRα(z
tot
s ) = V aRα(z

tot
s ) +

1

1− α

Ns∑
s=1

(ρs · φ) (3)

where:

φ =

{
ztot
s − zEx − V aRα(z

tot
s ), if ztot

s ≥ zEx + V aRα(z
tot
s )

0, otherwise
(4)

V aRα(z
tot
s ) = zscore(α) · std(ztot

s ) (5)

where φ represents a parameter associated with the cost
in the worst-case scenarios, where each scenario s exceeds
the expected cost, including the V aRα value. On the other
hand, when the cost is lower than the expected cost, φ is set
to 0. The z-score is calculated using MATLAB’s norminv()
function with a confidence level of α = 95%.

When considering this parameter, the scheduling prob-
lem’s fitness value (and OF value) differs according to the
degree of risk aversion. According to this risk-aversion
instance, the fitness value (or OF) model is represented
as follows:

OF = zEx + β · CV aRα(z
tot
s ) (6)

For this problem, the parameter β represents the degree
of aversion to risk, expressed as a percentage. This pa-
rameter takes values between 0 and 1. A β value of 0
represents a risk-neutral strategy where the OF value equals
the expected cost. On the other hand, a β value of 1 implies
a 100% aversion to risk, yielding the safest solution in
response to worst-case scenarios.

For the 2022 competition, a default setting of β = 1 is
established. The equations for operational costs (zOC

s ) and
incomes (zIn

s ) are provided in [7], offering a comprehensive
insight into these aspects of the problem formulation.

Fig. 2. Implemented simulation framework platform.

III. IMPLEMENTED PLATFORM AND PARTICIPANTS

In line with past editions of these competitions, the
authors provide a user-friendly platform to facilitate par-
ticipants in implementing their algorithms. As a reference
approach, the authors offer a sample algorithm, the HyDE
algorithm [14]. The simulation framework follows the
structure illustrated in Figure 2.

The organizers have created a simulation platform im-
plemented in MATLAB© 2018 64-bit, comprising various
scripts that serve different functions during the simulation
process. The organizers use specific scripts to handle
activities, including loading the case study depending on
the chosen test bed, establishing parameters and variable
bounds, and automatically storing participant outcomes.
These scripts are marked in blue in Figure 2. The goal is to
prevent participants from changing the case studies and ap-
proach the problems as black-box optimization functions.

To participate, each participant needs to implement two
scripts: i) A.2 script to set the parameters their algorithm
requires. ii) A.6 script to implement their proposed solution
method.

The organizer’s script’s platform functionality and com-
prehensive instructions on implementing these two script
functions are supplied in [6], Sect. 4. details on how the
solutions should be encoded, the assumptions made, and
the competition’s evaluation procedure provided in the
guidelines document [6]. An essential parameter is the
maximum number of function evaluations for each trial.
For the 2022 test bed, participants are restricted to 5,000
function evaluations per trial. Participants must consider
this constraint when designing their algorithms, as the
number of function evaluations may vary from algorithm
to algorithm.

The competition got 15 entries from a diverse range of
countries. Table I shows the participants and the obtained
positions (showing with bold font the winners). Notice that
some entries present a N/A position (in the RI column),
meaning those entries were disqualified after the validation
process of the organizing committee. The validation pro-
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cess was quite straightforward, allowing the organizers to
confirm if the results provided were, in fact, valid. To do so,
the organizers modified the position of some variables in
the encoding of the solutions. Such changes in the positions
of variables should not supposedly affect the performance
of the algorithms (as it was verified for most participants);
however, participants taking advantage of the knowledge
of the structure of the solution and setting some position
to a fixed value were highly penalized with such a change.
With this easy test, the authors were able to find anomaly
entries and, at the same time, verify the generality of the
optimizers submitted.

IV. STATISTICAL ANALYSIS

The ranking index, which represents the fitness func-
tion’s average value across 20 requested trials, has been
used in this competition’s evaluation:

RIuser
(a) =

1

N trials

N trials∑
i=1

(Fita(X⃗i)) (7)

where RIuser
(a) is and index used to rank the participant a;

N trials is the number of runs; Fita(X⃗i) computes the fitness
of solution X⃗i. Thus, the ranking index corresponds to the
average fitness value obtained in the 20 trials.

This method makes it easier to evaluate the performance
of algorithms and guarantees that the winning algorithm
has a better overall fitness for a specific test bed. A
stronger average fitness does not, however, indubitably
imply a statistically superior algorithm performance within
a specific confidence interval because of the stochastic
nature of optimizers.

For instance, Fig. 3 shows the boxplot of the final fitness
value obtained by the optimizers. Notice that, apart from
the high costly values of PSO, ABC-DE, GA-PSO, and
DE-TLBO, no further conclusions about the performance
of the algorithms can be drawn based exclusively on the
fitness value. Notice that in the figure, US and DRL DE
were not included. In the following tables (Table II and
Table III), they appear as N/A since these algorithms were
disqualified for not following the competition guidelines.

0.5 1 1.5 2

Costs (m.u.) 105

ReSaDE

RCEDUMDA2022

CL_HC2RCEDUMDA

Mod_WHOA

PSO-KnnEDA

CDEEPSO

Mod_CDEEPSO

DE-TLBO

GA-PSO

ABC-DE

PSO

VIEDA

MDEEPSO

Fig. 3. Final fitness solution for each algorithm over the 20 trials.

Thus, an alternative approach to assess the performance
of EAs is based on using statistical tools for group and
pairwise comparisons. Such comparisons involve straight-
forward statistical tests applied within the framework pro-
posed in this study. The validation of the performance of
algorithms using statistical tools provides further insights
to be discussed and analyzed, and the different tables and
results obtained with it serve as valuable and more reliable
proof of the performance of stochastic optimizers.

To extend the analysis of results, we perform a Shapiro-
Wilks test for a significance level of 5% [15]. This test
takes the final fitness values for each metaheuristic over
the 20 runs as input and tests if the fitness values follow
a normal distribution with unspecified mean and standard
deviation. The test assesses the normality of data and deter-
mines whether parametric statistical methods that assume
normality can be applied to the results. If the data deviates
significantly from a normal distribution, alternative non-
parametric methods might be required. Table II shows the
results obtained from this statistical analysis. It can be
noticed that Mod WHOA, DE-TLBO, GA-PSO, and ABC-
DE are the only ones that accept the null hypothesis of the
test since their p-value is greater than 0.05. This means
that the results of the remaining algorithms do not follow
a normal distribution, rejecting the test’s null hypothesis.
As such, non-parametric tests must be used for multiple or
pairwise comparisons.

Having obtained the results of the Shapiro-Wilks, the
statistical analysis continues with the Wilcoxon signed-rank
test [16]. The Wilcoxon test is a non-parametric procedure
used to analyze whether two samples represent different
populations, effectively detecting significant differences in
the performance or behavior of the two algorithms [17].
The results from the Wilcoxon test, as shown in Table
III, provide comprehensive insights into the algorithms’
performance, having as a reference the announced winners.
It is evident that ReSaDE stands out as the competi-
tion winner with a much better performance than other
participants. RCEDUMDA2022 [18] exhibits significant
superiority over all other algorithms (except ReSaDE), and
CL-HC2RCEDUMDA does the same, being statistically
superior to the rest of the algorithms (except the first and
second positions).

Overall, the Wilcoxon test outcomes provide valuable
statistical evidence regarding the relative performances of
the algorithms in comparison to the announced winners.

Finally, we use a non-parametric pairwise comparison
based on the Kruskal-Wallis statistical test [19]. The
Kruskal-Wallis test is a non-parametric statistical test used
to compare the medians of two or more independent groups
in a dataset. The Kruskal-Wallis test ranks all the data
values from lowest to highest across all the groups. Then,
the ranks are used to calculate a test statistic, which
measures the differences between the group medians. If
the test statistic is large enough, it suggests significant
differences in medians among the groups. Figure 4 shows
graphically the group means obtained by the test. It can
be noticed that nine groups (in red color in the figure)
present a significantly worse mean rank compared to
the winner ReSaDE. In grey color, we can see that the
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TABLE I
THE 2022 EDITION OF THE COMPETITION RECEIVED 15 SUBMISSIONS. THE TEAMS CAME FROM DIFFERENT COUNTRIES WITH APPROACHES OF

DIFFERENT TYPES (CLASSICAL AND HYBRID ALGORITHMS).

ID Algorithm Main Affiliation Country RI

1 Particle Swarm Optimization with Knn Estima-
tion of Distribution Algorithm (PSO-KnnEDA)

South China University of Technology China 8th

2 Univariate Search (US) University of Chinese Academy of Sciences China N/A

3 Canonical Differential Evolutionary Particle
Swarm Optimization (C-DEEPSO)

Federal University of Rio de Janeiro; University of
Alcalá

Brazil; Spain 6th

4 Dimensionality Reduction DE with Local Recon-
struction of Population (DRL DE)

Nankai University China N/A

5 Ring Cellular Encode-Decode Univariate
Marginal Distribution Algorithm (RCE-
DUMDA2022)

Unidad de Transferencia Tecnológica Tepic del Centro
de Investigación Cientı́fica y de Educación Superior de
Ensenada; Consejo Nacional de Ciencia y Tecnologı́a;
Universidad de Camagüey

Mexico; Cuba 2nd

6 Modified C-DEEPSO with Local Search Opera-
tors (C-DEEPSO Mod)

Federal University of Rio de Janeiro; University of
Alcalá

Brazil; Spain 5th

7 Differential Evolution-Teaching Learning Based
Optimization (DE-TLBO)

Sardar Vallabhbhai National Institute of Technology India 10th

8 Genetic Algorithm-Particle Swarm Optimization
(GA-PSO)

Sardar Vallabhbhai National Institute of Technology India 11th

9 Artificial Bee Colony (ABC) Sardar Vallabhbhai National Institute of Technology India 12th

10 Restart-Assisted Self-Adaptive Differential Evo-
lution (ReSaDE)

Alibaba DAMO Academy China 1st

11 Particle Swarm Optimization (PSO) Sao Paulo State University Brazil 13th

12 Chaotic Levy Hill-Climbing to RCEDUMDA
(CL HC2RCEDUMDA)

Chandubhai S. Patel Institute of Technology India 3rd

13 Modified Wild Horse Optimizer (Mod WHO) University of Salamanca Spain; Brazil;
Portugal

4th

14 Vortex Island Estimation of Distribution Algo-
rithm (VIEDA)

University of Camaguey Cuba; Mexico 7th

15 Modified Differential Evolutionary Particle
Swarm Optimization (MDEEPSO)

National University of Colombia Colombia 9th

TABLE II
SHAPIRO-WILKS STATISTICAL TEST FOR EACH ALGORITHM OVER 20

TRIALS.

W p-value H
ReSaDE 0.70138 0.0001 1-Reject
RCEDUMDA2022 0.68697 0.0001 1-Reject
CL HC2RCEDUMDA 0.76693 0.0003 1-Reject
Mod WHOA 0.94686 0.3219 0-Accept
PSO-KnnEDA 0.64587 0.0000 1-Reject
CDEEPSO 0.51360 0.0000 1-Reject
Mod CDEEPSO 0.75810 0.0002 1-Reject
DE-TLBO 0.94085 0.2143 0-Accept
GA-PSO 0.91846 0.0926 0-Accept
ABC-DE 0.95557 0.4595 0-Accept
PSO 0.85205 0.0058 1-Reject
VIEDA 0.81273 0.0022 1-Reject
MDEEPSO 0.61241 0.0000 1-Reject
US N/A N/A N/A
DRL DE N/A N/A N/A

mean ranks of RCEDUMDA2022, CL HC2RCEDUMDA,
and Mod WHOA belong to the same group of ReSaDE,
meaning that according to this test, those algorithms are
not significantly different, even though ReSaDE achieved
a lower mean rank.

-50 0 50 100 150 200 250 300

9 groups have mean ranks significantly different from ReSaDE

MDEEPSO

VIEDA

PSO

ABC-DE

GA-PSO

DE-TLBO

Mod_CDEEPSO

CDEEPSO

PSO-KnnEDA

Mod_WHOA

CL_HC2RCEDUMDA

RCEDUMDA2022

ReSaDE

Fig. 4. Pairwise comparison amongst algorithms from Kruskal-Wallis
statistical test for each algorithm over 20 trials.

V. CONCLUSIONS

The launched competition, targeting a problem in the
energy domain serves as a valuable platform for test-
ing and comparing new Evolutionary Algorithms (EAs)
in addressing complex energy problems. The announced
winners, ReSaDE (first place), RCEDUMDA2022 (second
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TABLE III
SIGNED-RANK WILCOXON STATISTICAL TEST FOR ALL PARTICIPANTS OVER 20 TRIALS.

ReSaDE (1st) RCEDUMDA2022 (2nd) CL-HC2RCEDUMDA (3rd) RI (position)
PSO-KnnEDA ’+’ ’+’ ’+’ 18,543 (8th)
US N/A N/A N/A N/A
C-DEEPSO ’+’ ’+’ ’+’ 18,233 (6th)
DRL DE N/A N/A N/A N/A
RCEDUMDA2022 ’+’ ’=’ ’-’ 15,255 (2nd)
C-DEEPSO Mod ’+’ ’+’ ’+’ 18,115 (5th)
DE-TLBO ’+’ ’+’ ’+’ 63,365 (10th)
GA-PSO ’+’ ’+’ ’+’ 81,440 (11th)
ABC ’+’ ’+’ ’+’ 87,749 (12th)
ReSaDE ’=’ ’-’ ’-’ 14,951 (1st)
PSO ’+’ ’+’ ’+’ 173,796 (13th)
CL HC2RCEDUMDA ’+’ ’+’ ’=’ 15,777 (3rd)
Mod-WHO ’+’ ’+’ ’+’ 17,387 (4th)
VIEDA ’+’ ’+’ ’+’ 18,494 (7th)
MDEEPSO ’+’ ’+’ ’+’ 18,545 (9th)

place), and CL HC2RCEDUMDA (third place), demon-
strated statistically significant superiority over the other
participants. The ranking index effectively captured the
clear distinctions in performance for these top-performing
algorithms. However, when considering the Kruskal-Wallis
statistical test, it was determined that RCEDUMDA2022
(second place), CL HC2RCEDUMDA (third place), and
even Mod WHOA (fourth place) belong to the same
ReSaDE (winner) group. Thus, the statistical significance
of their differences was less conclusive. In any case, the
Wilcoxon test determined a statistical difference between
the top-three algorithms and the rest of the participants.

To enhance the evaluation process in future competition
editions, it is suggested to incorporate additional statistical
metrics that offer more nuanced insights. These improve-
ments will ensure a more comprehensive assessment of
algorithm performance and contribute to advancing the
field of evolutionary computation in the energy domain.
For future work, it is recommended to explore the use of
statistical tests and to increase the number of trials, possibly
to at least 100, to better ascertain the true performance
differences. Also, comparison with other algorithms, such
as the winners of previous editions [20], is worth studying
for similar test beds in the future.
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