
Optimized Machine Learning-based Intrusion
Detection System for Internet of Vehicles

Elnaz Limouchi
Department of Electrical and Computer Engineering

Royal Military College of Canada
Kingston, ON, Canada

https://orcid.org/0000-0003-4669-0476

Francois Chan
Department of Electrical and Computer Engineering

Royal Military College of Canada
Kingston, ON, Canada

https://orcid.org/0000-0002-2719-9430

Abstract—Internet of Vehicles (IoV) represents the application
of Internet of Things (IoT) within vehicular communication
environments. Internet of vehicles refers to a network of intercon-
nected sensors, network layers, and communication systems that
enable vehicles to connect with everything (V2X communication).
IoV networks face numerous security challenges due to the
emergence of modern types of attacks with unusual patterns.
Therefore, it is a crucial and demanding task to design intelligent
Intrusion Detection Systems (IDSs) for IoV networks. In this
paper, we propose an optimized Machine Learning-based IDS to
detect attacks in IoV networks. We deploy highly efficient Ma-
chine Learning models, Light Gradient Boosting Machine, Extra
Trees Classifier, and Extreme Gradient Boosting, to detect attacks
in the CICDDoS2019 dataset. We apply the Synthetic Minority
Oversampling Technique to resolve the issue of imbalanced data
distribution of target class. A Correlation-based Feature Selection
is conducted to reduce the computational cost by decreasing the
number of input variables. In order to enhance the performance
of the attack detection, hyperparameters are optimized using the
Bayesian Optimization algorithm. The performance evaluation
results show that these ML models perform well. Notably, the
Extreme Gradient Boosting classifier outperforms other Machine
Learning models, and our proposed solution outperforms existing
systems in terms of Accuracy score.

Index Terms—IoV, Intrusion Detection System, Machine
Learning, LightGBM, Extra Trees Classification, XGboost,
Bayesian Optimization, PyCaret.

I. INTRODUCTION

Internet of Vehicles (IoV) indicates the incorporation of
vehicles, roads, and transportation infrastructure with the
communication networks and internet. The implementation of
advanced vehicle technologies enables the establishment of a
greater variety of communication modes in IoV as compared
to Vehicular Adhoc Network (VANET) [1]. IoV is a promising
concept, which aims to enable vehicles to communicate with
other vehicles (V2V), network infrastructures (V2I), personal
devices (V2P), sensor (V2S), and the cloud (V2C). IoV allows
vehicles to exchange real-time data and access to various ser-
vices, which leads to enhanced safety, comfort, and efficiency.
The emergence of the Internet of Things (IoT) empowers
vehicles to connect with everything (V2X), allowing them to
exchange information about their surroundings. IoV networks
are vulnerable to various types of cyberattacks, and it is a
highly challenging task to identify complex attacks in such
networks.

Intrusion Detection System (IDS) in IoV intends to detect
and prevent unauthorized access, malicious activities, and cy-
ber threats, which target the networks. IDS monitors network
traffic and analyzes the communication patterns to identify
suspicious behavior or anomalies that may define an intrusion.
Intrusion Detection Systems can employ Machine Learning
(ML) techniques to build baseline behavioral models. Then, it
compares real-time behavior with the built models/patterns to
detect anomalies, which can be potentially security threats.

In this work, we propose a Machine Learning-based In-
trusion Detection System for IoV networks. We apply Light
Gradient Boosting Machine, Extra Trees (ET), and Extreme
Gradient Boosting (XGBoost) classification algorithms to clas-
sify traffic of the CICDDoS2019 dataset into normal and
attack. In our proposed work, we perform feature selection,
resolve the imbalanced target class problem, and optimize Hy-
perparameters of the applied ML classifiers. Additionally, we
use one of the most recent reliable real world traffic datasets
(CICDDoS2019) to train the IDS model. More specifically,
the key contributions of this work include the following:

• Performing data pre-processing to resolve the issues
related to the CICDDoS2019 dataset.

• Deploying Pearson correlation coefficient feature selec-
tion to establish a more efficient intrusion detection
system by reducing the number of input variables.

• Using the Synthetic Minority Oversampling Technique to
balance the distribution of target class.

• Using Bayesian Optimization (BO) algorithm to optimize
the Hyperparameters of ML models and enhance the
performance of the classification tasks.

• Applying Machine Learning classifiers (LightGBM, ET,
Xgboost) on the CICDDoS2019 dataset to recognize
normal and attack instances.

• Using 10-fold cross validation to evaluate the perfor-
mance and accordingly select the best model. Accuracy,
Precision, Recall, F1-score, Kappa index, and MCC are
used as evaluating metrics.

The remainder of the paper is structured as follows: Sec-
tion II reviews some related work on intrusion detection for
vehicular networks. In Section III, we introduce the proposed
work. The performance evaluation of the proposed work is

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1151

Fig. 1: The Proposed Workflow

discussed in Section IV. Finally, we conclude the paper in
Section V.

II. RELATED WORK

Network security applications, including Intrusion Detection
Systems (IDSs), are crucial to detect anomaly activities more
accurately and robustly [2]. This section highlights some
learning-based IDS models proposed for vehicular communi-
cation networks. Additionally, some attack detection systems
proposed for other types of network environments, which use
the CICDDoS2019 dataset to train their models, are introduced
in this section.

SHIELDNET is an adaptive botnet detection scheme pro-
posed for vehicular Adhoc networks (VANETs) [3]. It uses the
K-Nearest Neighbors algorithm to detect botnets on a dataset
extracted from simulations in Veins. The SHIELDNET attack
identifier system is capable of detecting 77% of the vehicular
bots.

In [4], a misbehaviour detection model is introduced. This
model is proposed to detect position falsification attacks
and false alarm verification. Various machine learning tech-
niques, like k-Nearest Neighbors (KNN), Decision Tree (DT),
Random Forest (RF), and bagging are applied on VeReMi.
VeReMi is a dataset generated by LuST and Veins simulations.
This dataset consists of three different density levels, five
distinct attack types, and three various attacker densities. The
bagging classifier shows the best performance compared to
the other ML techniques with a Precision score of 0.98 for
the position verification system.

In [5], several ML models are examined to perform binary
and multi-class classification on the Ton-IoT dataset. Logistic
Regression (LR), Naive Bayes (NB), Decision Tree (DT),
Random Forest (RF), AdaBoost, k-Nearest Neighbors (KNN),
Support Vector Machine (SVM), and XGBoost models are
utilized to complete the attack detection task. Comparing
the results of the ML models, it is observed that XGBoost
classifiers yield the best results with an Accuracy score of
0.986 (binary classification). This work tries to resolve the
imbalanced data distribution problem; however, it does not
consider Hyperparameters optimization.

In [6], a machine learning-assisted misbehavior detection for
VANETs is proposed. To prevent the consequences resulting
from false information injection in basic safety messages
(BSMs), this system detects position falsification attacks,
where KNN, NB, RF, and DT are applied to the simulated
dataset, VeReMi. According to the results, the K-Nearest
Neighbour and Random Forest classifiers outperform the other
ML techniques.

The authors in [7] used Explainable Neural Network (xNN)
technique to classify network traffic into normal and attack.
Binary classification is conducted by using the UNSWNB15
dataset. The xNN binary classifier provides a good perfor-
mance with the Accuracy score of 0.997.

In [8], an intelligent intrusion detection system for a 5G-
enabled vehicular network is introduced. This IDS model uses
DT and RF classifiers to detect Flooding attacks. The dataset
used in this work is extracted from ns3. The results show
that the Decision Tree classifier yields a good performance,
achieving a F1 Score of 1.

In [9], the authors propose a hybrid deep learning-based
model to detect DDoS attacks by combining Autoencoder
(AE) and Multi-layer Perceptron (MLP) Network, while using
the CICDDoS2019 dataset to train the model. This model
uses the Autoencoder to conduct the feature selection task
and utilizes the Multi-layer Perceptron Network to classify
the attacks. The achieved Accuracy score is 0.9834, and the
F1 score is 0.9818.

In [10], a Bi-directional LSTM-based multiclass classifier
is introduced to detect and classify DDoS attacks. CICD-
DoS2019 is used to train the model, which yields an Accuracy
score of 0.98.

In [11], the CICDDoS dataset is used to train binary and
multiclass classifiers to detect DDoS attacks. The authors
examine 8 ML classifiers (RF, K-NN, LightGBM, XGBoost,
AdaBoost, SVM, Linear Discriminant Analysis) and one deep
learning classifier. The binary classification scenario achieves
an approximate Accuracy score of 0.99.

In the context of vehicular communications, the models
proposed in [3], [4], [6], and [8] use network simulators to
generate the datasets while we train our IDS models using a
more realistic dataset (CICDDoS2019). The dataset we use in
this work is relatively more recent compared to the dataset
that is used for binary classification in [7].

III. PROPOSED METHODOLOGIES

In this work, we propose an effective Intrusion Detection
System (IDS) methodology using machine learning techniques
to detect attack traffic in Internet of Vehicle networks. Fig. 1
shows the overall workflow of our proposed system. The IDS
module is responsible for analyzing the traffic data of the
network. Since each data packet has its fixed packet format
(according to the IEEE 802.11p standard), each node/sensor
can follow the packet data format. The IDS module is designed
to analyze both data packets and network traffic.

1152

A. Data Description

In this work, we use one the most recent intrusion datasets,
CICDDoS2019 [12], to enable development of our IDS model
to detect intrusions in Internet of Vehicle networks. The
CICDDoS2019 dataset is a publicly available network at-
tack detection dataset, which is derived from the Canadian
Institute for Cybersecurity (CIC) Cybersecurity dataset [13].
The dataset includes a comprehensive collection of real-
world network traffic data, containing both normal and attack
traffic with labeled data. The dataset has various types of
attacks, including: UDP, MSSQL, Syn, NetBIOS, UDPLag,
LDAP, DrDoS-DNS, WebDDoS, TFTP, DrDoS-UDP, DrDoS-
SNMP, DrDoS-NetBIOS, DrDoS-LDAP, DrDoS-MSSQL, and
DrDoS-NTP. We randomly select part of the dataset (431370
samples) and ensure that all the attack categories are included.

B. Data Pre-processing

Data pre-processing refers to transforming and cleaning the
data to verify its quality and consistency for further processing.
For the CICDDoS2019 dataset, data cleaning consists of
removing white spaces and null/missing values. To decrease
the chance of overfitting in training process, we remove socket
information. Additionally, we encode the categorical labels
of attacks into numerical representations. Since the dataset
contains a wide variety of numerical values, we use the Max-
normalization method to transform the feature values to [0, 1]
scale and simplify the training task.

C. Feature Selection

Feature selection is one of the most important steps in Ma-
chine Learning tasks. The CICDDoS2019 dataset contains 80
features, making it impractical to use all of them. Furthermore,
not every feature in a dataset will necessarily have an impact
on the output. Selecting the most informative and influential
feature can reduce the complexity, improve the performance,
decrease the risk of overfitting, and enhance interpretability.
In order to select the most relevant features, we apply an
univariate method to select features based on their correlation
with the target variable, label of attack. We determine the
Pearson correlation coefficient to rank the features and select
the top ones. The absolute value of 0.5 is set as the threshold
to select the features. The pairwise relationships of selected
features are plotted in Fig. 2.

D. Data Balancing

The subclass of dataset we use in this work has an uneven
data distribution in target class. Considering binary classes,
the Attack class has a very high number of observations
(majority class) while the Normal class has a low number
of observations (minority class). The main concern with an
imbalanced dataset is that the classifier may tend to be biased
towards the majority class and fail to recognize the minority
class, even if it has a high Accuracy score. The Synthetic
Minority Oversampling Technique (SMOTE) is an effective
solution to handle the imbalanced data problem. This tech-
nique uses the k-nearest neighbors method to pick a random

Fig. 2: Pairwise Relationships of Features

neighbor of minority class instances and randomly generate a
synthetic instance. By generating new data instances instead of
duplicating existing ones, this method effectively reduces the
risk of overfitting, providing an advantage over conventional
oversampling techniques.

E. Classification Models

In this work, we use three supervised classification models:
Light Gradient Boosting Machine, Extra Trees Classifier, and
Extreme Gradient Boosting.

1) Light Gradient Boosting Machine: Light Gradient
Boosting Machine (LightGBM) is a relatively new machine
learning model, which belongs to the gradient boosting frame-
work. As a lightweight and efficient classifier, lightGBM can
handle large-scale datasets. This efficiency is attributed to the
use of techniques such as leaf-wise tree growth. Algorithm 1
explains details of the Light Gradient Boosting technique.

2) Extra Trees Classifier: The Extra Trees Classifier (ET)
is an ensemble machine learning classifier, which performs
based on decision trees technique. The Extra Trees Classifier
introduces extra levels of randomness in the tree-building
process. ET has two main parameters: randomly selected
number of attributes, k, and minimum sample size for splitting,
nmin. ET is used to generate an ensemble model with M
trees. These parameters conduct different effects. The strength
of attribute selection process can be determined by k, while
nmin influences the strength of averaging output noise. The
parameter M modifies the strength of the variance reduction
of the model. A visual explanation of Extra Trees Classifier
is shown in Fig. 3.

3) Extreme Gradient Boosting: Extreme Gradient Boosting
(XGBoost) is an advanced supervised learning algorithm that,
like LightGBM, belongs to the gradient boosting framework.
As a highly optimized implementation of gradient boosting,
XGBoost provides high performance and scalability. XGBoost

1153

Algorithm 1 Light Gradient Boosting Machine Algorithm
Input: Data: D={(x1, y1), (x2, y2), ..., (xN , yN)},

xi ∈ x, yi ∈ {0, 1};
Input: Loss Function: L(y, θ(x));
Input: Big Gradient Data Sampling Ratio: a;
Input: Slight Gradient Data Sampling Ratio: b;
Input: Iterations: M ;
1: Set θ0(x) = arg mincΣNi L(yi, c);
2: for m = 0 to M do
3: Gradient absolute values calculation:

ri = | δL(yi,θi(x))
δθ(xi)

|θ(x)=θm−1(x), i = {1, ..., N}
4: Gradient-based one-side sampling process:

topN ←− a × len(D);
randN ←− b × len(D);
sorted←− GetSortedIndices(abs(r));
A←− sorted[1 : topN];
B ←− RandomPick(sorted[topN : len(D)], randN);
D′ = A+B;

5: Information Gains calculation:

γl =
(Σxi∈Al

ri+
1−a
b

Σxi∈Bl
ri)

2

n
j
l
(d)

γr =
(Σxi∈Ar ri+

1−a
b

Σxi∈Br ri)
2

n
j
r(d)

Gj(d) = 1
n

(γl + γr)

6: New decision tree θ′m(x) developing on data D′
7: Updating θm(x) = θm−1(x) + θm(x)
8: end for
9: return θ̂(x) = θM (x)

Fig. 3: Extra Trees Classifier

employs an ensemble of decision trees as base learners, while
each tree is added sequentially. Subsequent trees join to correct
the mistakes made by the previous trees. Algorithm 2 describes
the XGBoost model.

F. Hyperparameter Optimization

Hyperparameter optimization involves finding the right
combination of Hyperparameter values, which maximizes the
performance of ML models within a reasonable time. Since the
default values do not always guarantee the best performance,
Hyperparameter optimization potentially enhances the results.
Bayesian optimization process involves the following steps:

• It generates a probabilistic Gaussian model of the ob-
jective function and updates it based on the previous
evaluation results.

• It finds the most promising Hyperparameters with maxi-
mum acquisition function.

• It applies the Hyperparameters to the objective function.

Algorithm 2 Extreme Gradient Boosting Algorithm
Input: Data: D={(x1, y1), (x2, y2), ..., (xN , yN)},

xi ∈ x, yi ∈ {0, 1};
Input: Loss Function: L(y, θ(x));
Input: Iterations: M ;
1: Set θ0(x) = arg mincΣNi L(yi, c);
2: for m = 0 to M do
3: calculating:

gm =
δL(yi,θi(x))

δθ(xi)
and hm =

δ2L(yi,θi(x))

δθ2(xi)

4: Choosing splits with maximum gains:

A = 1
2

[
G2

L
HL

+
G2

R
HR

+ G2

H
]

5: Leaf weights calculation: w∗ = −G
H

6: Base learner calculation: b̂(x) = ΣTj=1wI

7: Updating θm(x) = θm−1(x) + b̂(x)
8: end for
9: return θ̂(x) = ΣMm=0θm(x)

• It determines the performance with the current parameters
and repeat the steps until the maximum performance
score is achieved.

G. Performance Evaluation Metrics

We use several performance evaluation metrics to eval-
uate the performance of the proposed intrusion detection
framework. A higher value of these metrics indicate a better
performance.

1) Accuracy: Accuracy score is one the most straightfor-
ward metrics to evaluate the performance of classifiers. As
described in (1), this metric represents the fraction of correct
predictions.

Accuracy =
NumberofCorrectPredictions

TotalNumberofPredictions
(1)

2) AUC: The curve Receiver Operating Characteristic
(ROC) inspects the performance of a classifier by plotting the
classifier’s true positive rate (TPR) versus its false positive rate
(FPR). Calculating the Area Under the Curve results in AUC
score. A perfect classifier keeps an AUC score of 1, while a
random classifier has a score of 0.5.

3) Recall: The metric Recall is the proportion of positive
instances that are correctly identified as positive:

Recall =
TruePositive(TP)

TruePositive(TP) + FalseNegative(FN)
(2)

4) Precision: The ratio of the number of True Positives to
the total number of instances, which are predicted as positive
is a metric known as Precision. The expression of Precision
is given in (3).

Precision =
TruePositive(TP)

TruePositive(TP) + FalsePositive(FT)
(3)

5) F1 Score: The F1 Score takes the harmonic mean of
Precision and Recall to introduce a new metric. Equation (4)
indicates the relationship between F1 and the other two scores,
Precision and Recall.

F1 =
2

1
Precision

+ 1
Recall

(4)

1154

Fig. 4: Impact of Bayesian Optimization on Accuracy Scores

Fig. 5: Learning Curve of LightGBM classification

6) Kappa Index: The basic idea of the Kappa index is to
compare an observed accuracy with a random guess (expected
accuracy). It measures the agreement between two ratings, as
shown in (5):

k =
Po − Pe
1− Pe

= 1−
1− Po
1− Pe

(5)

where Po and Pe are the observed and expected agreements,
respectively.

7) MCC: The Matthew’s correlation coefficient (MCC) is
a correlation coefficient between the predicted values and true
values. MCC returns a value between -1 and 1, while perfect
predictions result in MCC value of +1.

IV. RESULTS

In this section, we present the experimental results of the
proposed Intrusion Detection System for Internet of Vehicles
network. We use various software packages of Python to
conduct a better analysis. Pandas is mostly used to complete
the data pre-processing tasks [14], while the majority of data
analyzing procedures are done by PyCaret and Sklaern [15],
[16]. Matplotlib and Seaborn are employed for data visualiza-
tion [17], [18].

A. Hyperparameter Optimization

The impact of Hyperparameter tuning based on the Bayesian
Optimization algorithm for each classifier is shown in Fig. 4.
The figure represents an approximately 8% improvement in

Fig. 6: Learning Curve of Extra Trees classification

Fig. 7: Learning Curve of XGBoost classification

Accuracy for all three classifiers after optimizing their param-
eters.

B. Classification Performance

Table I specifies the performance evaluation results of the
classifiers. According to the information provided in Table I,
XGBoost slightly outperforms the other two classifiers in
terms of accuracy (0.9902), AUC (0.9993), and recall (0.9755)
scores. Figs. 5, 6, and 7 show the learning curves of Light-
GBM, ET, and XGBoost classifiers, respectively. The learning
curves confirm the effective learning process of these three
classifiers, while further increasing the size of the training sets
may not significantly enhance performance.

C. K-Fold Cross Validation

The 10-Fold Cross-Validation Accuracy results are given in
Table II. In the 10-Fold Cross-Validation process, the first fold
is used for testing, and the remaining folds are used for training
and this is repeated ten times to test the entire dataset in a
fold-by-fold basis. From Table II, the mean Accuracy values
of LightGBM, ET, and XGBoost classifiers are 0.9900, 0.9900
and 0.9902, respectively. The Accuracy standard deviation of
LightGBM classifier is 0.0004, while ET and XGBoost models
have the same value of 0.0003. These results demonstrate the
robust performance of the classifiers.

1155

TABLE I: Classification Performance

Model Accuracy AUC Recall Prec. F1 Kappa MCC
Light Gradient Boosting Machine 0.9900 0.9991 0.9753 0.9995 0.9872 0.9469 0.9481
Extra Trees Classifier 0.9900 0.9992 0.9754 0.9995 0.9873 0.9471 0.9483
Extreme Gradient Boosting 0.9902 0.9993 0.9755 0.9995 0.9873 0.9470 0.9482

TABLE II: 10-Fold Cross-Validation Accuracy Scores

LightGBM ET XGBoost
Fold-1 0.9902 0.9902 0.9905
Fold-2 0.9905 0.9902 0.9907
Fold-3 0.9907 0.9907 0.9907
Fold-4 0.9903 0.9903 0.9904
Fold-5 0.9898 0.9898 0.9899
Fold-6 0.9899 0.9901 0.9902
Fold-7 0.9897 0.9895 0.9898
Fold-8 0.9897 0.9898 0.9899
Fold-9 0.9895 0.9898 0.9899

Fold-10 0.9898 0.9898 0.9899
Mean 0.9900 0.9900 0.9902
Std 0.0004 0.0003 0.0003

D. Impact of Feature Selection

Feature selection reduces the complexity of classifications.
The time complexity of LightGBM classifier is on the order of
O(T ∗M ∗P ∗D), where M denotes the number of features,
T is the number of trees, D is the depth of the tree, and P
represents the number of buckets.

The complexity of the Extra Trees algorithm can be de-
scribed as O(T ∗ K ∗ N ∗ log(N)), where N is the sample
size of the training data, and K is the main parameter of the
tree-based algorithm.

The time complexity for building each tree in the XGBoost
algorithm is approximately O(M ∗N ∗ log(N)).

Using the correlation coefficient feature selection tech-
nique and removing the port-dependent features, we change
the shape of balanced training set from (596366, 88) to
(596366, 7), which means 6 input features and 1 output feature
are used to train the classifiers. The decrease in the number
of features and data points notably reduces the complexity for
all three classifiers.

E. Feature Importance

Feature importance is a score, which shows how useful or
valuable each feature was to establish the boosted decision
trees within the model. Considering XGBoost as the most
effective model in attack detection, ”Down/Up Ratio” and
”URG Flag Count” receive the highest importance scores,
while ”Avg Fwd Segment Size” and ”Fwd Packet Length Min”
have the least importance among the dataset’s variables.

We repeat the XGBoost classification task considering two
different scenarios. In the first scenario, only the 4 most
important features are applied to train the classifier. The
second scenario is defined to use only the 4 least important
features. As shown in Table III, reducing the number of
features from 6 to 4 and using only the 4 most important ones
results in an improvement in Accuracy score from 0.9902 to
0.9914. However, using the 4 least important features does
not improve the performance, instead, the Accuracy drops to
a value of 0.9886.

F. Impact of Data Balancing

We use the Synthetic Minority Oversampling Technique
(SMOTE) to balance the target variable. This leads to an
increased number of samples (from 43137 to 596366). As
previously mentioned in Section III-D, an imbalanced dataset
can potentially have a high Accuracy score, where it is biased
towards the majority class. Therefore, instead of Accuracy
score, other evaluation metrics are more reliable to evaluate the
performance. The impact of data balancing on the performance
of all the three classifiers in terms of the Precision metric is
shown in Fig. 8. Data balancing based on SMOTE technique
improves the Precision score for all the classifiers. Due to
the imbalanced data, the Precision scores for LightGBM, ET,
and XGBoost classifiers were 0.9967, 0.9893, and 0.9897,
respectively. However, by using the SMOTE technique, all
three classifiers are able to achieve a higher Precision score
of 0.9995.

G. Comparison with Other Studies

We compare the performance of this work in terms of
Accuracy to the other systems in [5], [7], and [8]. Table IV
summarizes this comparison. We choose the results of [5],
since similar to our work they present the XGBoost classifier
as the most effective ML model to recognize attack instances.
Among all the binary classifiers discussed in Section II, the
proposed system in [7] has the highest accuracy score. As
one of the most recent proposed systems in the context of
Intrusion Detection for vehicular communications, the results
of [8] are considered. In terms of the Accuracy scores, our
proposed system outperforms the work in [5] and [8]. The
attack detection model in [7] achieves a higher Accuracy score
(0.997) compared to our model’s Accuracy score (0.9902).
However, we use a more recent dataset to train our attack
detection system.

We also examined the performance of all these methods
on the CICDDoS2019 dataset. According to Table IV, al-
though all the methods perform accurately, our proposed work
achieves the highest Accuracy score. The combination of
Bayesian Optimization technique to tune the Hyperparameters
and SMOTE to balance the data distribution leads to an
enhanced classification accuracy.

V. CONCLUSION

We proposed an optimized Machine Learning-based In-
trusion Detection System for Internet of Vehicles networks.
Light Gradient Boosting Machine, Extra Trees classifier, and
Extreme Gradient Boosting models were the supervised ML
classifiers employed to classify normal and attack instances.
The Hyperparameters of ML models were optimized according
to the Bayesian Optimization algorithm. We used one of the

1156

TABLE III: Performance of XGBoost using only the 4 Most/Least Important Features

Accuracy AUC Recall Prec. F1 Kappa MCC
4 Most Important Features 0.9914 0.9998 0.9986 1.0000 0.9993 0.8860 0.8913
4 Least Important Features 0.9886 0.9797 0.9985 0.9799 0.9792 0.8758 0.8816

TABLE IV: Comparison of the average Accuracy with the other studies

Reference Best ML Technique Data Balancing
Technique

Hyperparameter
Optimization

Original
Dataset

Average
Accuracy

(Original Dataset)

Average
Accuracy

(CICDDoS2019)
[5] Extreme Gradient Boosting SMOTE - Ton-IoT 0.986 0.983
[7] Explainable Neural Network - - UNSWNB15 0.997 0.986

[8] Decision Tree - - Extracted
from ns3 0.970 0.982

Our work Extreme Gradient Boosting SMOTE Bayesian Optimization CICDDoS2019 0.9902 0.9902

Fig. 8: Impact of Data Balancing on Precision Score

most recent datasets, CICDDoS2019, to train and test the
ML models. We performed data pre-processing and feature
selection on the dataset before applying ML classification
models. Data balancing was conducted by applying Synthetic
Minority Oversampling Technique. The performance of the
ML models were assessed by using several evaluation metrics:
Accuracy, Precision, Recall, F1-score, Kappa index, and MCC.
According to the performance outcomes, while all the ML
classifiers had very good performance the XGBoost classifier
slightly outperformed the others. Finally, we compared the
performance of our proposed attack detection system with the
results of some of the most recent and high-performing studies
using the same CICDDoS dataset. The findings revealed that
our scheme outperforms all these other systems, highlighting
the effectiveness of our data balancing technique and Bayesian
Hyperparameter Optimization.

REFERENCES

[1] R. Gasmi and M. Aliouat, “Vehicular ad hoc networks versus internet
of vehicles - a comparative view,” in 2019 International Conference on
Networking and Advanced Systems (ICNAS), 2019, pp. 1–6.

[2] R. A. Khamis and A. Matrawy, “Evaluation of adversarial training on
different types of neural networks in deep learning-based idss,” in 2020
International Symposium on Networks, Computers and Communications
(ISNCC), 2020, pp. 1–6.

[3] M. T. Garip, J. Lin, P. Reiher, and M. Gerla, “Shieldnet: An adaptive
detection mechanism against vehicular botnets in vanets,” in 2019 IEEE
Vehicular Networking Conference (VNC), 2019, pp. 1–7.

[4] S. Gyawali and Y. Qian, “Misbehavior detection using machine learning
in vehicular communication networks,” in ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), 2019, pp. 1–6.

[5] A. R. Gad, A. A. Nashat, and T. M. Barkat, “Intrusion detection system
using machine learning for vehicular ad hoc networks based on ton-iot
dataset,” IEEE Access, vol. 9, pp. 142 206–142 217, 2021.

[6] A. Sharma and A. Jaekel, “Machine learning based misbehaviour
detection in vanet using consecutive bsm approach,” IEEE Open Journal
of Vehicular Technology, vol. 3, pp. 1–14, 2022.

[7] S. Aziz, M. T. Faiz, A. M. Adeniyi, K.-H. Loo, K. N. Hasan, L. Xu,
and M. Irshad, “Anomaly detection in the internet of vehicular networks
using explainable neural networks (xnn),” Mathematics, vol. 10, no. 8,
2022. [Online]. Available: https://www.mdpi.com/2227-7390/10/8/1267

[8] B. Sousa, N. Magaia, and S. Silva, “An intelligent intrusion detection
system for 5g-enabled internet of vehicles,” Electronics, vol. 12, no. 8,
2023. [Online]. Available: https://www.mdpi.com/2079-9292/12/8/1757

[9] Y. Wei, J. Jang-Jaccard, F. Sabrina, A. Singh, W. Xu, and S. Camtepe,
“Ae-mlp: A hybrid deep learning approach for ddos detection and
classification,” IEEE Access, vol. 9, pp. 146 810–146 821, 2021.

[10] C.-S. Shieh, W.-W. Lin, T.-T. Nguyen, C.-H. Chen, M.-F. Horng, and
D. Miu, “Detection of unknown ddos attacks with deep learning and
gaussian mixture model,” Applied Sciences, vol. 11, no. 11, 2021.
[Online]. Available: https://www.mdpi.com/2076-3417/11/11/5213

[11] J. Halladay, D. Cullen, N. Briner, J. Warren, K. Fye, R. Basnet,
J. Bergen, and T. Doleck, “Detection and characterization of ddos attacks
using time-based features,” IEEE Access, vol. 10, pp. 49 794–49 807,
2022.

[12] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Devel-
oping realistic distributed denial of service (ddos) attack dataset and
taxonomy,” in 2019 International Carnahan Conference on Security
Technology (ICCST), 2019, pp. 1–8.

[13] “Ddos evaluation dataset (cic-ddos2019),” updated in 2021, accessed
on July 25, 2023. [Online]. Available: https://www.unb.ca/cic/datasets/
ddos-2019.html

[14] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3509134

[15] M. Ali, PyCaret: An open source, low-code machine learning library
in Python, April 2020, pyCaret version 1.0.0. [Online]. Available:
https://www.pycaret.org

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[17] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[18] M. L. Waskom, “seaborn: statistical data visualization,” Journal of
Open Source Software, vol. 6, no. 60, p. 3021, 2021. [Online].
Available: https://doi.org/10.21105/joss.03021

1157

