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Abstract—Recently, Software-Defined Networking (SDN) is
receiving much research attention due to its ability to decouple
the data plane from the control architecture by associating the
network switches to one (centralized) or more (distributed) con-
troller(s). Traditionally, switches are assigned to the controllers in
a static manner which results in under-utilization of the resources
of the controllers and increased response delays to user requests.
In this paper, we consider a practical load-balancing and agile
scenario by formulating the dynamic associations of switches and
controllers as an NP-hard optimization problem to minimize the
maximum resource utilization of the controllers. Therefore, we
propose an Ant Colony Optimization (ACO)-based algorithm to
deal with the aforementioned request satisfiability issue in large
SDN systems in polynomial-time. Furthermore, we envision a
hybrid deep learning model consisting of Convolutional Neural
Network (CNN) and Gated Recurrent Unit (GRU) structures to
achieve near-optimal resource utilization for real-time SDN ap-
plications. Experimental results demonstrate that our customized
CNN-GRU model outperforms the other techniques in terms
of resource utilization (15% − 45% optimality gap) within a
significantly reduced computational running time (≤ 0.1s).

Index Terms—Software-Defined Networking, Resource utiliza-
tion, Convolutional Neural Network, Gated Recurrent Unit.

I. INTRODUCTION

W Ith the recent proliferation of digital communications,
the limitations of conventional networks continue to be

identified. A major shortcoming of legacy network devices is
how both control and data planes are handled together [1],
resulting in network manageability, extensibility, and flex-
ibility issues. Aiming to resolve such issues, the concept
of Software-Defined Networking (SDN) emerged where the
control and data planes are decoupled using a centralized
controller to handle all the operations [1]. However, for a
large-scale SDN, a single controller cannot handle the growing
number of requests from the data plane [1], and suffers
from a single-point-of-failure contributing to network service
disruption [1]. To alleviate this problem, distributed controllers
have been considered to manage the SDN control plane
functionalities [2], where switches are statically allocated
to a single or multiple controllers [2]. However, network
traffic changes dynamically, both spatially and temporally.
Consequently, some controllers may experience a high traffic
load and reach the maximum resource usage, while others
might remain idle (i.e., under-utilized). Moreover, due to the

static mapping of switches to controllers, the response time of
controllers dramatically increases. Hence, dynamic mapping
of switches to the controllers is necessary [1] for improving
the utilization of resources while balancing the loads on the
controller and getting better response time.

Several research works have been focused on the Dynamic
Controller Assignment (DCA) for minimizing the message
overhead, response time, or balancing the load among the
controllers [2]–[6]. AI and machine learning approaches are
being used to several approach SDN applications [7], [8]. In
these existing works, the controller switch assignment creates
an imbalance in the usage of the controllers’ resources. There-
fore, it can decrease the network’s overall performance with
a high response time. Moreover, the existing load balancing
strategies can have higher communication overhead [9], and
response time [10]. To eliminate these shortcomings, every
controller needs to maintain a fixed processing capacity, and
the maximum resource utilization of the controllers must be
minimized as low as possible. While Filali et al. [11] proposed
a one-to-many matching algorithm for the DCA problem, we
show that this algorithm cannot return any solution for our
optimization problem even though a solution exists. Finally,
we explored a greedy approach for the DCA problem and
elucidated that the algorithm may return no solution even if
a solution exists. The motivation for our study comes from
the limitations of existing approaches related to Assignment
(DCA) solutions. The limitations of the existing approaches
have been mentioned elaborately under Section III, which are
further addressed by our proposed approaches. For example,
MSDA and greedy (existing approaches used for similar DCA
problems) MSDA may return no solution for an instance even
though a solution may exist. Thus, the service request may
not be satisfied even though the solution exists. However, our
proposed ACO algorithm initially attempts to find a random
feasible solution in an exhaustive manner and iteratively
improves upon the solution, which eliminates the occurrences
of request failure even when solutions exist. Furthermore, our
proposed hybrid AI model can guarantee real-time service
delivery for SDN infrastructure. The major contributions of
this paper have been outlined as follows:

a) Although DCA resource allocation problem exists in the
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literature, we have formulated a novel ILP model to minimize
the maximum resource utilization for DCA optimization in this
study with the intent of effective load balancing. We prove that
the defined optimization problem is NP-hard, and the decision
version of the problem is also NP-complete.

b) We apply a meta-heuristics based algorithm Ant Colony
Optimization (ACO), which is capable of satisfying 100%
request, unlike the algorithms existing in the literature.

c) Furthermore, we investigate a data-driven approach by
proposing a hybrid deep learning model composing Convo-
lutional Neural Networks (CNN) and Gated Recurrent Unit
(GRU) to speed up the performance. CNN is an extremely
well-known and preferred method for extracting pattern in-
sights from data to deal with classification problems [8].
We have utilized GRU for gaining perception about capacity
changing temporal effects in trend prediction. The primary
intention of this hybrid model, named CNN-GRU hereafter, is
to serve real-time SDN use cases.

All the methodologies proposed in this paper are considered
to be packaged together to facilitate the SDN infrastructure
by enabling a module selector for load balancing or resource
utilization approaches. The service providers are considered
responsible for activating the algorithm from the package as
per the Quality of Service (QoS) requirements, Service Level
Agreement (SLA), and nature of the application. The rest of
the paper is structured as follows. The network model and
problem formulation is described in Section II. Section III
covers some existing approaches to the problem and issues
regarding those methodologies. Our proposed AI-driven ap-
proaches (ACO and CNN-GRU) are explained in Sections IV
and V, respectively. Finally, Section VII concludes the paper.

II. SYSTEM MODEL & PROBLEM FORMULATION

In a data-center network, the physical topology may vary
depending on the network infrastructure. However, the com-
munication between controllers and switches can be realized
in a two-tier structure between the control and data plane with
an algorithm module selector, as shown in Figure 1. Based on
the QoS requirements of the application and SLA, algorithm
module selector is configured by the provider to apply one of
our proposed approaches for controller-switch mapping. In this
paper, we consider a physically distributed SDN architecture
within a data-center where the control plane comprises a set
C = {c1, c2, . . . , cn} of n controllers. The processing capacity
of each controller ci ∈ C is denoted by αi with respect to
the number of requests ci can handle in one time unit. Let
S = {s1, s2, . . . , sm} be a set of m switches in the data
plane. At any time t, the load generated by a switch sj , i.e.,
the request demand of sj , is denoted by λj(t). We formulate
a SDN controller-switch assignment problem for the set C of
n controllers and the set S of m switches. At any time t, the
assignment between controllers and switches is denoted as a
binary n×m matrix X (t), where

Fig. 1: A data-center network model for SDN deployment with
algorithm package configured by service provider

xij(t) =

{
1, switch sj is assigned to the controller ci;
0, otherwise.

We consider the controller response time model where the
arrival times of the requests follow a Poisson process with
λj(t) ≤ αi , ∀ci ∈ C. Here, switch requests are aggregated
in the connected controller’s processing queue. Therefore, at
any time t, the load of the controller ci, denoted by θi(t), is
represented as:θi(t) =

∑m
j=1 λj(t)xij(t).

We assume that a controller is modelled as an M/M/1 queue,
and the loads generated at the switches are independent [11].
Therefore, according to Little’s law, the average sojourn time
for the controller ci is 1

αi−θi(t)
. In our model, the processing

capacity of the controllers may differ from one controller
to another. The resource utilization of a controller is the
utilization rate of its processing capacity. Hence, at time t,
the resource utilization of a controller ci, denoted by Ri(t),
is represented as:Ri(t) = θi(t)

αi
. In this paper, our primary

objective is to minimize the maximum resource utilization in
each time slot by assigning controllers to the switches. Hence,
for any time slot t, we formulate the following optimization
problem:

Minimize argmax
i,j

Ri(t) (1)

subject to,
θi(t) ≤ αi ; ∀ ci ∈ C (2)
m∑
j=1

xij(t) ≥ 0 ; ∀ ci ∈ C (3)

n∑
i=1

xij(t) = 1 ; ∀ sj ∈ S (4)

xij(t) ∈ {0, 1} ; ∀ ci ∈ C and ∀ sj ∈ S (5)
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The constraint in equation (2) ensures that the controller’s total
load does not exceed that controller’s processing capacity. The
constraints in equations (3) and (4) ensure that each controller
can be associated with any number of switches and every
switch maintains connectivity with exactly one controller,
respectively. Equation (4) also ensures that all switches are
assigned to the controllers. Here, xij(t) in equation (5) is the
decision variable.

In what follows, we show that the SDN controller-switch
assignment problem is NP-hard, and we obtain the result by
reduction from the load balancing problem, which is NP-hard
[12].

Theorem II.1. The SDN controller-switch assignment problem
is NP-hard.

Proof. Consider any instance of the load balancing problem
where J be a set of m jobs, andM be a set of n identical ma-
chines. The processing time of each job j ∈ J is represented
as tpj . Now, we describe how to construct a corresponding
instance of the SDN controller-switch assignment problem.
Each job in J is considered a switch in the data plane, and
each machine in M is considered a controller in the control
plane. The load generated by a switch sj is tpj , i.e., the load
of each switch is equal to the processing time of the corre-
sponding job in J . We assume that the processing capacity of
each controller is

∑m
j=1 t

p
j . Therefore, any controller can be

assigned to all the switches. The SDN controller assignment
problem’s objective is to minimize any controller’s maximum
resource utilization. Since the controller’s processing capac-
ity is the same, the resource utilization of any controller
would directly depend on the load generated at the switches
managed by that controller. Therefore, each machine’s load
in the load balancing problem becomes equivalent to the
resource utilization of the corresponding controller in the SDN
controller-switch assignment problem. In the instance of the
load balancing problem, the maximum load of any machine
would be minimized if and only the corresponding instance of
the SDN controller-switch assignment problem minimizes the
maximum resource utilization of any controller.

We also find that the decision version of the SDN controller-
switch assignment problem is NP-complete. Given a set S
of m switches and a set C of n controllers, the decision
version of the SDN controller-switch assignment problem asks
to determine whether the controllers in C can be assigned to
all the switches in S. We prove that the decision version of
SDN controller-switch assignment problem is NP-complete.
We obtain the result by reduction from the decision version
of the bin packing problem, which is NP-complete [13].

Theorem II.2. The decision version of the SDN controller-
switch assignment problem is NP-complete.

Proof. Consider an instance of the decision version of bin
packing problem where we are given a set B of n bins,
and a set W = {w1, w2, . . . , wm} of m weights. Let ∆
be the capacity of each bin. Now, we describe how to

construct a corresponding instance of the decision version
of the SDN controller-switch assignment problem. Each bin
in B is considered as a controller in the control plane. The
processing capacity of all the controllers is ∆. Let S be a
set of m switches in the data plane and the load generated
by a switch sj ∈ S is wj . Since the processing capacity
at all the controllers is the same, the resource utilization of
any controller would directly depend on the load generated
by the switches managed by that controller. Therefore, the
total weight of each bin in the decision version of the bin
packing problem becomes equivalent to the resource utilization
of the corresponding controller in the decision version of the
SDN controller-switch assignment problem. In the instance
of the decision version of the bin packing problem, all the
weights can be packed into D or fewer bins of capacity ∆
if and only if the corresponding instance of SDN controller-
switch assignment problem can assign the controllers to all
the switches.

III. EXPLORING LIMITATIONS OF EXISTING APPROACHES

In this section, we first discuss an existing one-to-many
matching algorithm for the SDN controller-switch assignment
problem. We show that the algorithm can return no solution
for an instance even if a solution exists. Then, we provide
a greedy approach and show that it also fails to return a
solution for an instance even though a solution exists. This
approach is intuitively applicable, i.e., natural choices to solve
our considered problem. We provide its preliminaries and
identify its limitations, which will reinforce the need to devise
more effective solutions.

A. One-to-many Matching Algorithm

A one-to-many matching game-based approach, also named
the Multi-Stage Deferred Acceptance (MSDA) algorithm, was
proposed to dynamically assign the switches among the con-
trollers dynamically [11]. The approach dynamically assigns
switches to controllers to minimize the response time. In the
MSDA algorithm, each switch chooses one controller as its
master controller based on its preference list. Each controller
can be associated with multiple switches concerning its pro-
cessing capacity and a minimum quota. However, in some
cases, MSDA algorithm can return no solution for an instance
even though a solution exists. Consider an example of an SDN
with two controllers (c1, c2,), and three switches (s1, s2, s3,).
The capacity of c1 and c2 are 10 and 4, respectively. The
load generated at the switches s1, s2, and s3 are 5, 4, 5,
respectively. The preference list of all the switches is {c1, c2}.
Therefore, the algorithm assigns s1 and s2 to the controller c1.
Hence, MSDA algorithm cannot find a feasible solution for
this instance as it fails to find a controller for s3. However,
an optimal solution exists where controller c1 is mapped to s1
and s3, and c2 is mapped to s2.

Lemma III.1. MSDA algorithm may return no solution for
an instance even though a solution may exist.
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B. Greedy Algorithm

We provide a greedy technique that minimizes the maximum
resource utilization while ensuring the constraints (2), (3),
and (4). Initially, the algorithm sorts all the switches in
descending order according to their load. According to the
sorted list of switches, we take each switch sj and calculate
each controller’s resource utilization rate for sj by following
the equation (II). Then, we choose a controller ci that has the
minimum resource utilization rate among all other controllers.
If the capacity of ci is not exceeding and has the minimum
resource utilization rate, then sj is mapped to ci. The load
of the controller ci is updated afterward. In some instances,
the greedy algorithm may return no solution even though a
solution exists. Consider an instance of the SDN controller-
switch assignment problem where we have two controllers c1
and c2, and four switches s1, s2, s3 and s4. The processing
capacities of c1 and c2 are 110 and 11, respectively. The load
generated by the switches s1, s2, s3 and s4 are 5, 6, 10, 100,
respectively. The greedy algorithm cannot find a feasible
solution for this instance because the algorithm fails to find a
controller for s1. However, there exists a solution where we
can assign the following: c1 : s4, s3 and c2 : s2, s1.

Lemma III.2. The greedy algorithm may return no solution
for an instance even though a solution may exist.

IV. META-HEURISTIC CONTROLLER-SWITCH
ASSIGNMENT

This section proposes a meta-heuristic Ant Colony Op-
timization (ACO) approach for the SDN controller switch
allocation problem. Meta-heuristics are problem-independent
methods, and the master strategy is relatively easy to adapt
according to other heuristics. These methods are commonly
utilized to invade the search space effectively for generating
sub-optimal solutions within polynomial time. he key reason
behind proposing this ACO algorithm has been to ensure
request satisfiability, dissimilar to previously discussed state-
of-the-art algorithms. The ACO algorithm has been designed
to generate a feasible initial solution by randomly mapping
the SDN controllers to various switches in line number 3
of Algorithm 1. The algorithm initially attempts to find a
random but feasible solution in an exhaustive manner and
iteratively improves upon the solution quality, which addresses
the request satisfiability issue. Hence, instead of the objective
function, the initial solution generation scheme instead con-
tributes towards the assurance of request satisfiability (feasible
solution) whenever exists. Our proposed ACO algorithm for
the SDN controller switch assignment problem has been
exhibited in Algorithm 1. At first, the algorithm initializes
a set of system parameters and virtual ants in lines 1 and 2,
respectively. After that, it generates a feasible initial solution
by randomly mapping the SDN controllers to various switches
in line number 3. The ACO algorithm initially attempts to
find a random feasible solution in an exhaustive manner,
which eliminates the occurrences of the mentioned cases in
Lemma III.1 and III.2. Thus, the ACO algorithm ensures a

feasible solution, and this is one of the strongest motivations
for proposing this algorithm. The details of the rest of the
algorithm have been discussed in the following subsections.

Algorithm 1: ACO driven SDN controller-switch as-
signment
Input: C, S, λj(t), αi

Result: A set of SDN controller-switch pairs
Initialize system parameters µ, λ, ωl, ωg

Initialize a set of ants A
Construct an initial feasible solution by randomly
assigning switches to controllers

Compute initial value of pheromone ζ0 using Eq. (6)
Set the value of total_iterations
while (iteration ≤ total_iterations) do

foreach ant az ∈ A do
foreach switch sj ∈ S do

Assign switch sj ∈ S to a controller ci ∈ C
using Eq. (7)

Update local pheromone using Eq. (8)
Update value of global pheromone using Eq. (9)
iteration = iteration+ 1

return the set of assigned SDN controller-switch pairs

A. Calculation of Initial Pheromone Value

We utilize the randomly generated initial solution to de-
termine the initial pheromone value. In practice, pheromone
trails are the deposit of chemical factors functioning as
communication signals among the ants. Real ants employ
pheromones leading others to food sources while traversing
their surroundings. In the SDN controller-switch assignment
problem, the pheromone values indicate the possibility of
allocating a switch sj ∈ S to some controller ci ∈ C.
Being a minimization problem, the lower the pheromone value,
the higher the chances are for a specific controller-switch
assignment. Thus, the initial pheromone value for this problem
is determined by the maximum resource utilization of the
corresponding initial solution using the following equation:

ζ0 = max(Ri) (6)

B. Heuristic Value Determination

In collaboration with the pheromone value, the heuristic
value plays a crucial role in assigning switches to a controller.
The objective function is to minimize the maximum resource
utilization. Hence, the heuristic function has been designed
in a way that contributes to minimizing the overall objective
function. The function for calculating the heuristic value of a
switch sj ∈ S assigned to controller ci ∈ C has been defined
as:Hi,j =

λj(t)
αi

. This equation makes it possible to ensure that

the solutions with less resource utilization will have a lower
heuristic value. It is desirable since we ultimately aim to favour
the SDN controller-switch mapping solutions that minimize
the maximum resource utilization. Moreover, it is noteworthy
that we are purposely using lesser heuristic values for more
preferable solutions as this is a minimization problem.
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C. Controller Selection
An ant az ∈ A selects the best suitable controller for a

switch following the pseudo-random-proportional action rule,
as mentioned in line 9 of the algorithm. The pseudo-random-
proportional rule has been defined as the following.

q =

{
argminci∈C̃ ([ζi,j ]

µ × [Hi,j ]
λ), if η ≤ ϵ (exploitation)

randomly choose a ci ∈ C̃, otherwise (exploration)
(7)

Here, ϵ represents a random variable uniformly distributed in
the [0, 1] range, while η is a pre-defined system parameter.
Moreover, η can be any fractional number between the closed
range of 0 and 1. The notation C̃ is a set of candidate con-
trollers that has enough available capacity for a switch sj ∈ S,
where C̃ ⊆ C. ζi,j indicates the pheromone trail values for
placing a switch sj ∈ S to controller ci ∈ C̃. Therefore, an
ant az ∈ A assigns a switch to a controller that produces the
lowest quantity of [ζi,j ]

µ × [Hi,j ]
λ, whenever η ≤ ϵ. Here,

µ and λ are coefficients indicating the relative importance of
the pheromone trail and heuristic values, respectively. Thus,
selecting the most appropriate controller from the candidate set
depends on combining heuristic and pheromone trail values.
These actions with η probability encourage intensification
of the exploitation of the search space. On the contrary,
to stimulate exploration, the action rule randomly assigns a
controller ci ∈ C̃ for a switch sj ∈ S.

D. Update Procedure for Pheromone Values
As suggested by the line number 10 of algorithm 1, when-

ever an ant assigns a switch to a controller, it updates the local
pheromone trail value with respect to the initial pheromone
using the following equation:

ζi,j(t+ 1) = ω−1
l × ζ0 + (1− ωl)

−1 × ζi,j(t) (8)

Here, ωl upholds the relative importance of historical and
current pheromone trail values. Once an ant selects a controller
ci ∈ C̃ for some switch sj ∈ S, the corresponding pheromone
trail value is increased, making it less desirable for other ants.
Hence, this local pheromone update phenomenon promotes the
ants to construct diverse solutions in the colony. The global
pheromone value update occurs once all the ants construct
local optimal solutions according to the line number 11 of
algorithm 1. The global solution G is formed by recording
the best solution among the locally produced solutions by all
the ants. Equation (9) includes ωg acting as a system weight
parameter.

ζi,j(t+ 1) = ω−1
g ×∆ζi,j + (1− ωg)

−1 × ζi,j(t) (9)

∆ζi,j reflects the pheromone value effect for the updated
global solution, which is determined by the following equa-

tion: ∆ζi,j =

{
ζi,j , if (ci, sj) ∈ G
0, otherwise

. In summary, for each

iteration, the historical learning experiences of the ants are
utilized for intending to assign switches to SDN controllers
optimally.

V. SDN CONTROLLER-SWITCH ASSIGNMENT
LEVERAGING DEEP LEARNING

Future SDN management researchers are approaching vari-
ous AI-enabled techniques [14]. The primary intention behind
employing an intelligent load balancer for SDN is to improve
efficiency, deliver greater convenience, and handle a high
number of real-time vertical use cases (e.g., video surveillance,
smart city, and industrial automation). Besides, deep learning
emerges as a robust design capable of eliminating the lock
by design issues with traditional non-programmable load bal-
ancers [14]. Hence, we propose a deep learning-empowered
hybrid model containing CNN and GRU. We propose hybrid
CNN-GRU model with the intention to ensure linear prediction
time complexity and effectively serve time-sensitive SDN use
cases.

A. Dataset Generation

We utilize an ILP solver to generate labelled datasets for the
training process of our proposed hybrid CNN-GRU model.
The entire dataset generation and training process has been
addressed in Algorithm 2. Firstly, we create a randomly
initialized unlabeled system and define features as a quadruple
consisting D = ({Ci|1 ≤ i ≤ n}, {Sj |1 ≤ j ≤ m}, λj(t), αi)
in line number 3 of Algorithm 2. Next, we solve the random
system through the ILP solver and exploit the solution to create
a labelled dataset. To apply one-hot encoding for the label
generation, we define the target variable size for each feature
sample same as the number of controllers. Then, we represent
the optimal target variable/controller for a feature sample to
be 1, and define all others to be 0. Thus, through line numbers
6−9, we iteratively generate the target variables set T . We also
continually update the capacities of controllers for each feature
sample in line 10. Likewise, we simulate several feature sets
and compile those with target variables to generate a labelled
dataset L for training the CNN-GRU model. The training of
the model is performed using the historical dataset captured in
the previous subsection. The training is supposed to be done
in a sequential manner. Thus, the training model is updated
after frequent intervals by training on the new addition of
experienced data. By re-training the model, the parameters
are adjusted to make accurate decisions. This binding process
ensures that the model remains accurate and effective over
time. Usually, the training is performed by the SDN provider’s
server responsible for controller-switch mapping and load-
balancing computation.

B. Proposed Hybrid Deep Learning Model

The hybrid CNN-GRU model is composed of one dimen-
sional CNN layer and GRU layer combined by fully connected
layers. The GRU layer has been incorporated to capture the
capacity update temporal effect of the system into the final
deep learning model prediction. We have Rectified Linear Unit
(ReLU) as an activation function for all the layers except the
output layer that utilizes the softmax function. The filter size of
layers gets reduced by a factor. We use the dropout technique
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Algorithm 2: Labeled dataset generation and training
Input: number of controllers: n, number of switches:

m, total_simulation_limit
Output: L
L ← ∅
for epoch < total_simulation_limit do

Generate a random system
D = ({Ci|1 ≤ i ≤ n}, {Sj |1 ≤ j ≤ m}, λj(t), αi)
T ← ∅
yij ← Solve the randomly generated problem using
the ILP optimizer

for j = 1, 2, ...,m do
i← argmax

i
yij

k ← {1, 2, ..., n} − {i}
T ← T ∪ {(yij , 1), (ykj , 0)}
αi ← αi − λj(t)

L ← D ∪ T
Train CNN-GRU model on labeled dataset L

to avoid overfitting. Then, the model is followed by a 1D max-
pooling layer. Finally, we utilize the gradient descent approach
to minimize the loss in the training process. The loss function
is defined as the mean squared error between the ground truth
(ILP solutions) and model predictions. The training of the
model is performed using the historical dataset captured in
the previous subsection. The training is supposed to done in
sequential manner. Thus, the training model is updated after
frequent intervals by training on the newly addition data. By
re-training the model, the parameters are adjusted to make
accurate decisions. This is an important process to make sure
the model remains accurate and effective over time.

Algorithm 3: SDN controller-switch mapping using
trained CNN-GRU model

Input: {Ci|1 ≤ i ≤ n}, {Sj |1 ≤ j ≤ m}, λj(t), αi

Output: P
P ← ∅
for j = 1, 2, ...,m do

M ← array of n elements
for i = 1, 2, ..., n do

if λj(t) > αi then
Mi ← 0

else
Mi ← Predict the score between 0.0 and
1.0 using trained CNN-GRU model for
assigning sj to ci

k ← argmax
i

Mi

P ← P ∪ (ck, sj)
αk ← αk − λj(t)

The pre-trained CNN-GRU model is later employed to
predict the SDN controller-switch allocation to avoid training
time during decision making, as demonstrated in Section VII.
As described by the Algorithm 3, for any input system, it
records the assigned or predicted controller-switch pairs into
a final solution set P . For every feature sample, the trained

model generates a confidence score between 0.0 and 1.0
against all the feasible candidate sets of controllers. By a
feasible candidate set of controllers, we specify the ones that
have enough remaining capacity to handle the load of the
corresponding sample or switch. Then, the algorithm retrieves
the controller with the highest confidence score produced by
the hybrid CNN-GRU model for an individual switch. Finally,
the algorithm allocates all the switches to various controllers
and generates the solution for the entire system input.

VI. PERFORMANCE EVALUATION

In this paper, we have compared our proposed CNN-GRU
(hybrid ML) against standalone CNN to justify the neces-
sity of using hybrid ML models. Moreover, ACO has been
considered as one of the meta-heuristic approaches to show
the performance trade-off in terms of feasibility rate (request
satisfiability rate) and solution quality (optimality gap). To
the best of our knowledge, no other hybrid model exists in
the literature specifically designed for this problem. Thus,
we have not found any other hybrid model to be considered
as one of the baselines for comparison purpose. Introducing
ACO sacrifices optimality gap and running time compared
to hybrid ML models yet ensures 100% request satisfiability
with guaranteed feasible solutions for all cases (if there exists
any). Overall, ILP has been considered the primary baseline
for performance comparison against our proposed approaches
since it ensures optimal (best) results in retrieval.

All the experiments have been carried out on DELL ALIEN-
WARE m15 R3 machine of Intel core i7-10750H CPU @2.6
GHz equipped with 16 GB RAM and Windows 10 Home.
We have used Gurobi [15] optimization solver to solve the
ILP model. The CNN-GRU model has been implemented
in TensorFlow [16]. Python binding has been used as the
programming language for all the models, including ACO.
Regardless of the implementation infrastructure used in this
simulation study, the proposed models’ solutions are trans-
ferable to OpenFlow [17] via a customized interface. For
ACO, we use 20 ants for all experiments. The CNN-GRU
model utilizes the split of 60/20/20 for training, validation, and
testing purposes. The size of the simulated dataset depends
on the number of controllers and switches. The number of
training instances and target variables can be defined as
|Sj |, 1 ≤ j ≤ m and |Ci|, 1 ≤ i ≤ n, respectively. We
let the model run through 20 epochs as the simulation limit,
which resulted in 2−3 hours of training time depending on the
simulation environment size. The presented simulation results
have been averaged over 10 different runs. To demonstrate the
performances of the proposed models, we have considered two
sets of experiments. In the first experiment, we solely focus
on increasing the average load, and the second experiment is
focused on the impacts of simulation environment size.

Since this problem has been formally proven as NP-hard,
The computational complexity can increase exponentially with
the growing size of problem instances. For such problems,
even a marginal increase in the problem size can affect the
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(a) Objective function (b) Running time (c) Objective function (d) Running time

Fig. 2: Performance of the proposed models due to varying average load in capacity tight problem scenarios

(a) Objective function (b) Running time

Fig. 3: Performance of the proposed models due to varying
problem instance sizes

Fig. 4: Comparison based on Jain’s Fairness Index

computational complexity in a significant manner. In this
research study, we have considered up to 40 controllers
and 4000 switches, whereas the existing research studies
use considerably smaller simulation environment size (e.g.,
5 controllers, 300 switches), [11]. We have considered 3
controllers with capacities randomly selected from 1000 to
2000 Mbps, and up to 100 switches for this simulation. The
average traffic load of the system is varied between 10 and
60 Mbps to justify the performances of the proposed models
due to processing load variance. Similar experimental settings
have been adopted in the literature [11]. Under this experi-
mental setting, we consider two types of problem scenarios: a)
capacity relaxed (average load 10− 30 Mbps) and b) capacity
tight (40− 60 Mbps) instances. We adopt these two scenarios
to observe the performances of our proposed models in both
lightly and heavily loaded SDN controller environments. Then,
we employ two preliminary performance metrics to evaluate
our proposed methodologies against ILP (optimal) approach.
Firstly, the objective function deviation metric gives us an
idea concerning the quality of the solutions provided by the
model considering ILP as the baseline. Secondly, the running
time demonstrates how fast the proposed model can extend

its services. However, we utilize another performance metric
called Jain’s fairness index to reflect the load balancing among
all the controllers. Suppose the total amount of load assigned
to n controllers are {l1, l2, l3, ..., ln}. Then, Jain’s fairness
index is calculated as follows:

J (l1, l2, l3, ..., ln) =
(
∑n

i=1 li)
2

n×
∑n

i=1 l
2
i

. (10)

The value of this metric is 1 when all the controllers receive the
same amount of load allocation. Thus, a higher Jain’s fairness
index metric indicates more reasonable SDN controller-switch
placement solutions in terms of load balancing. It is notewor-
thy that all the optimal solutions do not require equal load
allocation at the end in practical scenarios. Hence, the value
of J may not be exactly 1 even for optimal solutions in most
cases.
Fig. 2a illustrates that the optimality gap of the CNN-GRU
model can vary from 18% to 42%, while ACO can produce
an optimality gap of 30%−65%. The hybrid CNN-GRU model
improves resource utilization compared to the standalone CNN
model by 2% − 6%. In relaxed capacity instances, where
the controllers have enough available capacity, we observe
an increasing optimality gap with the growing amount of
average load in the system. On the contrary, the feasible region
reduces in tightly capacitated controller-switch mapping with
a higher average load. Next, from Fig. 2b, it is noteworthy
that irrespective of load size in the system, CNN-GRU and
the standalone CNN model can always ensure running time
approximately below 0.1 seconds, highly desirable for real-
time SDN use cases. On the other hand, ACO demonstrates
moderately higher running time, while the execution time of
ILP continues to increase exponentially with the increased
average load. Surprisingly, from Fig. 2d, we can observe that
with the increasing average load, the running time of ILP
and ACO starts decreasing. In the tightly capacitated system,
the number of feasible solutions reduces significantly. Thus,
it is easier to invade smaller feasible search space by ILP
and ACO in comparatively lower running time. Nonetheless,
both CNN-GRU and CNN demonstrate exceptionally low
running time in tightly capacitated problems as well. For
the second set of experiments, we studied the impacts of
simulation environment size on the performance of the models.
This study is very significant since scalability is a key factor
for the SDN environment. For this purpose, we randomly
assign capacity limits to the controllers between 1000 to 2000
Mbps, and the load of the switches randomly varies from
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15− 25 Mbps. As shown in Fig. 3a, CNN-GRU outperforms
ACO by approximately at most 12%. The optimality gap
of CNN-GRU varies from 20% − 42% and improves the
performance of CNN by 4% − 7%. Overall, the optimality
deviation rate of the proposed models is not extreme with the
growing size of simulation environments. However, with the
progressively increasing simulation environment, unlike ILP
and ACO, the running time of the hybrid CNN-GRU model
remains consistently low, as shown in Fig. 3b.

Method Satisfiability Solution Quality Time Complexity

ILP 100% Optimal Exponential

ACO 100% Sub-optimal; Optimal-
ity gap (22%− 65%)

Quadratic

CNN Not-
guaranteed

Sub-optimal; Optimal-
ity gap (20%− 49%)

Linear (Prediction
time)

CNN-
GRU

Not-
guaranteed

Sub-optimal; Optimal-
ity gap (18%− 42%)

Linear (Prediction
time)

TABLE I: Comparative analysis on different methodologies

On the other hand, the running of ILP and ACO continue
to keep extending significantly with the expansion of the
simulation environment. Afterward, we evaluate a metric for
the overall impression of the load balancing among all the
controllers in the SDN context portrayed as Jain’s fairness
index. As suggested by Fig. 4, CNN-GRU is the fairest in
terms of equally balancing load in every controller as much as
possible right after ILP. The standalone CNN model is quite
close to the hybrid model, while the performance of ACO
remains notably lower. This complimentary adopted metric is
an implied by-product of our considered objective function.

To summarize the absolute and potential strengths of the
aforementioned methods, we outline the key performance
indicators for each method in Table I. CNN-GRU outperforms
both CNN and ACO by finding the closest sub-optimal solu-
tions in relatively low running time. Moreover, ILP and ACO
offer guaranteed request satisfiability by delivering solutions
whenever at least one (feasible) exists, regardless of solution
quality and response time. Yet, the hybrid CNN-GRU model
can also reduce the chances of delivering no solution even
though a solution exists to a great extent by carefully building
the dataset with similar worst-case training instances.

VII. CONCLUSION

The traditional SDN controller-switch load balancer strate-
gies lack the capability to support the real-time solution
demanding use cases. To overcome the shortcomings and
as a step closer towards futuristic SDN applications, in this
paper, we proposed two AI-driven techniques: ACO and
hybrid CNN-GRU model. Our proposed ACO can resolve the
request satisfiability issues related to existing approaches and
guarantee the deliverable of solutions wherever possible. The
CNN-GRU model outperforms ACO in terms of optimality gap
and demonstrates exceptionally low running time. Thus, the
CNN-GRU model emerges as the most suitable and potential
candidate for delay-sensitive SDN use cases. Furthermore, it
is possible to train the CNN-GRU model with known possible

worst-case instance patterns to increase the possibility of
request satisfiability. Through an extensive simulation study,
it is evident that deep learning techniques can be employed
to solve various combinatorial optimization research problems
aimed at emerging communication services. The future re-
search direction is to extend the mathematical programming
model and study the trade-off between load balancing and
SDN migration costs incurred by load balancing in a dynamic
environment.
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