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Abstract—Intelligent Transportation Systems rely heavily on
the Vehicular Ad-hoc Network to enhance road safety and
comfort. This research proposes and evaluates an intelligent
backoff management scheme, utilizing Adaptive Neuro-Fuzzy
Inference System (ANFIS), for the Vehicular Ad-hoc Networks.
The proposed scheme is trained by TensorFlow to adjust the
contention window size at the MAC layer of IEEE 802.11p.
Taking into account the local density, local spatial distribution,
and successful/unsuccessful transmission records, each transmit-
ting node can determine the best contention window value for
transmitting packets. This scheme effectively mitigates packet
collisions, ensuring a high packet delivery ratio and average
throughput, along with a low average end-to-end delay for various
network scenarios. Simulation results confirm the efficiency of
the proposed scheme and also show that it outperforms the
conventional IEEE 802.11p method and other recent protocols.

Index Terms—Vehicular Ad-hoc Networks, backoff manage-
ment, contention window, ANFIS, TensorFlow, IEEE 802.11p.

I. INTRODUCTION

Vehicular Ad-hoc Network (VANET) is a subclass of Mo-
bile Ad-hoc Network (MANET), which enables vehicle-to-
vehicle communications on the roads. Since VANETs sup-
port many safety and comfort applications, the design and
enhancement of VANET communication protocols are crucial.
However, the constantly rapid changing nature of VANETs
makes the design of reliable VANET communication solutions
a complex task.

Wireless Access in Vehicular Environments (WAVE) [1], in-
troduces IEEE 802.11p as the amendment of the IEEE 802.11
standard for the PHY and MAC layers, in addition to the IEEE
1609 family of standards for the upper layers. According to the
IEEE 802.11p Distributed Coordination Function (DCF), each
transmitting node senses the wireless medium to determine
whether the channel is idle or not. If the transmitting node
finds the channel idle for longer than Arbitration Inter-Frame
Space (AIFS) it immediately transmits, otherwise, it needs to
wait until the channel becomes idle. After that, there is an
additional waiting time (backoff) which is a randomly selected
number of time slots from the interval [0, CW ], where CW is
the contention window size. Depending on the access category,

the value of CW is defined by CWmin and CWmax. When
two or more transmitting nodes pick the same backoff time,
packet collisions will happen. A larger contention window
size can mitigate packet collisions because it decreases the
probability that two or multiple nodes select the same backoff
value. However, the larger contention window potentially
increases the delay. Therefore, an adaptive backoff process is
used to determine an optimal CW level, taking into account
the current network situation. In dense networks with a larger
number of transmitting nodes, a larger contention window
size can improve the packet delivery ratio. Conversely, in
sparse networks with a smaller number of transmitting nodes,
a smaller contention window size can be beneficial, leading to
reduced delays.

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a
computational model which combines the capabilities of
adaptive control systems, artificial neural networks (ANNs)
and fuzzy logic to perform data analysis, pattern recogni-
tion, and decision-making tasks [2]. ANFIS is an effective
method to model and control complex systems, especially
when the underlying relationships between variables are not
well-defined [3]. ANFIS has both numerical and linguistic
knowledge. This makes ANFIS more observable to the users in
comparison with artificial neural networks [4]. The ability of
ANFIS to handle uncertain and imprecise information makes
it particularly useful in VANETs system designs.

In order to propose a dynamic and adaptive backoff scheme,
we introduce a hybrid historical and data processing-oriented
contention window size adjustment model based on an Adap-
tive Neuro-Fuzzy Inference System. To the best of our knowl-
edge, there is currently no ANFIS-based model proposed to
enhance the backoff process and to adjust the contention
window size in vehicular ad-hoc networks. The contributions
of this work are as follows:

• We propose an ANFIS-based backoff management
scheme to adjust the contention window size in ve-
hicular ad-hoc networks taking into consideration the
local density, spatial distribution and history record of
previous transmissions. To the best of our knowledge,
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Fig. 1: ANFIS model design

no other protocol takes into account all these factors in
combination.

• In order to train the ANFIS model, we use ns-3 and
SUMO to generate the dataset including the information
about each transmitting node’s number of neighbors
(local density), distance to its nearest neighbor (spatial
distribution), and record of the previous transmissions and
contention window sizes.

• TensorFlow is applied to optimize the ANFIS parameters
and train the model.

• To evaluate the overall performance of the proposed
scheme, the results of ANFIS training are used in ns-3
network simulations. The simulation results have demon-
strated that our proposed ANFIS-based scheme outper-
forms other existing protocols in the literature in terms
of packet delivery ratio, average throughput and average
end-to-end delay.

The rest of this paper is organized as follows: Section II pro-
vides a literature review on contention window size adjustment
methods proposed for the IEEE 802.11 family of standards.
Section III describes our proposed scheme. Section IV presents
simulation results. Finally, in Section V, we conclude the
paper.

II. RELATED WORK

In this section, backoff solutions in terms of contention
window size adjustment introduced for the IEEE 802.11p
standard are described.

In [5], a cross-layer multi-hop broadcast protocol for ve-
hicular ad-hoc networks is proposed. At the MAC layer, a Q-
learning algorithm is introduced to adjust the size of contention
window where the agents receive the rewards according to
their previous transmission record. The network simulator ns-
2 is used to simulate the network environment and train the
Q-learning algorithm.

The proposed method in [6] is a partitioning-based CW
adjustment approach for VANETs. Vehicles in the farthest
partition from the sender use a smaller contention window.

The proposed method in [7] deploys a Q-learning technique
for the backoff process of channel access in IEEE 802.11p net-
works. Considering vehicles in the network as the agents, the
proposed Q-learning algorithm adjusts the contention window
for a hybrid backoff process in which linear and exponential
backoff are combined. The authors use the network simulator
ns-3 to simulate an IEEE 802.11p-based network and conduct
3000 transmissions per episode to train the Q-learning-based
backoff process.

In order to improve the backoff time selection performance
in IEEE 802.11p, [8] introduces the F-802.11p scheme. F-
802.11p is a fuzzy model which controls broadcast of the
Wave Short Messages (WSMs), Wave Service Advertisement
(WSA) messages, and Basic Safety Messages (BSMs) and
reduces the number of beacon messages to use the available
bandwidth more effectively. The results are obtained by using
the OMNeT++ simulator, SUMO, the Veins framework for
V2X, and MATLAB fuzzy toolbox.

In [9], a radial basis function neural network is utilized
to modify the enhanced distributed channel access (EDCA)
backoff to ensure that urgent safety messages are successfully
disseminated through the network. This system uses the in-
formation about the message priority, the sensitivity of the
road, the threshold of the buffer, and the type of vehicle. The
authors use the ns-2 network simulator and SUMO to generate
the neural network input data and evaluate the performance of
the proposed backoff process.

In [10], the authors propose a dynamic CW selection model
for the IEEE 802.11p MAC layer. This model uses a fuzzy
logic system to determine the size of CW by taking density,
velocity, and link quality factors into consideration.

The authors in [11] propose a contention window size ad-
justment method for IEEE 802.11p-based Internet of Vehicles
(IoV) networks. The method takes the number of neighbors
into consideration and applies a Q-learning algorithm to con-
trol the size of contention windows. The veins simulation
platform is used to simulate the network environment and
conduct the learning process of CW adjustment method.

None of these discussed CW adjustment protocols simul-
taneously use the information about network density, spatial
distribution, and transmission records to adapt the backoff
process.

Our proposed scheme, described in the next section, inte-
grates all of this information to improve the performance.

III. PROPOSED SCHEME

In this section, we present our proposed Adaptive Neuro-
Fuzzy Inference System-assisted backoff management scheme
for Vehicular Ad-hoc Networks. VANETs have a constantly
changing pattern of network density and distribution which is
due to the fast movement of vehicles. Therefore, the backoff
management solution should intelligently track the situation.
Our proposed backoff management is implemented through
adaptive contention window adjustment. With a large number
of transmitting nodes, the MAC should have a relatively
large contention window size to prevent unnecessary packet
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collisions. On the other hand, a small contention window size
results in a shorter delay when the number of nodes trying to
access the channel is small. In order to estimate the number
of transmitting nodes, the local density and spatial distribution
of nodes are considered determining factors. Our scheme also
uses the transmission records (successful or unsuccessful) of
nodes to track an optimum value of contention window size
in different environment and traffic scenarios.

A. System Premises

In our proposed scheme, it is assumed that all data exchang-
ing and communications are secured according to the IEEE
1609.2 standard. Each node (vehicle) is able to determine its
position using a Global Positioning System (GPS). Also, it is
assumed that all the nodes in the network are aware of the av-
erage communication transmission range. Nodes periodically
exchange beacon messages with their neighbors and update
their neighboring tables accordingly. A basic beacon message
(with a packet sequence number) contains information about
the originator’s ID, position, and velocity.

B. Data Acquisition

In order to generate the dataset, ns-3 is used. The IEEE
802.11p-based network is designed to perform multi-hop
broadcast data dissemination via the network. When a node
receives a new broadcast message it decides whether to re-
transmit the broadcast message or drop it by comparing
the value of the calculated spatial distance-to-mean with
a dynamic threshold [12]. The calculation is done based
on the information exchanged via beacon messages. Each
transmitting/re-transmitting node determines its number of
neighbors, and nearest neighbor’s distance. Since in IEEE
802.11p a broadcast MAC frame acknowledgement is not
considered, the transmitting node sets a timer and waits for
a tack time:

tack = 0.1 ∗ (
R− d
R

) (1)

where R denotes the average communication transmission
range and d is the nearest neighbor’s distance. If during this
time the node overhears the message from a neighbor, it
records the transmission as a success. The dataset is obtained
from the simulation of 56 scenarios, where the number of
nodes in the network is 20, 30, 40, 50, 100, 150, 200, 400
and the value of CWmin is considered to be 15, 31, 63, 127,
255, 511, and 1023. After performing the data pre-processing
steps, the dataset is used to train the ANFIS model to predict
the optimal CWmin in different scenarios.

C. ANFIS Model

Adaptive Neuro-Fuzzy Inference System (ANFIS) combines
the adaptive abilities and learning of neural networks with the
human-like reasoning and linguistic interpretation provided by
fuzzy logic. ANFIS uses a hybrid learning algorithm to tune
the parameters of a fuzzy inference system based on input-
output data.

In this paper, we train the fuzzy inference system based
on the generated dataset of inputs and output. The system

is fed by three input variables (number of neighbors, nearest
neighbor’s distance, previous transmission) and one output
(CWmin).

Considering a first-order Takagi–Sugeno fuzzy system [13],
the set of fuzzy If − Then rules for our system with one
output, z, and three input (x1, x2 and x3) parameters is
described as follows:

Rule 1: If x1 is A1 and x2 is B1 and x3 is C1 then
z1= p1x1 + q1x2 + r1x3+ s1
Rule 2: If x1 is A2 and x2 is B2 and x3 is C2 then
z2= p2x1 + q2x2 + r2x3+ s2
Rule 3: If x1 is A3 and x2 is B3 and x3 is C3 then
z3= p3x1 + q3x2 + r3x3+ s3
where Ai, Bi, and Ci are linguistic values of membership

functions defined by fuzzy sets and pi, qi, ri and si denote
consequent parameters of fuzzy If − Then rules.

As shown in Fig. 1, the structure of the ANFIS model
consists of five layers with different function types to generate
the target value as a combination of input variables.

1) Fuzzification Layer: This layer converts the crisp input
values into fuzzy sets using membership functions. The output
of each node in this layer is a degree of membership, which
is a value between 0 and 1. In our ANFIS model we apply
the Gaussian membership function to represent the degree of
membership:

µ(x) = e−0.5( x−cσ )2 (2)

where c is the position of the center of the peak, and σ is the
standard deviation. Both c and σ are adjustable parameters
of the membership function. In Section IV, we show how
a Gaussian function outperforms other functions used in our
ANFIS model.

2) Production Layer: The Production layer has a fixed node
function, and the output of this layer is the firing strength of the
associated fuzzy rule, wi, which is calculated by multiplying
all incoming signals:

wi =
∏
i

µi = µAi(x) ∗ µBi(x) ∗ µCi(x), i = 1, 2, 3. (3)

where µAi , µBi , and µCi represent the membership func-
tions.

3) Normalization Layer: The Normalization layer has a
fixed node function, where the output of this layer is the
normalized firing strength, w̄i, which is given by:

w̄i =
wi

Σiwi
, i = 1, 2, 3. (4)

4) Defuzzification Layer: Layer 4 or the defuzzification
layer consists of adaptive nodes to aggregate the fuzzy outputs
from the previous layer and convert them to the crisp output
value.

w̄izi =
wi

Σiwi
(pix1 + qix2 + rix3 + si), i = 1, 2, 3. (5)
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5) Output Layer: The output layer has a single fixed node,
which calculates the final output of the ANFIS model by
summation of all incoming signals from the defuzzification
layer.

z = Σiw̄izi, i = 1, 2, 3. (6)

The learning process of ANFIS includes adapting the pa-
rameters of the membership functions and rules of the fuzzy
inference system. ANFIS uses a combination of gradient de-
scent and backpropagation techniques to complete the learning
process by minimizing the error between the actual output
and the desired output. We use Adaptive Moment Estimation
(ADAM) optimizer to train the ANFIS network. ADAM is an
advanced gradient descent optimization model which adjusts
the learning rate of each parameter according to their past
gradients and magnitudes. The main reason we choose ADAM
is its ability to provide a fast convergence speed and an
effective performance compared with other adaptive learning
rate algorithms [14]. Based on the gradient descent algorithm,
the parameter updating equation is:

θ = θ − ε.g (7)

where g denotes the gradient of the cost function with respect
to θ, and where ε is the learning rate.

The ADAM optimization iteration is described by:

θ = θ − ε. [β1.mt−1 + (1− β1).gt]/(1− βt
1)√

[β2.vt−1 + (1− β2).g2T ]/(1− βt
2)− ε

(8)

where β1 and β2 denote the exponential decay rates, mi and
vi are the 1st and the 2nd moment vectors in the tth epoch.

D. CW Adjustment

Our proposed ANFIS-based backoff scheme is trained to
adjust the contention window size. Based on the proposed
system, each transmitting node updates its contention window
size by considering its number of neighbors (local density),
the nearest neighbor’s distance (local spatial distribution),
and whether the previous transmission (with the current size
of CWmin) was successful or not. As mentioned earlier,
according to the IEEE 802.11p standard, the value of CWmin

is defined to be in the set of {15, 31, 63, 123, 255, 511, 1023}.
Therefore, the transmitting node updates the size of contention
window, by keeping, increasing, or decreasing the value of
its current CWmin. Equation (9) indicates the update of the
current CWmin level:

CWmint+1 =


CWmint , keep
(CWmint−1)

2 , Decrease
(CWmint ∗ 2) + 1, Increase

(9)

We consider the initial value of CWmin to be 15.

Fig. 2: Trained Membership Functions (solid line) and Initial
Membership Functions (dotted line)

Fig. 3: Training and validation loss over epochs

IV. PERFORMANCE EVALUATION

In this section, similar to [5] - [11], simulations are used
to evaluate the performance of the proposed ANFIS-based
contention window size adjustment scheme at the MAC layer
of vehicular ad-hoc networks (IEEE 802.11p). In order to
obtain the results, we use TensorFlow 2.0 to train the ANFIS
model, Simulation of Urban MObility (SUMO) to generate
mobility traces, and ns-3 to simulate the overall architecture
of vehicular ad-hoc networks.

Since our proposed scheme is based on an ANFIS structure
(combination of artificial neural networks and fuzzy logic tech-
niques), we utilize the backoff concept at the MAC layer of the
protocols Neural-IEEE 802.11p [9], Fuzzy-IEEE 802.11p [10]
and compare the efficiency of our proposed scheme with
theirs. The proposed Q-learning assisted protocol in [11] is the
other protocol that we consider for performance comparison. It
yields the best performance so far and can be considered state-
of-the-art. These methods are three of the most recent MAC
solutions for IEEE 802.11p, and shown to have very good
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network performance. Additionally, we compare the results
with the basic IEEE 802.11p MAC to address how backoff
management schemes can improve the efficiency. Three sets
of results are presented for each protocol using the following
metrics:

• Packet delivery ratio
• Average throughput
• Average end-to-end delay

The results are averaged over five different simulation runs.
95% confidence intervals are calculated and represented using
error bars.

A. ANFIS Training with TensorFlow

TensorFlow is an open-source deep learning frame-
work [15]. Python is the recommended programming language
for it. We use TensorFlow to build and train our proposed
ANFIS system. The dataset is extracted from ns-3 network
simulations. To generate the dataset, we consider various
network scenarios with different network densities, different
values of CWmin, and different ranges of speed to capture
four parameters: the transmitting node’s number of neighbors,
the distance between the transmitting node and its nearest
neighbor, whether the previous transmission was successful
or not, the value of CWmin used to transmit. The ANFIS
model uses the labeled data, where the first three variables
are inputs and the last variable is output. To train the ANFIS
model, the ns-3 extracted data with 4398 samples are randomly
divided into training and validation sets with the ratio of 0.8 to
0.2. Each input variable has three membership functions. To
investigate how the type of membership functions can impact
the ANFIS training results, MSE values of each membership
function used in ANFIS model are given in Table I. This table
shows that the Gaussian function minimizes the MSE.

Fig. 2 depicts the trained Gaussian membership functions
for each input and the initial membership functions. Fig. 3
shows the training and validation loss over 150 epochs. The
overall trend of the loss curve is declining which indicates
that the accuracy of prediction is increasing and verifies the
learning process. Also, the validation loss is higher than the
loss of the training set.

B. ns-3 Network Simulation Results

The simulations are run using the ns-3.33 network simulator
with the parameters summarized in Table II. To simulate the
IEEE 802.11p PHY and MAC layers, we employ the WAVE
model implemented in ns-3, as the main system architecture
for vehicular communications. Nakagami propagation loss
model is considered to address the signal strength variation
resulted by multipath fading. The simulations are run for a
period of 900 seconds.

As mentioned earlier, to generate the mobility traces, we
use SUMO [16]. SUMO supports implementations and eval-
uations of V2X communication technologies by coupling to
the network simulator (ns-3 in our work). In this work, a 3x3
Manhattan Grid is used as the urban environment, where the
length of each edge is 1km and the distance of any two nearby

intersections is 0.5km. These are the steps to generate SUMO
traces:

• Step 1: map generation (netgenerate)
• Step 2: random trips generation
• Step 3: routes generation
• Step 4: exporting the traces to ns2mobility output (via

ns-3 code)
Using the SUMO car-following model, the speed of each

node (vehicle) is adapted to the speed of the leading node. In
the simulation, nodes are randomly distributed and routes are
randomly generated. Since in vehicular ad-hoc networks, the
node density changes with road types and with time, we eval-
uated the protocols for various numbers of nodes. Simulations
are run where the number of vehicles is considered to be 20,
40, 100, 200, and 400.

1) Packet Delivery Ratio: As shown in Fig. 4, in terms of
packet delivery ratio, our proposed ANFIS-based CW adjust-
ment scheme outperforms the Fuzzy-based, Neural Network-
based, and conventional IEEE 802.11p protocols for all scenar-
ios with different number of nodes. Moreover, our proposed
scheme performs slightly better than the QLR-assisted pro-
tocol. Since a low CW size can result in packet collisions,
in high density networks it is inefficient to consider a low
value for the size of CW . Our proposed scheme is trained to
efficiently manage the size of CW (based on the local traffic
density and spatial distribution), therefore, it shows a higher
packet delivery ratio.

2) Average Throughput: Fig. 5 illustrates the average
throughput results. We can observe that with the increased
number of nodes, the average throughput increases in all
protocols. However, our proposed scheme outperform the
Fuzzy-based, Neural Network-based, and conventional IEEE
802.11p protocols while it has almost similar results as the
QLR-based model. This happens because our proposed scheme
is trained based on the record of nodes’ previous transmissions,
density and distribution of nodes in order to mitigate packet
collisions.

3) Average end-to-end delay: Fig. 6 shows the average end-
to-end delay for different numbers of nodes. The ANFIS-based
scheme provides lower end-to-end delay compared to all the
other protocols. The first reason for this is that the protocol
incorporates information about local network density, spatial
distribution, and previous transmission records. It adjusts the
contention window (CW) size by increasing it when the
current CW is insufficient and the network experiences nu-
merous collisions. The second reason is that the ANFIS-based
scheme considers a smaller value for CW when the collision
probability decreases. Therefore, it reduces the waiting time
before the transmissions at the MAC queue.

V. CONCLUSION

We proposed an improved backoff management scheme for
the MAC layer of Vehicular Ad-hoc Networks to avoid packet
collisions that occur when multiple nodes attempt to transmit
packets simultaneously. This adaptive scheme involved adjust-
ing the contention window size based on local density, spatial

1617



TABLE I: MSE of Membership Functions

Membership Function MSE
Gaussian 0.032
Triangular 0.036
Trapezoidal 0.041
GBell 0.042
Gaussian 2-sides 0.042
Pi-shaped 0.053
Dsigmoidal 0.054
Psigmoidal 0.054

TABLE II: Ns-3 Simulation Parameters

MAC Protocol IEEE 802.11p
Packet size 200 bytes
Transmission Range ∼ 250 meters
Layer 3 Addressing IPv4
CWmin 15
CWmax 1023
Signal Propagation Nakagami

Fig. 4: Packet delivery ratio with respect to number of nodes

Fig. 5: Average throughput with respect to number of nodes

Fig. 6: End-to-end delay with respect to number of nodes

distribution, and successful transmission records. An Adaptive
Neuro-Fuzzy Inference System (ANFIS) model trained on
these factors was used. Each transmitting node (vehicle) was
able to update the contention window size by adjusting the
current CWmin value. Our simulations demonstrated that this
approach resulted in a high packet delivery ratio and low
end-to-end delay across a range of node densities, while
also providing a high rate of throughput for different density
scenarios. The proposed scheme consistently outperforms the
basic IEEE 802.11p protocol as well as two recent techniques
using a neural network and fuzzy logic, which have been
shown to achieve a very good performance. When compared to
a Q-learning assisted protocol, our proposed scheme achieves
a similar packet delivery ratio and throughput, but it provides
the best end-to-end delay across all traffic load densities.
Hence, our proposed scheme is an attractive alternative to the
other available methods. Furthermore, our simulations have
shown that its complexity/simulation time is similar to that of
the other approaches. For future work, we plan to apply our
scheme to real-world data.
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