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AbstractÐThere is urgency for electrifying fleet vehicles as a
means to reach net-zero emissions and promote sustainability,
including at maritime container ports. Ports are exploring the
incorporation of electric terminal tractors and supporting infras-
tructure in an effort to minimize the environmental effects of their
operations while simultaneously improving service performance.
The challenges include planning of investments in infrastructure
that will meet charging requirements of these terminal tractors
while maintaining operational efficiencies. This paper develops an
optimization and associated risk register for strategic capacity ex-
pansion of electric vehicle fleets at maritime container ports. The
approach includes multi-criteria decision analysis (MCDA) and a
characterization of enterprise risk as a disruption of system order.
A demonstration of schedule optimization uses linear program-
ming models for thirty-two combinations of plug-in, wireless,
and wireless dynamic charging infrastructure configurations to
determine optimal charger locations. In a robust ensemble model,
the optimization accompanies a comprehensive risk analysis that
disrupts importance orders across seven scenarios: (1) Environ-
mental Change, (2) Policy Revision, (3) Technology Innovation,
(4) Cyber Attack, (5) Market Shift, (6) Electrical Grid Stress, and
(7) Workforce Interruption. The results support the decisions and

enterprise risk management for a $1.5 billion strategic plan for
port infrastructure. The plan involves selecting charging station
locations, determining charging schedules, and selecting charger
models while considering multiple performance criteria such as
safety, operational efficiency, cost-effectiveness, and reliability.
The approach is generally applicable for a variety of complex
systems to mitigate schedule and cost risks while improving
sustainability. The audience of the paper includes owners and
operators of transportation and energy infrastructures, asset
managers, logistics service providers, and others.

Index TermsÐmulti-criteria analysis, linear programming,
systems analysis, scheduling, electric vehicles, order disruption,
scenario-based preferences

I. INTRODUCTION

Maritime ports are essential to global trade and transporta-

tion, with terminal tractors serving as critical equipment for

cargo handling and logistics operations. These tractors are

designed to travel short distances and deliver shipping contain-

ers to ship-to-shore gantry cranes, rubber-tired gantry cranes,

and container handlers located at rail yards and container
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stacks within maritime ports. Thus, these vehicles are great

candidates for electrification due to their highly predictable,

fixed route operations. The electrification of terminal tractors

presents a promising avenue to achieving sustainable goals

such as reducing emissions, improving air quality, and mini-

mizing the environmental impact of port operations.

Electrification presents port authorities with economic op-

portunities such as earning government subsidies and tax

credits, decreasing fuel and maintenance expenses, and even

earning revenue by selling power back to electrical utility

companies [1]. However, the success of electric terminal

tractors integration is dependent on efficient charging infras-

tructure design, optimal scheduling strategies, and reliable

power distribution from the electrical grid [2]. This paper aims

to address the unique challenges of electrifying maritime port

charging infrastructure using a combination of optimization

and risk analysis.

II. METHODS - SYSTEMS ANALYSIS

A. Problem Formulation

A maritime port has a large menu to choose from when it

comes to investing in electric terminal tractors, chargers, and

charging locations. In this case, potential charging locations,

charging technologies and models, and terminal tractor models

were sourced from market research and stakeholder perspec-

tives. The network diagrams in Fig. 1 depict four charging

system investment options along a realistic terminal tractor

route for a port moving more than three million containers

per year. Each node within the network diagram represents

a potential charging location where a plug-in, wireless, or

dynamic wireless charging system could be installed. The

charger types considered in this report are defined in the

following manner [3]:

• Wired: plug-in style charger with CCS2 cable connection.

• Wireless: inductive charging occurring on a pad while a

terminal tractor is stationary.

• Dynamic Wireless: inductive charging occurring beneath

a roadway while a terminal tractor is transiting.

Given the differences in charging outputs and vehicle battery

capacities available on the market, multiple options of charger

manufacturers and battery capacities were considered. Thirty-

two combinations of candidate infrastructure investments were

modeled in this demonstration.

B. Linear Optimization Model

This section presents the charging infrastructure optimiza-

tion model, which is largely adapted from Wang et. al.’s [6]

optimization of electric fleet vehicles in urban networks. To

transition the model to this application, the movement of

terminal tractors is initially observed, which serves as the basis

for creating the transportation network illustrated in Fig. 1.

Each model varies in terms of investment strategy, terminal

tractor model, and charger models. In each instance, a terminal

tractor makes four hundred moves in the following sequence:

it starts at the service center (v2) and takes North Bulkhead

St. (v3) to the North Rail Yard (v4) where it picks up a

Fig. 1. Alternative investments in charging infrastructure at a maritime
container port. The energy required (E), in terms of kWh, to traverse each arc
is labeled in black near each arc.

container. The tractor then delivers that container to the South

Stack (v8) via Central and South Bulkhead St (v5) (v6). Once

the container is dropped off at the South Stack, the tractor

backtracks up South Bulkhead St. to the South Rail Yard

(v7) to retrieve another container. It takes that container and

delivers it to the North Stack (v1) via Central and North

Bulkhead St. The tractor then bypasses the service center and

returns to the North Rail Yard for another container and the

pattern repeats for a total of four hundred moves. The number

of moves was thoughtfully determined by considering the

battery life of a MAFI T-230e terminal tractor and estimating

the anticipated number of moves it could perform before

needing a recharge. This analysis was carried out in strict

accordance with the route structure.

In the ºmixed charging infrastructureº models, the service

center is bypassed after the first iteration because it is more

operationally efficient for drivers to charge at wireless or

dynamic wireless chargers whenever available. At plug-in

charging locations, additional labor is required to charge the

terminal tractors, either by the truck driver or a port employee

who needs to connect the charger to the vehicle. On the other

hand, in the ºwirelessº models, the service center is included

in each iteration as a candidate charging location, as there is no

additional labor required to charge the tractors there. Similarly,

in the ºwiredº models, the service center is also included in

each iteration since it’s the only feasible location to install a

wired charger in those models.

With the route structure sufficiently captured, the variables

and parameters are then defined in Table I and II. Then, the

models’ objective and constraints can be written into algebraic

form for optimization.

1) Objective Function: Ports have a keen interest in mini-

mizing both the installation costs of terminal tractor charging

infrastructure and the recharging expenses incurred during

operations [7]. So, the model’s objective is expressed as

follows [6]:

minZ =
∑

q∈Q

nq∑

k=1

Cg(q,k)yq,k +
∑

i∈N

Sivi (1)
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TABLE I
VARIABLE ASSIGNMENTS AND DESCRIPTIONS FOR CHARGING INFRASTRUCTURE OPTIMIZATION MODELS

Model Component Variable Units Description

Set I {1, 2, 3, . . . , ni} Nodes within a network
Set Q {1, 2, 3, . . . , nq} Routes within a network
Set K {1, 2, 3, . . . , nk} Stops at each node within a route
Parameter E kWh Energy required to transit from stop k to stop k+1 within route q.
Parameter R kWh Charging upper bound at route q, stop k
Parameter C $ Unit cost of charging at route q, stop k
Parameter U kWh Terminal tractor battery capacity
Parameter l ∈ {0 . . . 1} Minimum battery percentage during operations
Decision Variable v ∈ {0, 1} Decision to install a charger at node i
Decision Variable y kWh Decision of how much energy to charge at route q, stop k
Extraneous Variable xa kWh Terminal tractor charge level upon arrival at route q, stop k
Extraneous Variable xd kWh Terminal tractor charge level upon departing route q, stop k

TABLE II
SAMPLE OF PARAMETERS OF CHARGING INFRASTRUCTURE FOR ELECTRIC VEHICLES AT MARITIME CONTAINER PORTS

Index Initiative Terminal Tractor U Plug-In Charger R plugin S plugin Wireless Charger R wireless S Wireless Dynamic Wireless Charger R dynamic S Dynamic

x.01 Mixed Charging MAFI T-230e 150kWh 150 Heliox Flex 180 kW 150 $6,192.33 Wave 250 kW 21 $12,384.67 ENRX 180 kW charger 1.44 $94,927.00
x.02 Wireless Charging MAFI T-230e 150kWh 150 - - - Wave 250 kW 21 $12,384.67 ENRX 180 kW charger 1.44 $94,927.00
x.03 Wired Charging MAFI T-230e 150kWh 150 Heliox Flex 180 kW 15 $6,192.33 - - - - - -
x.04 Dynamic Charging MAFI T-230e 150kWh 150 - - - - - - ENRX 180 kW charger 1.44 $94,927.00
x.05 Mixed Charging Capacity 260 kWh 260 Heliox Flex 180 kW 180 $6,192.33 Wave 250 kW 21 $12,384.67 ENRX 180 kW charger 1.44 $94,927.00
x.06 Wireless Charging Capacity 260 kWh 260 - - - InductEV 450kW 37.5 $18,577.00 ENRX 180 kW charger 1.44 $94,927.00
x.07 Wired Charging Capacity 260 kWh 260 Heliox Flex 180 kW 15 $6,192.33 - - - - - -
x.08 Dynamic Charging MAFI T-230e 150kWh 150 - - - - - - Electreon 70 kW charger 0.56 $94,927.00
x.09 Dynamic Charging Capacity 260 kWh 260 - - - - - - ENRX 180 kW charger 1.44 $94,927.00
x.10 Dynamic Charging Capacity 260 kWh 260 - - - - - - Electreon 70 kW charger 0.56 $94,927.00
x.11 Mixed Charging MAFI T-230e 150kWh 150 Heliox Flex 180 kW 150 $6,192.33 InductEV 450kW 37.5 $18,577.00 ENRX 180 kW charger 1.44 $94,927.00
x.12 Wireless Charging Capacity 260 kWh 260 - - - Wave 250 kW 21 $12,384.67 ENRX 180 kW charger 1.44 $94,927.00
x.13 Mixed Charging Capacity 260 kWh 260 Heliox Flex 180 kW 180 $6,192.33 InductEV 450kW 37.5 $18,577.00 ENRX 180 kW charger 1.44 $94,927.00
x.14 Wireless Charging MAFI T-230e 150kWh 150 - - - InductEV 450kW 37.5 $18,577.00 ENRX 180 kW charger 1.44 $94,927.00
x.15 Wired Charging MAFI T-230e 150kWh 150 Heliox 360 kW 30 $8,551.33 - - - - - -
x.16 Wired Charging Capacity 260 kWh 260 Heliox 360 kW 30 $8,551.33 - - - - - -
x.17 Wireless Charging Capacity 260 kWh 260 - - - Wave 250 kW 21 $12,384.67 Electreon 70 kW charger 0.56 $94,927.00
x.18 Wireless Charging Capacity 260 kWh 260 - - - InductEV 450kW 37.5 $18,577.00 Electreon 70 kW charger 0.56 $94,927.00
x.19 Wireless Charging MAFI T-230e 150kWh 150 - - - Wave 250 kW 21 $12,384.67 Electreon 70 kW charger 0.56 $94,927.00
x.20 Wireless Charging MAFI T-230e 150kWh 150 - - - InductEV 450kW 37.5 $18,577.00 Electreon 70 kW charger 0.56 $94,927.00
x.21 Mixed Charging MAFI T-230e 150kWh 150 Heliox Flex 180 kW 150 $6,192.33 Wave 250 kW 21 $12,384.67 Electreon 70 kW charger 0.56 $94,927.00
x.22 Mixed Charging Capacity 260 kWh 260 Heliox Flex 180 kW 180 $6,192.33 Wave 250 kW 21 $12,384.67 Electreon 70 kW charger 0.56 $94,927.00
x.23 Mixed Charging MAFI T-230e 150kWh 150 Heliox Flex 180 kW 150 $6,192.33 InductEV 450kW 37.5 $18,577.00 Electreon 70 kW charger 0.56 $94,927.00
x.24 Mixed Charging Capacity 260 kWh 260 Heliox Flex 180 kW 180 $6,192.33 InductEV 450kW 37.5 $18,577.00 Electreon 70 kW charger 0.56 $94,927.00
x.25 Mixed Charging MAFI T-230e 150kWh 150 Heliox 360 kW 150 $8,551.33 Wave 250 kW 21 $12,384.67 ENRX 180 kW charger 1.44 $94,927.00
x.26 Mixed Charging Capacity 260 kWh 260 Heliox 360 kW 260 $8,551.33 Wave 250 kW 21 $12,384.67 ENRX 180 kW charger 1.44 $94,927.00
x.27 Mixed Charging MAFI T-230e 150kWh 150 Heliox 360 kW 150 $8,551.33 InductEV 450kW 37.5 $18,577.00 ENRX 180 kW charger 1.44 $94,927.00
x.28 Mixed Charging Capacity 260 kWh 260 Heliox 360 kW 260 $8,551.33 InductEV 450kW 37.5 $18,577.00 ENRX 180 kW charger 1.44 $94,927.00
x.29 Mixed Charging MAFI T-230e 150kWh 150 Heliox 360 kW 150 $8,551.33 Wave 250 kW 21 $12,384.67 Electreon 70 kW charger 0.56 $94,927.00
x.30 Mixed Charging Capacity 260 kWh 260 Heliox 360 kW 260 $8,551.33 Wave 250 kW 21 $12,384.67 Electreon 70 kW charger 0.56 $94,927.00
x.31 Mixed Charging MAFI T-230e 150kWh 150 Heliox 360 kW 150 $8,551.33 InductEV 450kW 37.5 $18,577.00 Electreon 70 kW charger 0.56 $94,927.00
x.32 Mixed Charging Capacity 260 kWh 260 Heliox 360 kW 260 $8,551.33 InductEV 450kW 37.5 $18,577.00 Electreon 70 kW charger 0.56 $94,927.00

1 ºRº for each charger was determined by incorporating five-minute duration constraint at each node with its charger’s power output.
2 ºSº for each charger was derived from [4] and [5].

Equation (1) minimizes the overall cost of charging terminal

tractors by considering the unit cost of charging at each

charging station as well as each station’s installation cost. To

scale for the number of terminal tractors that each charging

station can support, the S parameter in (1) is in terms of

installation cost per supported tractor. Each model renders a

decision (yes or no), vi to install a charger at given node in the

network and how much energy, yq,k to charge at each node.

2) Constraints: This section describes the nine constraints

that are featured in each of the thirty-two models. Equations

(2), (3), (4), (7), (9), and (10) are adapted from [6]. Equations

(5), (6), and (8) were created as a part of this study to reflect

the operational requirements of the Port of Virginia.

xd,q,k − xd,q,k − yq,k = 0 ∀q ∈ Q, k = 1, 2, 3, ..., nq (2)

xd,q,k−xa,q,k+1 ≥ Eq,k ∀q ∈ Q, k = 1, 2, 3, ..., nq−1 (3)

l · U ≤ xd,q,k ≤ U ∀q ∈ Q, k = 1, 2, 3, ..., nq (4)

xd,q,nq
≥ 0.95U ∀q ∈ Q, k = 1, 2, 3, ..., nq (5)

xd,q,1 = U ∀q ∈ Q, k = 1, 2, 3, ..., nq (6)

yq,k ≤ Rq,kvg(q, k) ∀q ∈ Q, k = 1, 2, 3, ..., nq (7)

yq,k,i ≥ R ∀q ∈ Q, k = 1, 2, 3, ..., nq, i = 3, 5, 6 (8)

xd,q,k, xa,q,k, yq,k ∈ R+ ∀q ∈ Q, k = 1, 2, 3, ..., nq (9)

vi ∈ {0, 1} ∀i ∈ N (10)

Equation (2) expresses the law of the conservation of energy

as applicable to an electric terminal tractor network. The

battery level upon departure at a node xd,q,k, minus the battery

level upon arrival at the same node xa,q,k, minus the amount

of charge gained at the node yq,k is equal to zero.

Equation (3) ensures that a terminal tractor will have a

sufficient level of charge to reach the next node along the

route. It does this by specifying that the battery level upon

departing one node, minus the battery level upon arrival at
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the next node, must be greater than or equal to the amount of

energy required to transit between the two nodes Eq,k.

Equation (4) ensures that the terminal tractor maintains a

charge level above a specified threshold l and is not charged

beyond the battery’s capacity U . Equation (5) is a policy based

constraint that forces the terminal tractors to finish the shift

with greater than a 95% charge so that it is ready for the next

shift. Equation (6) ensures that the terminal tractor starts each

route with 100% charge.

Equation (7) constrains the decision of how much energy to

charge at each node yq,k by mandating that yq,k is less than or

equal to the amount of charge available at a given node Rq,k,

multiplied by the decision to install a charger at that node

vi. This constraint collaterally ensures that terminal tractors

can only charge at a location where a charger is installed.

This constraint is effectively a duration constraint since Rq,k

is largely based on the port’s operational requirements. In

other words, terminal tractors are constrained to charging for

a maximum amount of time at each stop so they can continue

moving containers throughout the port and allow opportunities

for other tractors to charge.

Equation (8) further confines that charging decision yq,k at

nodes 3, 5, and 6 to ensure they do not receive less charge than

available. This constraint is necessary since nodes 3, 5, and 6

are candidates for dynamic wireless charging. If the terminal

tractors were free to accept less charge at nodes 3, 5, and 6 in

an effort to minimize the objective function, this would mean

that they would be traveling over the port’s posted speed limit

of twenty miles per hour, violating established policy.

Equations (9) and (10) are variable restrictions. The battery

level upon departure and arrival from a node and the amount

of charge acquired at any node must be a positive number.

The decision to install a charger at a node within the network

is a binary variable.

C. Optimization Model Results

The thirty-two models in Table II were solved in A

Mathematical Programming Language (AMPL) Independent

Development Environment (IDE) version 3.6.10 [9]. Within

AMPL, the Gurobi 10.0.1 solver was used to find the optimal

charging station locations and charging schedules. Fig. 2

describes the optimal solution per model and represents the

cost to install charging infrastructure per supported vehicle

and operational costs for four hundred terminal tractor moves.

The results indicate that in general, the cost-optimized order

of infrastructure investment strategies is as follows:

1) Wired Charging Infrastructure

2) Mixed Charging Infrastructure

3) Wireless Charging Infrastructure

4) Dynamic Wireless Charging Infrastructure

As depicted in Fig. 2, the optimization program is biased

towards minimizing the infrastructure installation cost. This

preference stems from the fact that the scale of this parameter

significantly outweighs the cost of charging in the models.

Looking through the lens of optimization, the preferred in-

vestment strategy is a charging infrastructure design consisting

only of a plug-in charger at the service center (x.03). Table

III shows the charging schedule for this model.

TABLE III
LINEAR OPTIMIZATION PREFERRED MODEL AND CHARGING STATION

LOCATIONS: MODEL (x.03) - WIRED

Node v sum y (kWh) Charging Cost Utilization

1 - North Stack 0 0 $- 0.00%
2 - Service Center 1 104.11 $12.49 100.00%
3 - North Bulkhead St. 0 0 $- 0.00%
4 - North Railyard 0 0 $- 0.00%
5 - Central Bulkhead St. 0 0 $- 0.00%
6 - South Bulkhead St. 0 0 $- 0.00%
7 - South Railyard 0 0 $- 0.00%
8 - South Stack 0 0 $- 0.00%

Total: 104.11 $12.49

III. METHODS - RISK ANALYSIS

Following the optimization, a risk analysis is conducted

to account for uncertainties and potential risks associated

with each charging infrastructure configuration. While cost

considerations are a significant factor in electric charging

infrastructure investment for ports, other criteria and potential

risks must be considered to make a holistic decision. Factors

include, but are not limited to: safety, operational disruption

cost from installation, charger interoperability, maintenance

costs, charger footprint, and time savings. By considering

supplementary criteria in the optimization model, through a

risk analysis, the relative rankings of infrastructure models are

significantly altered. This augmentation enriches the decision-

making process by creating more pronounced disparities in the

ranks of each candidate infrastructure plan. The introduction

of these supplementary criteria empowers decision-makers to

gain deeper insights and make more informed choices in

selecting the most suitable infrastructure plan for the given

context.

A. Risk Analysis Methodology

This study uses the risk register approach presented by

Hassler et. al [10] and adapts it to the criteria and emergent

conditions pertaining to container ports. Fig 3 displays the

overall process of assembling the risk register.

A set of initiatives X = {xi, ..., xk} have previously been

defined in this paper and are listed in Table II. Each initiative

is evaluated on a set of performance criteria C = {c1, ..., ck}
developed by port leadership, academic consultants, and sub-

ject matter experts. This criteria is noted in Table IV.

After establishing performance criteria, each initiative is

assessed by the degree of which the initiative satisfies the

performance criteria. Appraising each initiative with perfor-

mance criteria allows for baseline a system ranking to be

generated. In this study, a baseline system ranking is the

order of preference for investing in a candidate terminal

tractor charging infrastructure plan. The fundamental idea

behind the risk register methodology is to develop emergent

conditions E = {e1, ..., ei}, which form disruptive scenarios

S = {s1, ..., sk}, and challenge the resilience of the system

components. In this application, emergent conditions such
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Fig. 2. Cost of charging infrastructure installation and operational cost per supported terminal tractor. The background image depicts a terminal tractor being
charged on a wireless charging pad. Image Source: [8]

Fig. 3. Conceptual diagram of enterprise risk assessment methodology for
electric terminal tractor charging infrastructure investment [11]

as energy price fluctuations, electrical grid stability, battery

degradation, and ransomware attacks are of particular interest.

Tables V and VI show the emergent conditions and disruptive

scenarios for this case study.

Imposing disruptive scenarios onto the system order changes

the weight of each performance criteria from one scenario to

the next [12]. As an example, when introducing a cyber attack

(s.04) to the baseline system, vehicle systems safety (c.09)

becomes increasingly more relevant as the vehicles, their on-

board control systems, and associated charging infrastructure

are at imminent risk [13]. On the contrary, a terminal tractor’s

battery capacity (c.12) becomes less relevant during a cyber

TABLE IV
PERFORMANCE CRITERIA FOR TERMINAL TRACTOR CHARGING

INFRASTRUCTURE

Index Criteria

c.01 Charging Speed (kW)
c.02 Charging Efficiency
c.03 Time Savings
c.04 Charger Installation Costs
c.05 Maintenance Costs
c.06 Footprint
c.07 Interoperability
c.08 Human Safety
c.09 Vehicle Systems Safety
c.10 Operational Costs
c.11 Installation Disruption Cost
c.12 Battery Capacity (kWh)

TABLE V
EMERGENT CONDITIONS FOR CHARGING INFRASTRUCTURE INVESTMENT

Index Emergent Condition

e.01 Increased Energy Cost
e.02 Decreased Energy Cost
e.03 Inclement Weather
e.04 Reduced speed limit
e.05 Autonomous Terminal Tractors
e.06 Increased Battery Capacity
e.07 Battery Degradation
e.08 Decreased Trade
e.09 Workforce Strike
e.10 Ransomware Attack
e.11 Brownout
e.12 Foreign Object Damage
e.13 Human Damage
e.14 Increased trade
e.15 Wear and Tear
e.16 Denial of Service Attack
e.17 Increased Speed Limit
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TABLE VI
DISRUPTIVE SCENARIOS FOR CHARGING INFRASTRUCTURE INVESTMENT

Index Scenario

s.01 Environmental Change
s.02 Policy Revision
s.03 Technology Innovation
s.04 Cyber Attack
s.05 Market Shift
s.06 Electrical Grid Stress
s.07 Workforce Interruption

attack (s.04) since it is unaffected in this scenario. The risk

register employs this ideology to compute a disruption score

for each scenario, using the linear additive value function in

(11). In this function, W represents a vector of scenario impact

scores.

V (xi)k = WkXi (11)

By utilizing a matrix of impact scores for each initiative

and scenario, we can rank the initiatives based on the logic in

(12):

IF V (xi)k > V (xj)k THEN xi ≻ Xj (12)

The scores for each initiative X = {xi, ..., xk} under all

scenarios S = {s1, ..., sk}, are then stored in variable R(xi)k.

Then, a disruptiveness score D(Sk) can be can be calculated

for each scenario using the sum of square ranking in (13).

D(sk) =

n∑

i=1

(R(xi)b −R(xi)k)
2 (13)

As emphasized by Donnan et al. [14], the disruptiveness

scores offer invaluable insights to stakeholders, enabling them

to pinpoint the scenarios with the most significant impact

on their operations. Consequently, this invaluable information

enhances strategic planning and empowers effective risk mit-

igation efforts.

B. Risk Assessment Results

Using the methodology described in Section III-A, the

results in Fig. 4 and Fig. 5 were obtained. In Fig 4, the baseline

ranking for each charging infrastructure plan is represented by

black lines. These lines indicate the relative positions of the

initiatives under normal circumstances. The blue lines depict

the promotion potential of each initiative during disruptive

scenarios, signifying how their rankings may improve. On

the other hand, the red lines illustrate the demotion potential,

indicating how the rankings might be negatively impacted in

such scenarios.

In this case study, initiative (x.06) is the preferred charging

infrastructure plan when considering stakeholder criteria and

model performance through disruptive scenarios. Table VIII

displays the optimized charger investment strategy for initia-

tive (x.06) which is determined by the methods described in

Section II. In this model, the optimization solution is to invest

in a terminal tractor with a 260 kWh battery and install a 450

kW wireless charger. It is evident that this initiative is strongly

favored, as it fulfills a substantial portion of the port’s criteria.

The high-range terminal tractor battery, combined with the

wireless charger’s exceptional power transfer rating, leads

to significant time savings. Additionally, the chargers’ small

footprints and low maintenance costs in this model further

contribute to its attractiveness. This initiative is ranked first in

the baseline rankings and is the most robust initiative (with the

exception of the lowest ranked initiative, (x.21) as it can only

demote by four rankings throughout all considered disruptive

scenarios). The difference between an initiative’s promotion

and demotion potentials is interpreted as the initiative’s ro-

bustness through disruptive scenarios [12].

An important feature to observe from the disrupted rankings

are the volatilities of the initiatives. In contrast to robust

initiatives, volatile initiatives have both high promotion and

demotion potential, indicated by a wide range along the x-

axis of Fig. 4. In this case study, initiative (x.09) represents a

dynamic wireless charging infrastructure configuration and is

initially ranked 9th in the baseline evaluation. Under emergent

conditions, this initiative’s rank fluctuates, reaching the top-

ranked priority or falling to the 30th position depending

on the scenario. The volatility observed in initiatives like

(x.09) serves as a crucial warning to stakeholders, prompting

them to thoroughly investigate the underlying causes of this

fluctuation and take necessary countermeasures to address any

potential risks. For a comprehensive understanding of scenario

disruptiveness and initiative robustness, refer to Table VII.

Fig. 5 provides a graphical representation of the normalized

disruption caused by each scenario. Among these scenarios,

(s.06) - Electrical Grid Stress stands out as the most disruptive

one. Given the common concerns about electrical grid insta-

bility, especially for major electricity consumers like container

ports [15] [16], this result leads to valuable insights. Realizing

the severity of grid stress through this analysis, the port can

then take proactive measures to address grid instability. For

instance, the port may consider investing in emerging Vehicle

to Grid (V2G) technologies, such as bi-directional chargers

[17]. These technologies enable electric vehicles (EVs) to act

as supplementary power sources for the grid, enhancing its

resilience during critical periods of stress. As an additional

countermeasure to address electrical grid stress, ports can

make investments in optimized energy storage systems. These

energy storage systems could then bolster the resilience of

the port’s microgrid. By incorporating such optimized energy

storage solutions, ports can better manage fluctuations in

electricity supply, ensuring continuous and reliable power

availability even when the external grid faces challenges [18].

By leveraging the described methodology, ports can effectively

devise tailored countermeasures to tackle disruptive scenarios

beyond the ones named in this research. By implementing

these measures, ports can notably reduce their risk exposure

and optimize performance.
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Fig. 4. Results of risk assessment of selected terminal tractor charging infrastructure initiatives. The black line is the baseline ranking of each initiative
according to stakeholder criteria. The blue and red lines are the promotions and demotions in ranking, respectively, of each initiative throughout disruptive
scenarios.

TABLE VII
SUMMARY OF RESULTS FOR RISK ANALYSIS OF TERMINAL TRACTOR CHARGING INFRASTRUCTURE

Result Type Description

Most-disruptive scenarios Electrical Grid Stress (s.06) and Technology Innovation (s.03) are the most-disruptive scenarios.

Least-disruptive scenarios Environmental Change (s.01) is the least-disruptive scenario with Market Shift (s.05) as a close second.

Most-robust initiatives Mixed Charging Model (x.21) is the most-robust initiative, however, it is ranked low throughout all scenarios. Mixed
Charging Infrastructure Model (x.06) is the dominating initiative. It has a baseline rank of priority #1 and falls no
further than the #5 ranked initiative through all scenarios. All other initiatives have the potential to shift more than 4
places in the rankings.

Other robust initiatives Wireless Charging Model (x.18) and Mixed Charging Model (x.29) are considered robust initiatives. Both initiatives
only shift by a magnitude of 5 rankings throughout the sample of disruptive scenarios. (x.18) can be ranked as high
as #2 and as low as #7 while (x.29) can be ranked as high as #26 and as low as #31.

Fig. 5. Disruptiveness scores for each scenario. Each score is normalized on
a scale of 0-100 with 0 being the least disruptive and 100 being the most
disruptive.

IV. CONCLUSIONS

An innovation of this paper is to combine traditional op-

timization techniques with enterprise risk analysis to demon-

strate the dynamic reordering of investment candidates during

disruptive scenarios in industrial electrification applications.

This valuable approach empowers port authorities and fleet

managers to use the findings as a solid foundation for making

informed and confident decisions concerning fleet vehicle

electrification.

Future work includes scaling the optimization and risk

models to consider smart charging strategies, which incor-

porate V2G technology, peak shaving, and additional battery

parameters into charging schedules [19]. Additional models
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TABLE VIII
CHARGING STATION LOCATIONS IN THE RISK ANALYSIS PREFERRED

MODEL - (x.06) - WIRELESS

Node v sum y (kWh Charging Cost Utilization

1 - North Stack 0 0 $- 0.00%
2 - Service Center 0 0 $- 0.00%
3 - North Bulkhead St. 0 0 $- 0.00%
4 - North Railyard 1 91 $10.92 100.00%
5 - Central Bulkhead St. 0 0 $- 0.00%
6 - South Bulkhead St. 0 0 $- 0.00%
7 - South Railyard 0 0 $- 0.00%
8 - South Stack 0 0 $- 0.00%

Total: 91 $10.92

could be constructed to include collaboration between humans

and robots [20] [21]. These robots are engineered with the

capability of anticipating human behaviors like interpreting

hand signals. Such interpretation skills, combined with ade-

quate dexterity, would make for an effective robot teammate

to assist humans with plug-in charging operations.
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