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Abstract—Coverage holes are a key problem in wireless sen-
sor networks. Methods that use relative localization techniques
to restore the service, or heal the holes, rely on accurate range
and bearing measurements. However, high-precision range and
bearing sensors are too heavy, expensive, and range-limited for
the agents tasked with healing. To overcome these limitations,
we propose a novel impressionist algorithm, inspired by a recent
swarm-based approach, that works with extremely coarse range
and bearing information and at low perception frequency, to
detect and heal the holes. In the proposed approach, a swarm
of agents uses quantized information to navigate a potential
field, generated by network nodes, to reach the nearest hole.
The swarm adopts a greedy deployment behavior, preventing
concurrent placement in close-by locations. After deployment,
agents use their coarse perception to update the potential field,
leading the rest of the swarm to unhealed area. Simulation re-
sults demonstrate that our algorithm achieves similar or better
coverage compared to the state-of-the-art and to a benchmark
based on random walk. This is achieved using just three bearing
quantization levels and four times lower perception frequency.
Overall, our impressionist approach shows faster healing, albeit
at the expense of employing slightly more agents.

Index Terms—swarm robotics, limited perception, hole heal-
ing

I. INTRODUCTION

In Wireless Sensor Networks (WSNs), restoring the cov-
erage of a Region of Interest (ROI) in case of failure of
one or multiple nodes is a key problem for a wide range
of applications [1]–[4]. This is especially critical in case of
time-sensitive, emergency situations, in which holes in the
coverage must be detected and covered (or healed) quickly
and with minimal deployment cost [5]. Most of the existing
solutions to the hole detection and healing problem rely on
the relocation of a subset of the network nodes to the area left
uncovered [6]–[8]. However, this requires assuming that the
nodes are mobile and densely deployed, which is unrealistic
and impractical in case nodes include expensive or complex
hardware [9]–[11].

An recent alternative solution in [12] shows that a swarm
of resource-constrained agents can lead to a quick recovery of
the coverage, without a priori knowledge of the environment.
The agents can perceive the environment by the only means
of a Range and Bearing (RaB) sensor, that provides relative
distance and angle to targets within a certain range. However,
RaB devices providing precise measurements are too heavy
and expensive to be mounted on small agents (e.g., drones)

[13]. The technology behind portable RaB sensors is still in
its early stages: Current prototypes can not provide reliable
measurements in challenging scenarios, especially at long
ranges [14], [15]. Despite the algorithm in [12] demonstrated
good robustness to noisy perception, it ultimately needs reli-
able measurements. This limitation is shared by all available
solutions that use RaB sensors, or some form of relative
localization, to orient in the environment relying on the
relative position of surrounding nodes or agents.

In this work, we address such perception problem by
proposing a novel swarm intelligence algorithm, inspired by
the work in [12], to detect and heal holes in the coverage us-
ing extremely coarse RaB information. Our approach belongs
to the class of impressionist algorithms, which work with
quantized information obtained at low perception frequency
[16]. By adopting the impressionist paradigm, our aim is to
lessen the perception and computation burdens on the agents,
while providing extra robustness. Instead of having access to
precise RaB measurements as in [12] (Fig. 1a), our agents
only have a rough indication about the distance interval
and the circular sector where other nodes and agents are
located (Fig. 1b). The swarm uses the quantized information
to navigate a potential field generated by the nodes, following
the logic introduced in [12], until it reaches the closest
hole. The agents rely on a greedy deployment behavior, in
which they place themselves in the first uncovered location
found. A commitment strategy is adopted to prevent agents to
concurrently deploy in close-by locations. Upon deployment,
the agents use their coarse perception to update the potential
field, driving the rest of the swarm to the part of the hole not
already healed.

We compared the performance of our algorithm against:
(i) [12], which has been shown to outperform state-of-
the-art solutions, and (ii) a benchmark based on random
walk, a behavior widely adopted as a baseline for swarm
navigation [17], [18]. Moreover, we analyzed the impact
of the quantization factor and the perception frequency, to
evaluate the robustness of our solution. Experimental results
indicate that it reaches comparable or higher coverage with
respect to (i) and (ii), while using only three quantization
levels for the bearing information, five levels for the distance,
and one fourth of the perception frequency. Notably, our
approach demonstrates significantly faster healing, at the cost
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Fig. 1: RaB information provided to the agent in traditional relative
positioning (a) and in our impressionist algorithm (b). Here, targets
are perceived as being “on the right”, “on the left”, “in front” or
“behind”, and “close”, “in the middle” or “far”.

of a marginal increase in the number of agents employed.
This makes it highly suitable for time-sensitive scenarios.

II. RELATED WORK

Hole Detection and Healing: Several studies addressed
the problem of hole detection and healing in WSNs [1]–[6].
Numerous works rely on Voronoi diagram or Delauney trian-
gulation as their main component in the recovery of coverage
holes [3], [6], [7], requiring, however, dense networks [3], or
centralized computations [6], [7]. Alternatively, geometry-
based approaches are proposed in [1], [2], [8], leveraging
information about intersection points among neighbors to
select, according to geometric criteria, which and where
nodes should move to restore the coverage. These solutions
give priority to minimize the energy consumption of the
nodes over maximizing the coverage: a secondary objective
in temporary solutions [1], [8]. A different perspective is
presented in [19]–[21], in which the problem is modeled as an
optimization task, where enhanced versions of particle swarm
optimization [19], [20], or the artificial fish swarm algorithm
[21] are used to compute the position of patching nodes that
maximizes the coverage. However, they necessitate global
knowledge of the network, that is an unrealistic requirement
for large WSNs or in highly dynamic environments. To
account for this problem, methods in [9]–[11] rely only on
local information, combining the advantages of geometry-
based solutions with those using virtual forces, such as [22].
These hybrid approaches need GPS localization, which may
be unavailable in mission-critical scenario. The approach
presented in [12], to which our algorithm is inspired, uses
RaB localization and local knowledge to control the swarm.
The swarm is activated by the exposure to a potential field,
locally generated by nodes upon detection of a hole, and
pointing to its border. The agents follow this field using their
RaB information until they reach the hole and then deploy in
locally optimal positions computed using geometric criteria.
Upon deployment, the agents update the potential field to
reflect the changes in the hole border, thus recruiting other
agents, until coverage is restored.

Sparse and Imperfect Perception: Robot swarms usually
rely on external technologies, such as global positioning

systems or base stations, to gather accurate data and process it
with high frequency [23]–[25]. However, these technologies
are not always available, especially in emergency scenarios.
There exists a limited literature on the design of swarm-based
algorithms that rely on low-frequency, quantized information,
e.g., to search for heat sources [26], reach consensus on
environmental features [27], or trail following [28], but none
to address hole detection and healing in WSNs. Designing
algorithms resilient to sparse, discretized updates is not only
important, but can be also beneficial for swarm performance
[28], [29]. To this end, [16] introduced the class of im-
pressionist algorithms, capable of working with minimal
information where traditional algorithms are prone to fail.
The authors validated their findings bringing alignment, dis-
persion and milling behaviors as case study.

III. METHODOLOGY

In this work, we consider a 2D obstacle-free ROI in which
a network of static nodes is randomly deployed. The failure
of some of these nodes generates holes in the coverage.
To heal the holes, we employ a swarm of mobile agents
embodying robots. Both nodes and agents are treated as
point-like objects with heading. Their position corresponds
to that of the center of mass of the device they represent.
They both have communication and sensing (i.e., coverage)
capabilities, modeled as Boolean disks: We assume reliable
functioning within a disk of radius rc or rs, respectively, and
no service outside [30]. As in [12], we account for different
sensing ranges, with that of the nodes being much greater
than that of the agents, i.e., rs,n ≫ rs,a. Moreover, we
impose the communication radius to be at least twice the
longest sensing radius to guarantee connectivity [31].

Agents’ movement is governed by non-holonomic dynam-
ics, with cruise driving v̄ and steering ω̄ speed as control
inputs. Agents, marked with unique IDs, select their behavior
based on coarse RaB perceptions, provided by the sensor
system every Tp seconds. The perception area, set equal to
the communication disk, is divided into K adjacent circular
sectors, with 2π/K central angle, and L concentric circular
crowns, representing distance intervals. The circular sectors
align with the agent’s heading through the bisector of the first
sector. For all nodes and agents within rc,a, the quantized
range and bearing information indicates the specific circular
sector and distance interval in which they are located. Fig. 1b
shows an example of perception with K = 4 and L = 3. This
could be implemented with a minimal number of adjacent,
low-precision range-only sensors, obtaining a coarse bearing
information by knowing which sensor detected the target.

Since RaB sensors limitations mainly affect small agents,
we used the same perception setting of [12] for the nodes.
That is, agent oi is provided with the relative distance dij and
angle φij to each node and agent oj within its communication
range, as shown in Fig. 1a. The proposed impressionist
algorithm comprises two stages: hole detection and hole
healing.
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A. Hole Detection

Hole formation is detected by network nodes using the
logic in [12]. They use their perception to periodically
compute the Angular Coverage Ratio (ACR) c ∈ [0, 1], a
coefficient that measures how much the node is surrounded
by neighboring nodes, or later, deployed agents. To do so,
a node oi filters its perception, including only nodes and
deployed agents oj whose sensing disk overlaps with its own
(oj ∈ Ni). For each neighbor, it computes θj , the semi-
central angle of the circular sector delimited by the two
intersection points between the borders of their sensing disks,
as in Eq. (1a), where rs,oi is the sensing radius of oi. Then, it
obtains angular intervals by centering θj in the corresponding
bearing measurement, and it merges them together following
Eq. (1b). If ci, obtained using Eq. (1c), is lower than a
threshold Thc, the node is not completely surrounded, and
is on the border of a hole (oi ∈ B)

θj = arccos

(
r2s,oi + d2ij − r2s,oj

2rs,oidij

)
, (1a)

Θi =
⋃

oj∈Ni

[φij − θj , φij + θj ], (1b)

ci = |Θi|/2π. (1c)

Each node oi uses the ACR value to maintain its one-hop
distance to the closest hole, the level ℓi, computed as follows

ℓi =

0, if oi ∈ B
min
oj∈Ni

ℓj + 1, otherwise. (2)

This information generates a potential field of increasing
integer values pointing toward holes border (having minimum
level), that can be perceived and followed by the swarm.

B. Hole Healing

As in [12], the agents are initially resting in randomly
scattered Release Points (RPs) in inactive state. They pas-
sively listen communications among nearby nodes, waiting
to hear about the formation of a hole to activate. Upon
activation, the agents use their quantized information to drive
toward the closest hole, following the potential field created
by nodes levels as in Eq. (2). In [12], the agents move
toward the direction of the closest node with minimum level
among those perceived. With the nodes at the border having
absolute minimum level (i.e., 0), the agents will eventually
reach a hole. However, with quantized information, more
than one node with minimum level can be perceived in
the same distance interval, therefore indistinguishable from
a distance perspective. Moreover, these closest nodes may
belong to different circular sectors, introducing ambiguity
in the direction. Selecting the bearing sector that requires
less rotation for the agent reduces this ambiguity. However,
with this type of navigation logic, the agent might approach
the hole border tangentially to the zero-level curve, ending
up trapped by a zero-level node and remaining outside the
hole (Fig. 2 - Closest Min. Follower). For this reason, as

Min. Avg. 
Sector-wise 
Follower

Closest Min. 
Follower

Fig. 2: Graphical representation of the difference between the
navigation logic in [12] with quantized information (Closest Min.
Follower) and the impressionist logic (Min. Avg. Sector-wise Fol-
lower) with K = 4.

navigation logic, we propose to average the levels perceived
by the agent in each sector, imposing forward motion as soon
as the agent faces the sector with minimum average and
selecting the one that requires less rotation as tie-breaking
rule. In this way, the agent is aware of the shape of the level
curves, being able to cross the zero-level one, and remaining
inside the hole (Fig. 2 - Min. Avg. Sector-wise Follower).
We stress that no distance measurements are involved in this
navigation process.

While navigating, if an agent perceives at least a node, or
deployed agent, of level 0 (on the border), it starts evaluating
its current position for deployment. If the position of agent
ai does not lie within the sensing disk of any perceived
nodes or deployed agent oj , i.e., dij > rs,oj∀oj ∈ Pi, the
position is free and the agent can deploy there. To evaluate the
freedom of a position, the agent needs only tertiary distance
information: if a measurement is less than rs,a, to check if
it is within the sensing disk of an agent, or rs,n for a node.
The distance is therefore quantized into L = 3 intervals.

Before deploying, an agent that has found a free position,
changes its state to committed. This behavior was introduced
to avoid concurrent placement in the same area, thus wasting
resources. A committed agent collects the IDs of all commit-
ted agents within its sensing radius. If it has the lowest ID
[32], it deploys in the network, changing its state to deployed.
Otherwise, it switches back to the active state and continues
to follow the potential field. This behavior does not require
additional quantization of the distance.

Since the first free position is selected for deployment,
the healing starts from the border of the hole, changing its
shape. Upon deployment, the agents start acting as nodes,
calculating their ACR and their level, to attract other agents.
The ACR, as computed in Eq. (1), strongly relies on good
RaB information. We propose four solutions, of increasing
complexity, to compute the ACR using quantized informa-
tion:

1) ACR-1: All deployed agents believe to be on the border
of a hole, taking level zero. This solution does not require
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any computation nor information from the environment.
2) ACR-2: This heuristic groups perceived nodes and

deployed agents by sector. If a sector has a node, it gets
weight wn ∈ [0, 1], while, if it has an agent, it gets weight
wa ∈ [0, 1]. If the sum of weights is less than K/π, the agent
may be at the border of a hole. The level is calculated using
Eq. (2), except the minimum level is determined among all
nodes and deployed agents perceived, not just adjacent ones,
to prevent extra quantization of distance measurements.

3) ACR-3: It uses quantized RaB information from neigh-
bors. Adjacency is established based on whether the distance
is within twice the agents’ sensing radius for agent-agent
adjacency or within rs,a + rs,n for agent-node adjacency.
When combined with position check intervals, it brings
the distance quantization levels to five. We assign each
distance measurement as the mean point of its corresponding
interval, and use it to compute the discretized θ̃j = 2θj
as in Eq. (1a). These quantities are summed sector-wise to
check if the sector is sufficiently covered. Summing angle
intervals corresponds to considering the best case, that is no
overlapping. For a sector ki with i = 1, . . . ,K, and oj a
neighbor, if

∑
oj∈ki

θ̃j ≥ 2π
K Thc the agent considers that

sector covered. Otherwise, the agent checks whether the two
adjacent sectors may offer additional coverage. To do so, it
checks whether

∑
oj∈{ki−1,ki,ki+1} θ̃j ≥ 6π

K Thc. If it is the
case, the sector is considered covered, otherwise is not. An
agent is on the border of a hole if at least one sector is not
covered. The level is computed as in Eq. (2).

4) ACR-4: It requires the sensor system to be placed on
a base, rotating at a fixed speed ωs for the sector central
angle. During rotation, it collects a number of samples of
distance measurements. By comparing the samples, it is
possible to obtain a bearing resolution fov , much lower than
the sector angle. For each perceived neighbor, the agents
consider the bisector of their new sectors of width fov as
bearing, and perform the same distance quantization of ACR-
3. The quantized ACR and level are then computed according
to Eq. (1) and Eq. (2). More accurate bearing measurements
come at the cost of delays in the computation of ACR (time
required to perform rotation) and energy consumption due to
sensors movement.

Fig. 3 showcases the complexity of computing the ACR
with quantized information: Opposite situations may yield
equal perception. Quantized ACRs approximate those ob-
tained with exact measurements, occasionally leading to
wrong levels.

C. Frontier and Loop Avoidance

The impressionist navigation logic may drive the agents
outside the ROI if the RPs are too close to its frontier, since a
sector without readings has a lower average than a sector with
readings. To prevent this, the agents are instructed to move
away from the nodes at frontier by keeping them in the rear
sectors. A node communicates that it is at the frontier when
its ACR is lower than Thc right after network displacement
(i.e., prior to holes formation).

(a) (b)

Fig. 3: Graphical example of two opposite situations generating
equal perception, with K = 4 and the agent oi being (a) and not
being (b) on the border of holes.

The impressionist navigation logic may generate loops in
the agents’ behavior. We call short-term loops those caused
by two consecutive perceptions demanding opposite actions,
thus stalling the agents. To break these loops, the agents are
subjected to a random impulse that allows them to escape
from such perceptions. The impulse is realized imposing
uniformly random control speeds in [−v̄, v̄] and [−ω̄, ω̄].

The agents can navigate along orbits of arbitrary length,
created by a sequence of perceptions resulting in locations
that yield identical perceptions. We call these long-term
loops. To avoid them, we programmed a wiggling behavior
that consists of initially ni

w consecutive instants in which the
agents are subjected to random impulses (as in the short-time
case). Since these loops are usually observed when the hole is
partially healed, the wiggle is triggered only after tiw instants
and repeated with a period of Tw instants. At each repetition
of the wiggle, its duration is increased by one instant.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of our algorithm, we used
HDHSim [33], a discrete-time simulator introduced in [12],
explicitly designed for hole detection and healing problems.
Our analysis served two purposes: (i) comparing the per-
formance of the impressionist algorithm against the one
in [12] (denoted as Exact), that accesses the full set of
information and (ii) studying its impressionistic traits, that
is how its performance varies with different spatial and
temporal resolutions. As in [16], the former is represented
by the number K of quantization levels of the bearing, while
the latter is measured through the Cognition Speed (CS), that
is defined as the ratio of perception frequency to motion
speed, i.e., (TP v̄)

−1. To further validate our approach, we
also compared it against a benchmark based on random walk
behavior (see Section IV-A).

We adopted the same default configuration of [12]: a
failure of 7 adjacent nodes out of 125 randomly placed in
the ROI. The swarm is composed of 50 agents released from
a single RP. We carried out 100 simulations of T = 1000
time steps (of 1s each), for each experiment. The simulation
parameters are reported in Tab. I.

We measured performance by the average coverage over
time, defined as the fraction of hole area covered by deployed
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TABLE I: Parameters used in the simulations. The default values
are highlighted in bold font.

Parameter Symbol Value

Node sensing range rs,n 30 m
Node comm. range rc,n 60 m
Agent sensing range rs,a {5, 10, 15} m
Agent comm. range rc,a 60 m
Cruise driving speed v̄ 5 m/s
Cruise steering speed ω̄ 0.1 rad/s
Sensors rotation speed ωs 0.1 rad/s
No. bearing sectors K {2, 3, 4, 5, 6}
Cognitive speed CS {0.4, 0.2, 0.1, 0.05} m−1

Coverage threshold Thc 0.95

agents, and by the average number of deployed agents. We
will refer as convergence, the attainment of a stable value by
the coverage trend before the end of the simulation. To ensure
a fair comparison in terms of number of deployed agents,
we endowed the Exact method with the same commitment
behavior of our algorithm, without altering the measure of
efficacy of its navigation and deployment logic.

A. Random Walk Benchmark

To benchmark our algorithm, we designed an approach in
which random walk is the primary healing strategy. Since
a pure random walk over the whole ROI would not be
particularly informative, we limited its application in the
vicinity of the hole. To do so, we leveraged the impressionist
navigation strategy every time the agent is not perceiving any
level zero.

The rotating motion of the random walk is obtained sam-
pling the turning angle from a wrapped Cauchy distribution
with zero mean and concentration ρ, using the inversion
sampling method in [34]. For the straight motion, we sampled
the number of instants, instead of the distance to cover as in
[35], from a log-normal distribution with zero-mean and 0.5
standard deviation. The sampled number was then scaled by
a factor λ to match the dimension of the ROI.

This Random Walk (RW) algorithm uses the same posi-
tioning logic, commitment strategy, and ACR computation
methods as the impressionist approach. We included the logic
in Section III-C to counteract frontier crossing and short-time
loops. Due to its random nature, this method is not affected
by long-term loops.

As the impressionist algorithm, RW works with K circular
sectors and 3 to 5 levels of quantization of distance measure-
ments (depending on the computation strategy of the ACR).

B. Family-wise Analysis

The impressionist and RW algorithms differ in the naviga-
tion logic, but share the four ACR computation strategies. For
this reason, we identified them as two families of four variants
each (e.g., impressionist + ACR-i with i = 1, 2, 3, 4) and we
compared these variants to individuate the most promising
combinations.

1) Parameters Optimization: To properly detect which
variants were the most effective in hole healing, we firstly
performed parameters optimization using the Tree-structured
Parzen Estimator (TPE) implementation in the Optuna frame-
work [36]. We set a limit of 200 iterations to maximize the
value of coverage at convergence. To identify the initial data
necessary to run TPE, we applied few steps of random search
algorithm, as suggested in [37]. The parameters involved
in the optimization, along with their range of variation (in
the format [min, max, step] or list of values), and the
resulting best values are reported in Tab. II for the navigation
parameters and in Tab. III for the ACR parameters.

2) Comparison: For each of the eight variants, we carried
out 100 simulations on the same set of randomly generated
scenarios, with the optimized parameters and the default
configuration of Tab. I. Fig. 4a shows the average coverage
over time for the four variants of the impressionist family.
There is no statistically significant difference among variants
with the same number of quantization levels for distance
measurements: strategies with L = 3 (ACR-1 and ACR-2)
result in slightly less coverage at convergence with longer
transient. For L = 5 variants, ACR-3 reaches convergence
sooner than ACR-4, slowed by the delay in the update caused
by the sensors rotation (Fig. 4a - zoom). For this reason,
we selected the impressionist + ACR-3, Imp-3 henceforth,
for the rest of the evaluation. RW + ACR-1 has longer
transient compared to other variants, because it lacks addi-
tional guidance from deployed agents, as shown in Fig. 4b.
Since there is no statistically significant difference among
the other variants, we selected RW + ACR-3 (RW-3) as
default, to match the impressionist algorithm. We compared
the best performing variants of the two families with the
Exact algorithm (Fig. 4c). All methods achieve similar high
values of coverage at convergence, with Imp-3 being the
quickest to converge and Exact the slowest. This speed up
is caused by the greater dispersion of the swarm in Imp-
3 and RW-3, that allows tackling the hole from different
directions, thus parallelizing the healing. To demonstrate this,
we computed the Global Shannon Entropy (GSE) as in [38].
We divided the ROI in q cells and, for each time step, we
counted the number xi of agents within the i-th cell for
i = 1, . . . , q. The GSE of the empirical distribution is

GSE = − 1

log(q)

q∑
i=1

pi log(pi), pi =
xi∑q
i=1 xi

. (3)

The closer GSE is to 1, the smaller is the departure from
the complete spatial randomness, hence the more the swarm
is dispersed. Conversely, the closer to 0, the more clustered
the agents are. The entropy values in Tab. IV show that on
average, during the navigation, the Exact swarm is much
more compact than the other solutions. The excess in the
entropy of RW-3, in comparison to Imp-3, is caused by the
additional randomness in the movements.

Since the methods achieve similar values of coverage at
convergence, we can compare the number of deployed agents
(Tab. IV). The Exact method uses less agents, with respect
to Imp-3 and RW-3, to heal the hole. Their higher number
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TABLE II: Optimization space for navigation logic parameters.

Parameter Best Value

Logic Name Symbol Range ACR-1 ACR-2 ACR-3 ACR-4

Impressionist
Wiggle period Tw [50, 300, 50] 250 250 200 150
Wiggle initial strength ni

w [1, 10, 3] 10 10 4 10
Wiggle initial instant tiw [0, 1000, 250] 250 250 0 1000

Random Walk RW concentration ρ [0, 1, 0.2] 0.4 0.8 0.8 0.8
RW scaling factor λ [1, 51, 10] 11 21 21 21

TABLE III: Optimization space for ACR computation parameters.

Parameter Best Value

Logic Name Symbol Range Impressionist Random Walk

ACR-2 Agents weight wa [0, 1, 0.2] 0.2 0
Nodes weight wn [0, 1, 0.2] 0.8 0.4

ACR-4 Resolution fov [0.79, 0.52, 0.39, 0.26, 0.2] 0.2 0.52
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Fig. 4: Average coverage over time for the impressionist (a) and
RW (b) families. Comparison among best variants for each family
and Exact algorithm (c). The shaded bands represent the 95%
confidence interval.

of agents used results from the greater overlap in the agents’
sensing disks, caused by their greedy deployment strategy.

C. Single Hole Analysis

We expanded the comparison by analyzing the impact
that different hole size and sensing ratios have on the
performance. We define the sensing ratio Rs as the ratio
between the agents’ sensing range and that of the nodes,
i.e., rs,a/rs,n. Specifically, we varied m, the number of
adjacent nodes which failure creates the hole. For each value
of m = {1, 7, 15}, we performed a set of 100 simulations
by keeping fixed the nodes’ sensing range and varying Rs in
{1/6, 1/3, 1/2}. For each combination of sensing ratio and
hole size, we carefully calibrated the swarm size to avoid
undue inflation caused by an excessive number of agents,
while ensuring that healing was not compromised due to the
lack of agents (regardless of the quality of the algorithm).

The results in Fig. 5 show that an influential factor in the
healing process is the relationship between the dimension of

TABLE IV: Average number of deployed agents and average
maximum GSE variation in the default scenario.

Deployed Agents Max. GSE Variation

Avg. 95% CI Avg. 95% CI

Imp-3 40.10 0.82 0.59 0.02
RW-3 40.86 0.81 0.78 0.02
Exact 33.61 0.82 0.25 0.03

the agents’ sensing disk and that of the hole. The smaller
the disk is with respect to the dimension of the hole, the
slower the healing process will be. This is caused by the
limited contribution that small agents individually bring to
the healing of massive holes. The difference in the transient
duration is more pronounced when the swarm is clustered and
the healing cannot be parallelized further, as for the Exact
algorithm (Fig. 5b and Fig. 5c - Rs = 1/6). Conversely,
the bigger the agents’ sensing disk is with respect to the
hole, the more difficult is to find a viable placement position,
resulting in a decrease of the coverage at convergence, as
shown by Fig. 5a and Fig. 5b for Rs = 1/2. Bigger
agents tend to leave sparse tiny area uncovered, difficult
to detect and reach. This drawback is emphasized in the
RW: the probability of crossing an uncovered area with
random movements decreases with the dimension of the
area. This results in longer transients and lower coverage
at convergence, as reported in Fig. 5a. For all hole sizes,
high values of coverage were achieved, independently from
the sensing ratio and especially for Imp-3. This means that
the algorithm is suitable to various sensing hardware. By
comparing the results in Fig. 5 with those of Section IV-B,
we concluded that the three algorithms exhibit similar high
coverage, with the Imp-3 occasionally achieving even higher
values. Notably, our algorithm demonstrates a much shorter
transient period than both the benchmark and the algorithm
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Fig. 5: Average coverage over time for different hole sizes and Rs.
The shaded bands represent the 95% confidence interval.

in [12], albeit at the expense of employing a slightly higher
number of agents.

D. Impressionist Analysis

We investigated the effect of different temporal and spa-
tial resolutions, to determine the presence of thresholds at
which the global behavior deteriorates. We considered K in
{2, 3, 4, 5, 6} and CS in {0.4, 0.2, 0.1, 0.05}m−1, that cor-
responds to receiving data every {0.5, 1, 2, 4}s, respectively.
For each combination, we performed 100 simulations using
the default configuration and the parameters in Tab. I. To
summarize the resulting trends of the average coverage over
time, we used three indicators: (i) Rise Speed (RS): the
average slope of the transient; (ii) Settling Time (ST): the time
required to reach convergence; (iii) Value at Convergence
(VC): the value reached by the trend at convergence. Fig. 6c
shows that our algorithm achieves high coverage regardless of
the degree of bearing quantization and perception frequency,
except for K = 2. This is a very restrictive setting, in
which an agent can only perceive if something is in front
of or behind it, resulting in a drop to 59% of coverage in
the worst case. However, with as little as 3 sectors, and
the appropriate CS, the algorithm can reach up to 97%
of coverage. Higher number of sectors helps to compute
more precise ACR values, but has detrimental effect on the
navigation logic, slightly decreasing the attained coverage.
In case of too high CS, the frequent perceptions might
conflict, stalling the agents, and thus resulting in gradual
incline transients and longer time to convergence (Fig. 6a and
Fig. 6b). The RW-3 presents slower transients with respect
to Imp-3 (cf. Fig. 6a with Fig. 6d), achieving similar values
of coverage for K in {3, 4, 5} and much lower for too wide
or too narrow resolutions, as shown in Fig. 6f. As discussed
in Section IV-B2, the Exact method usually presents longer
transients (Fig. 6g and Fig. 6h), but it achieves very high
coverage, as reported in Fig. 6i, independently from the
cognition speed. Overall, the Exact method performs better
with more frequent perception, while our algorithm achieves
similar results even with three quantization levels for the
bearing and receiving updates only every four seconds.
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Fig. 6: Summary of the average coverage over time for different
values of K and CS. SR is measured in % increase in coverage
per second, ST in seconds. Better outcomes are closer to blue.

V. CONCLUSIONS

In this work, we addressed the problem of hole detection
and healing in case of limited access to a low amount of
information. We proposed a new swarm-based impressionist
algorithm, in which the agents rely on severely quantized
range and bearing information as their only way to perceive
the environment. They use this data to navigate toward the
hole and place in the first viable position to restore the
coverage. Experimental results show that our solution reaches
similar or higher coverage than the state-of-the-art and a
benchmark based on random walk. Moreover, it reaches
convergence much faster, at the cost of using slightly more
agents. The investigation of its impressionist traits revealed
that it can reinstate up to 97% of the coverage with as
little as three quantization levels for the bearing and five
for the distance, while perceiving the environment with a
frequency four times lower: being ideal for time-sensitive
and prohibitive missions.
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