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Abstract—There have been many different forms of evolution-
ary algorithms (EAs) designed by humans over the past 50 years,
with many variants optimized for specific classes of problems.
As computational resources grow, the automated design of
EAs has become an increasingly viable method for improving
performance. However, many components of EAs have been
treated as largely immutable, for both human and automated
designers, dramatically constraining design space. In particular,
the evolutionary cycle (the repeating pattern of reproduction
and survival) has little or no differences between most popular
forms of EA. In a previous paper, we proposed a technique
for automatically designing evolutionary cycles using directed
graphs, greatly increasing the explorable design space. In this
paper, we showcase an improved representation and evolutionary
process, provide preliminary experiments demonstrating that
EAs produced by this process can outperform those with a
traditional cycle, and explore the phenotype landscape to show
that the new space explored by our technique may contain better
EAs than traditional cycles allow.

Index Terms—automated design, hyperheuristics, evolutionary
algorithms

I. INTRODUCTION

Through its history, the evolutionary computation (EC) com-
munity has utilized a minimalist, streamlined representation
for the evolutionary process: nearly every instance is based on
an evolutionary cycle consisting of parent selection, reproduc-
tion, and survival selection. In previous papers [1], [2] it was
proposed that this traditional structure may not always be an
optimal choice, and it was demonstrated that a methodology
for evolving novel evolutionary cycles was competitive with
parameter tuning in its ability to produce performant EAs.
In this paper, we present an improved methodology for the
automatic design of evolutionary cycles, and explore the fitness
landscape of cycles produced by this process. We believe the
results strengthen the assertion that the traditional evolutionary
cycle is often suboptimal for specific problem classes.

II. RELATED WORK

Parameter tuning has a rich history in the EC community,
being an essential factor of EA performance [3]–[9]. More
recently, the concept of meta-optimization has been extended
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to the broader concept of automatically designing EAs or com-
ponents used in EAs. This includes the creation of individual
operators such as selection or recombination [10]–[12]. Other
works focus on the order in which operations are conducted,
or act as more problem-specific tuning algorithms that choose
from available components [13]–[17]. These works typically
rely on linear orders of operations, leading to simplistic
population structures that are largely identical to traditional EA
cycles. A linear sequence of parent selection, reproduction, and
survival selection can be found unmistakably in nearly every
EA. Some works, however, do implement more complex struc-
tures that diverge significantly from normal populations [2],
[18]–[22]. There are existing techniques for applying genetic
programming to the optimization of graphs [23], [24]. How-
ever, their generic representations have shortcomings when
representing EAs, as discussed in [1].

A desire to explore a broader range of evolutionary cycles
served as motivation for previous work using a directed graph
representation for evolutionary processes [1]. Experiments
with that representation showed novel evolutionary cycles
were capable of competitive performance with traditional
EAs. To enable further exploration, we have made numerous
changes to that representation in order to explore a broader
range of designs. In the process, we have also resolved several
shortcomings of the previous approach.

That previous methodology used a variable-length vector for
its nodes. Recombination was conducted by 1-point crossover
that produced an output vector with size bounded by the
parents’ sizes. This may have been biased towards the creation
of shorter vectors and decoupled genes from loci, which is
problematic as the recombination operation depended on the
index of genes in the vector. The mutation operation performed
poorly, which we speculate to be a result of self-adaptivity
involved in the mutation process. The self-adapted genes
may have adapted poorly, since a solution’s fitness may not
accurately represent the performance of a variation operator,
especially when mutation is not always performed. The new
algorithm foregoes self-adaptivity to allay these concerns. The
old representation required that the entire graph be strongly-
connected, and that every node participate in execution. This
precluded distinct subpopulations, and prevented some strate-
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Fig. 1. The best graph from one of the runs in our experiment, which could not
have been represented with the previous methodology. The EA it represents
initializes 97 random solutions, samples parents using stochastic universal
sampling, produces 97 children using creep mutation, selects 69 of those
children using inverse k-tournaments (sometimes called death selection) with
k=7, selects 26 of those using truncation, and then behaves identically to a
(26 + 1)-EA using stochastic universal sampling and blend crossover. Only
information that functionally affects the algorithm represented by the the graph
is shown.

gies such as nodes that only execute once, prior to a cycle.
Fig. 1 shows such a graph, which was the best graph found
during one of the runs of the experiment presented here.

III. METHODOLOGY

A. Primitives

The first step in creating a generic representation for an EA
is to identify what the basic primitives for an EA actually
are. We formulate them as selection operators and varia-
tion/reproduction operators, as well as some mechanism for
transferring individuals between them. This formulation lends
itself to a graphical representation (specifically, a directed
graph), where the operators are encoded in nodes and the
flow of individuals is encoded in the edges. The algorithms
that can be represented by such a graph include many that are
structurally very different from traditional EAs, but the graphs
constructed with this primitive set produce search algorithms
that are broadly analogous to EAs.

The selection operators are uniform-random, fitness-
proportional (parent selection only), k-tournament(parent se-
lection only), stochastic universal sampling (parent selection
only), truncation (survival selection only), and inverse k-
tournaments (sometimes known as death selection, survival
selection only). Reproduction operators depend on the repre-
sentation of the underlying problem; our experiments involved
floating-point vectors, and the operators we have implemented
are uniform crossover, whole arithmetic crossover (averaging),
blend crossover (BLX-α), reset mutation, and creep mutation.
The crossovers are performed on two parents and produce
one child, while the mutations are performed on one parent
and produce one child. No reproduction operators modify the
parent (mutation creates a new individual).

B. Genotype

The first component of the genotype is a fixed-length vector
of nodes, avoiding issues previously mentioned with variable-
length vectors, but requires tuning the number of nodes for
each problem class. In order to ensure all nodes can execute
regardless of whether population size must be increased or
decreased, each node simultaneously encodes an algorithm
for each of three separate operations: parent selection, re-
production, and survival selection. Each node also encodes

any necessary parameters for its operations, as well as three
boolean flags cull, shuffle, and segregate, which change the
behavior of the node and will be detailed in Subsection III-C.
Our graphical representation also requires edges to represent
the flow of individuals between its nodes. All edges in our
representation are unidirectional, and each one encodes a
positive integer representing the number of individuals that
will flow across it (the edge’s “weight”), a simplification from
the previous work which included some percentage-based edge
weights. When a single node has multiple out-edges, these
edges have a fixed total order, which is defined independently
of any other parameters (i.e., each edge has a unique index
assigned arbitrarily). This ordering determines how individuals
are partitioned across out-edges, which will be explained in
greater detail in the next subsection.

C. Execution

There are three possible behaviors when a node is executed,
and the choice of which is executed depends on the sum
of the weights on its inbound edges (the insize), versus the
sum of the weights on its outbound edges (the outsize). If a
node’s insize is less than its outsize, then in order to reach its
outsize, individuals must be created. Conversely, if its insize is
greater, it must remove individuals. Based on this comparison,
a node will either perform parent selection and reproduction,
or survival selection. If these values are equal, the node will
produce one individual by reproduction then conduct survival
selection; otherwise, some graphs (such as one node with a
loop) would never generate new solutions. An exception is the
first boolean flag, cull, which causes a node to perform parent
selection and reproduction, then discard its input population.
This behavior simulates a generational (µ, λ)-EA.

After execution, the resulting population is partitioned
across the node’s out-edges. The edges are ordered by their
arbitrary indices, while the order of the individuals is defined
by the remaining two boolean flags. If the shuffle flag is
set, the output population is shuffled randomly. Otherwise,
the population is sorted in descending order of fitness. The
last flag, segregate, is only relevant for nodes that perform
reproduction and do not have the cull flag set. If it is set,
all individuals that were part of the input are ordered before
any individuals that were generated by reproduction. These
two subsets are then shuffled or sorted separately. This allows
for behavior similar to traditional EAs which typically mutate
offspring (but not existing adults) before survival selection.

In most graphs, only a subset of the nodes in the genotype
vector will be executed. The nodes which will be executed, and
the order in which they are executed, depends on the graph’s
edges. The first node to be executed is called the root, and
it is chosen as the first node in the genotype vector with at
least one out-edge. Any nodes that are reachable from the
root will also be executed. The root, and the nodes reachable
from it, induce a subgraph that we will call the executed graph
(E-graph). As we will explain later, out methodology ensures
that the E-graph has at least one cycle. Due to the fixed-length
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node vector, there will likely be nodes and edges not in the
E-graph which are not executed (i.e., introns).

Nodes are ordered by a depth-first search (DFS) across the
E-graph, similar to the DFS algorithm for topological sorting
in a directed acyclic graph. However, as our representation is
cyclic, no true topological sort can exist. Rather, our algorithm
produces a topological sort for a spanning tree of the E-
graph. The search begins at the root. DFS proceeds (preferring
lower-index nodes when possible) until it reaches a node
whose neighbors are all already in the search path or the
ordering. This node is prepended to the ordering and the search
continues from its predecessor. This continues until every node
is in the ordering.

Execution iterates through this ordering and executes each
node one-by-one. We will refer to this as one pass through
the E-graph. On reaching the end of a pass, execution begins
again from the root. During the first pass, the out-edges
of nodes that have not yet been executed do not have any
individuals to send to their target node. This happens at any
edges {(u, v)|uindex ≥ vindex}. We call these backwards
edges, and they serve as the random initialization for the
search. As an example, the loop with weight 26 in Fig. 1
is a backwards edge. The E-graph’s ordering is designed
to minimize the number of such backwards edges. Prior to
the first pass, these edges are filled with randomly-initialized
individuals according to their weight. The root may also have
no incoming edges, in which case it will randomly initialize
a number of individuals equal to the maximal edge weight in
the E-graph, then execute as normal.

D. Representable Algorithms

This methodology can represent several different canonical
types of EAs. Since the E-graph is guaranteed to have at
least one cycle, execution can be continued indefinitely as
in a typical EA, supporting arbitrary termination criteria.
Traditional (µ + λ)- or (µ, λ)-EAs are trivial to construct.
A cycle consisting of a single node with a loop can act as
a simple hill climber. As the only requirement for inclusion
in the E-graph is to be reachable from the root, there may
be multiple strongly-connected components serving as sepa-
rate evolutionary cycles. They could be entirely disconnected
except for being reachable from the root, essentially forming
parallel searches, or there may be unidirectional flow between
them. These can roughly approximate simple island models.

The ability to represent canonical algorithms is useful since
it can be used to investigate if these standard forms are good
choices for solving a given problem. However, the intent of
this methodology is to search areas of algorithmic space that
have not been considered by the EC community. Notably, for
types of EAs that our methodology can exactly represent,
our search space is a strict superset over that of traditional
parameter tuning, which poses a more difficult search problem
but may permit superior designs. Our methodology has the
potential to produce novel algorithms that behave very differ-
ently from existing techniques. While these may potentially
be superior EAs for specific problems or problem classes,

TABLE I
META-EA PARAMETERS

Name Function Value
µ population size 50,000
λ generation size 5,000

mutation rate probability to mutate 0.5
parent select parent selection algorithm 5-tournament

survival select survival selection algorithm truncation
num nodes number of nodes in each graph 10
max edge maximal weight for a single edge 250

min density min initialization edge density 0.05
max density max initialization edge density 0.4
seg chance prob a node segregates 0.5
shuf chance prob a node shuffles 0.5
cull chance prob a node culls 0.2

Values for selected meta-EA parameters.

they also present an opportunity for insights about overall
EA behaviors. They may contain components that can be
reused elsewhere, or which indicate the usefulness of specific
strategies on that problem class.

E. Meta-EA

A meta-EA is responsible for optimizing these graphs for
performance on a given problem. This meta-EA is based on
a standard (µ + λ)-EA. Our meta-EA is a form of hyper-
heuristic, as it is searching through algorithmic space with
a combinatorial representation. This search necessitates the
inclusion of all the usual representation-specific components
of an EA, namely initialization and variation operators. The
meta-EA uses several parameters, shown in Table I. Values
were selected by manual tuning.

1) Initialization: Each node is initialized with a uniform
random selection of operators and any parameters for the
chosen operators. Each node also has its boolean flags set
to true or false according to configured probabilities. Edges
are generated by the Erdős-Rényi-Gilbert model. Future work
should investigate the impact of different random graph gen-
erators. The weights of each edge are uniform random and
independent. The out-edges for each node are in the same
order as their target nodes in the genotype vector.

After initialization, a repair function is run to ensure the
graph is valid. If the graph has no edges, it adds one between
two random nodes (which may be the same node). Then, if
the E-graph does not already have a cycle, an edge is added
from the last node in the ordering to the root node.

2) Variation: Reproduction during a run of the meta-
EA involves crossover and mutation. After reproduction, the
resulting graphs are repaired, as in initialization.

For crossover, a random choice is made between taking
in-edges or out-edges. Crossover is then conducted normally
on the genotype vectors, using either one-point or uniform
crossover. Nodes are copied along with their incident edges
of the chosen type. That is, if a parent contributes a node
during crossover, and in-edges were chosen to be taken, its
incident in-edges are also taken (or vice versa for out-edges).
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TABLE II
TRADITIONAL EA PARAMETER SPACE

Parameter Possible Values
µ & λa 1, 2, 3, 5, 10, 25, 50, 75, 100, 175, 250,

375, 500, 750, 1000, 1750, 2500, 3750, 5000
mutation rate 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
locus rateb 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

exclusive mutationc false, true
generational false, true

parent select FPS, SUS, Uniform Random,
2-, 5-, 10-, & 25-tournament

survival select Truncation, Uniform Random,
2-, 5-, 10-, & 25-inverse-tournament

recombination Uniform, Whole Arithmetic,
BLX-(-0.25, 0, 0.25, 0.5, 0.75, 1, & 1.5)d

mutation Reset, Creep (with 4 different creep rates)
aThese have the same possible values, but vary independently

bProbability of mutation at each locus in the solution
cWhether mutation replaces or follows recombination

dBlend crossover with each of these 7 possible values for α

Mutation can perform several different operations. Each
of these has a configurable probability, and geometric dis-
tributions are sampled using these probabilities during each
mutation to determine the number of times each operation
will occur. These operations, in the order they are performed,
are: reinitializing a node (with no effect on incident edges);
swapping the positions of two random nodes in the genotype
vector (with a chance of also swapping their incident edges);
adding new edges to the graph; removing existing edges from
the graph; and shuffling the order of out-edges in a random
node. In addition to these operations, there are mutation
operations that are run on each individual node and edge with
configurable probabilities. For edges, their weight is multiplied
by a value sampled from a normal distribution with a mean of
one. For nodes, each flag may be flipped, the chosen algorithm
for each operation may be changed, and parameters for each
algorithm may be changed.

IV. EXPERIMENT

Select functions defined by the BBOB test suite [25] will
serve as benchmarks. We will compare the performance of
EAs optimized for these benchmarks. The comparisons will be
between our evolved graphs versus graphs found by random
search (using the random initialization process for the meta-
EA). We will also perform an exhaustive search over a large
parameter space using a standard (µ + λ)- or (µ, λ)-EA,
to determine if our meta-EA and the graphs it produces
outperform finely-tuned traditional EAs. The traditional EA
parameter space searched through is shown in Table II. Invalid
or redundant configurations were skipped, leading to 153.7
million configurations tested.

For clarity, for the remainder of this paper we will use
the following vocabulary. We will say meta-run to mean
an independent run of the meta-EA or the random search
to generate EAs, whereas just run refers to an independent
run of an EA on a benchmark function, and evaluations are

TABLE III
PERFORMANCE OF META-EA VS RANDOM SEARCH

Benchmark Runs Counted p Algorithm µ σ

f1

150 0.5904 Meta-EA 1371 161
Random 1354 41

135 0.0000 Meta-EA 1112 20
Random 1159 21

f3

150 0.9850 Meta-EA 4998 1462
Random 5003 644

135 0.0000 Meta-EA 2985 347
Random 3623 240

f7

150 0.3045 Meta-EA 3637 979
Random 3874 785

135 0.0005 Meta-EA 1211 158
Random 1340 103

executions of a benchmark function. A meta-run contains
many runs, and each run contains many evaluations.

Each problem instance has a target output value (the global
optimum plus 10−8), and each EA is run until it finds a
solution that reaches that target. Each EA is run 33 times, and
its fitness is the inverse of the mean number of evaluations
taken across its 30 shortest runs1. To save computation, runs
that surpass 5 ∗ 106 evaluations are considered failures, and
an EA that has more than 3 such runs is assigned arbitrarily
poor fitness and not evaluated any further. Each run initializes
a new random problem instance to avoid overfitting.

We use three benchmarks from the BBOB specifications:
5-dimensional Sphere (f1), 3-dimensional Rastrigin (f3), and
3-dimensional Step Ellipsoidal (f7). There were 30 meta-runs
on each benchmark of the meta-EA and the random search,
with five million graphs per meta-run. f1 was chosen as a very
simple problem that encourages rapid convergence. f7 was
chosen as a problem which requires a focus on exploration
and mutation due to having large areas in the search space
with no gradient. f3 was chosen as a more typical problem.

After a meta-run, the 64 best EAs of the five million
evaluated are run 150 times to obtain more robust data for
statistical analysis. As the fitness function used during a meta-
run discarded the worst 10% of runs, our analysis will also
discard the worst 10% of runs unless otherwise noted.

We categorize EAs based on the number of nodes
and number of edges in their E-graph. For each unique
(num nodes, num edges) pair, the best EA seen during each
meta-run is saved, as well as a count of how many EAs had
that number of nodes and edges. This is similar to MAP-
Elites [26], though it does not influence the search during a
meta-run, it is simply for post-hoc analysis. Each of these EAs
is run 150 times after a meta-run, similar to the overall best
EAs. Note that these runs are separate from the runs of the
overall best EAs, meaning values may differ slightly (e.g., in
the following section, tables use different data than figures).

1In the previous paper on this technique [1], it was found that the resulting
graphs had a much lower rate of failure than traditional EAs, but much worse
performance during successful runs. In other words, since even a single failure
was disastrous to fitness, using a simple mean placed an unintended emphasis
on consistency. Discarding the worst 3 runs alleviates this and may help reduce
sampling error by omitting outliers.
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TABLE IV
COMPARISON OF BEST EAS FOUND

Benchmark Algorithm µ σ

f1

Meta-EA 1051 148
Random 1103 155

Traditional 1183 127

f3

Meta-EA 2441 688
Random 3229 777

Traditional 3045 781

f7

Meta-EA 958 214
Random 1172 180

Traditional 1277 876

V. RESULTS

30 meta-runs were conducted with both of the meta-EA and
random search on each of the benchmark problems. Table III
shows measures of central tendency for the average evaluation
count of the best EA found during each meta-run (n = 30).
“Runs Counted” refers to how many runs of each EA are
used during analysis. p-values are from Welch’s t-test. When
considering the 135 best runs, our meta-EA outperformed
random search by a statistically-significant margin: our meta-
EA is, on average, superior to random search in its ability
to produce high-performance graph EAs. This demonstrates
that our graphical representation is conducive to iterative
optimization, and that our meta-EA implementation succeeds
in doing so. When counting all 150 runs, the meta-EA was
indistinguishable from random search; this is not surprising
since the meta-EA was optimizing for performance when
discarding outliers, but it may indicate that EAs could be
optimized for different levels of consistency.

Table IV shows similar measures for the best graph EAs
found by the two algorithm, as well as the best traditional
EAs found by the exhaustive parameter search. As opposed
to Table III, this analyzes the performance of the best EAs
found during the entire experiment (one per method per
problem), discarding the 15 worst runs for each EA (n = 135).
Pairwise Welch’s t-tests show the EAs found by our meta-
EA outperformed the other EAs on every problem (p =
0.0051, 1.5 ∗ 10−16, 1.3 ∗ 10−16, respectively). The EA found
by random search was statistically better than the traditional
EA on f1(p = 7.4 ∗ 10−6), but the difference was negligible
for the f3(p = 0.053) and f7(p = 0.17) EAs. We believe it
is notable that the random search and the traditional search
each produced EAs with lower means on f1 than on f7, while
the opposite is true for the meta-EA. f1 can be rapidly solved
using a very simple EA, whereas f7 can be difficult to solve
due to its landscape having large areas with no change in
fitness. The meta-EA found an algorithm that overcomes the
challenges of this particular problem very effectively.

VI. ANALYSIS

Phenotype maps are generated by selecting the best EA in
each (num nodes, num edges) cell across all 30 meta-runs of
the algorithm. The maps stop at 25 edges in this paper, though
the experiment did not limit graphs to 25 edges. All values
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Fig. 2. Performance of best EAs found by the meta-EA on f1 across 30
meta-runs. Values are the lowest mean evaluations out of all graphs in each
cell, calculated using the 135 best out of 150 runs. Values are log10.
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Fig. 3. Distribution of EAs generated on f1, of 1.5 ∗ 108 generated in total.

are log10. In any graph, (1, 1) may represent either a (µ+1)-
EA or a (µ, µ)-EA, with either recombination or mutation but
not both. The further away from (1, 1), the more complicated
the represented EA. A traditional (µ+ λ)- or (µ, λ)-EA with
both recombination and mutation can be represented as (2, 3),
(3, 3), or (3, 4).

The phenotype map for the meta-runs of our meta-EA on
f1 is seen in Fig. 2. Again, smaller values represent better
performance. The best graph found overall is in (2, 2), though
it behaves as a (µ + 1)-EA with a node serving to seed the
search (structurally similar to Fig. 1, minus the first node).
All of the best-performing graphs on f1 follow this strategy,
which is an intuitive result since the problem is symmetric
and convex. This shows the potential of our methodology to
produce algorithms that exploit characteristics of the under-
lying problem, and shows that (at least in this instance) it
can consistently find such strategies. Notably, such a strategy
was not representable under our old representation [1]. Fig. 3
shows the distribution for the number of graphs generated over
the course of the 30 meta-runs of the meta-EA. Notably, the
amount of graphs generated by the algorithm for each cell does
not correlate very strongly with the fitness of graphs found in
that cell. This could indicate our variation operators may bias
new graphs towards simpler representations.

Perhaps most interesting is the phenotype map for f7 as
found by our meta-EA, seen in Fig. 4. This problem has
large areas in the search space with no gradient. Thus, an
EA must be able to avoid premature convergence in order to
solve this problem consistently. This may explain why very
simple graphs, which performed well on f1, performed poorly
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Fig. 4. Performance of best EAs found by the meta-EA on f7.

here. Conversely, more complicated graphs performed very
well here, even surpassing the minimum evaluations on f1.

VII. CONCLUSION

Our experiments show that our meta-EA is capable of using
a graphical representation to automatically design EAs with
novel evolutionary cycles that can outperform traditional EAs.
Our data also supports the hypothesis that cycles outside of
the traditional design space are worth considering, may offer
advantages over traditional EAs, and can be created (automat-
ically or manually) to exploit problem-specific characteristics.
Our approach can be utilized alongside or in lieu of traditional
parameter tuning, leveraging a priori computation to find high-
performance graphical EAs that can be reused indefinitely.

VIII. FUTURE WORK

Further analysis on trends in the graphs found by the meta-
EA could discover commonly-occurring patterns. The trend of
using complex seeding strategies before entering a (µ + 1)-
EA-style cycle was noted on f1, but other recurring strategies
may exist. In addition, other dimensions in the design space
(besides the number of edges and nodes in the E-graph) may
offer more insight into the fitness landscape.

Further improvements to the representation may be made,
namely in improving the variation operators so as to not
bias so heavily towards simple graphs. Different random
graph generators for initialization may also improve the meta-
EA’s performance. We also believe that the use of memetic
optimization on numeric parameters could improve the per-
formance of generated EAs.
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