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Abstract—The fusion of inertial and visual data is an effective
approach to human motion analysis, with applications in areas
such as sports or rehabilitation exercise monitoring. Employing
wireless, low-cost, external inertial sensors and a built-in camera
on mobile devices provides a convenient acquisition system,
available for wide range of potential users. In order to take
advantage of both data modalities, robust time synchronization
is required. We consider consumer-grade devices, for which direct
access to internal clocks is not available and only high-level API
is provided. At the same time, we aim to avoid event-based
synchronization that would require additional user actions. We
investigate sources of acquisition errors on mobile devices, and
then we propose and evaluate a novel synchronization method
for inertial and visual data. Experimental results indicate that
the proposed method provides robust synchronization.

Index Terms—IMU, video, synchronization, mobile, multi-
modal

I. INTRODUCTION

Multi-modal human motion analysis is a useful tool for
assisting sports training, recognition of daily activities, immer-
sive gaming, medical diagnosis, and facilitating rehabilitation
[1], [2]. Fusion of data from cameras and inertial measurement
units (IMU) is often very beneficial for analyzing different
aspects of human motion [3]. Sophisticated setups with ad-
vanced measurement systems provide accurate pose estimation
[4], however, their use is limited to laboratory settings or
professional applications. On the other hand, low-cost IMUs
have become popular [5], while at the same time, the latest
developments in deep learning allow obtaining accurate pose
estimation from RGB videos using built-in cameras on mobile
devices [6]. Combining low-cost IMUs and mobile cameras
has the potential for making multi-modal motion tracking
available for a wide range of users. One of the crucial problems
in such a scenario is providing a reliable synchronization
procedure in order to effectively combine information from
both modalities. Professional motion capture systems use ded-
icated synchronization protocols, however an acquisition setup
including multiple consumer-grade, multi-vendor devices is
limited in this regard by available APIs, which rarely include
low-level access required for precise clock synchronization.
Event-based synchronization is sometimes used for combining
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data from different devices [7], however, it requires additional
actions from users, which is neither convenient nor very
reliable without supervision.

In this work, we consider a setup consisting of a single
mobile device, and up to five external IMUs, connected
wirelessly. The mobile device records both video data from
a built-in camera, and inertial data streamed wirelessly from
the IMU sensors. The setup is to be used for analysing
sports or rehabilitation exercises performed either in sports
classes or at home. Multi-modal signal often provides more
complete information regarding the performed motion, e.g. in
fencing [8]. Our goal is to obtain a precise, fully automatic
synchronization, without requiring additional actions from
users. We propose methods for effective data synchronization,
as well as procedures for the evaluation of different aspects of
both acquisition and synchronization.

II. RELATED WORK

Methods proposed for synchronization of signals from mul-
tiple devices vary significantly depending on specific usage
scenarios and constraints that those imply [3]. In general,
data synchronization is either based on internal clocks or on
detecting common events in each acquired signal. Low-level
synchronization based on internal device clocks and dedicated
protocols is very effective [9], [10], however, it requires low-
level access to the device and communication layer. Therefore
such an approach is mostly used in custom prototype solutions
[11] or in professional motion capture systems such as Vicon'.

When using low-cost consumer-grade sensors low-level
access is usually not available, hence event-based synchro-
nization is often employed. Methods proposed in the literature
vary greatly depending on acquired data modalities. Matching
bright flashes in videos is used to synchronize multiple cam-
eras [12]. Yang et al. propose a method for synchronization
of a global navigation satellite system with IMU mounted on
skiers based on acceleration obtained from both sources [13].
Events in acceleration signals are also used to synchronize
wearable motion capture and EMG measurement systems [7].
Wang et al. propose synchronization of EMG, EEG, and IMU
signals using an additional force sensor [14]. Another approach
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to synchronization is to take advantage of corresponding
events from IMUs and pressure sensors [15].

Using mobile devices for multi-modal data acquisition has
practical value, however, it introduces additional problems
related to the mobile operating system, in particular delays
in delivering data events. Feng et al. propose a method for
synchronizing inertial and video signals from built-in IMU
and camera on a single mobile device [16]. Evaluation of syn-
chronization is yet another issue and often requires additional
devices. Controlled light flashes can be used for verifying
visual sensor synchronization [17]. In another study, authors
employ a dedicated rotating device to evaluate angular velocity
measured by both camera and IMU [18].

In contrast to the previous works, we consider a scenario
in which multiple low-cost external IMUs are connected
wirelessly to a mobile device, while video data from a built-in
camera are recorded simultaneously. As a design choice, we
avoid using event-based synchronization (except for the evalu-
ation of the proposed method). To the best of our knowledge,
for such setup, no results for synchronization procedures have
been presented in the literature so far.

III. METHODS

Our setup consists of up to five external IMUs connected
via Bluetooth 5.x to an Android smartphone with a built-
in camera (see Fig. 1). The limitation on the number of
sensors is due to the Bluetooth protocol version. Our goal
is to provide per-frame synchronization of inertial and video
data. The approach proposed in this work is based on several
assumptions regarding employed devices. First of all, we
assume that IMUs are synchronized with each other using a
built-in procedure provided by their manufacturer, as this is
usually the case for low-cost consumer-grade sensors such as
Xsens DOT? or Mbientlab MetaMotion>. Therefore, we need
only to consider the synchronization of data from a single IMU
with video data. That being said, it is worth noting, that the
proposed method could be adapted for synchronizing multiple
sensors as well, as it does not depend on the type of the
signal. Secondly, we assume that IMUs internally acquire data
in proper time intervals and that they provide correct internal
timestamps as well as a packet counter, which can be used to
detect missing packets. Finally, we assume, that the IMUs and
the built-in camera acquire data with the same sampling rate
(60Hz was used in our experiments).

Data from both modalities are recorded on the same mobile
device, hence a common clock for data events is available,
however only through high-level API. The clock indicates only
when a data event is received, not when the data was actually
acquired. We anticipate several sources of acquisition and
synchronization problems when recording inertial and video
data on a single mobile device:

o Bluetooth connection - some data packets may be deliv-

ered with delay due to wireless communication, moreover
some data packets may be missing.

Zhttps://www.movella.com/products/wearables/movella-dot
3https://mbientlab.com/metamotions
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Fig. 1. Multi-modal data acquisition system.

¢ Built-in camera - there is no guarantee that the mobile
camera captures frames in equal time intervals.

o Android operating system - the delay between receiving
data and generating an event in Android API may be
significant. Moreover, it may vary, depending on the
available resources.

o Sampling rate - while we employ devices with the same
nominal sampling rate (60Hz) actual sampling rate of
each device might be slightly higher or lower, which in
longer acquisitions may impact the synchronization.

In order to analyze the impact of the potential sources of
synchronization problems we design specific evaluation proce-
dures. Then, we propose and evaluate methods for multi-modal
data synchronization for our setup.

A. Sampling stability evaluation

First, we measure the stability of acquiring video data with
the built-in mobile camera. We record a view of a stopwatch
running on another mobile device equipped with a 120Hz
display (twice as fast as the camera acquisition rate). We
manually label each frame with a stopwatch value visible in
that frame (see Fig. 2). We perform this procedure using both
standard camera application pre-installed on the phone as well
as with our custom application developed with Android API.
While the standard camera application is used as a baseline for
this evaluation, a custom application was necessary to obtain
the functionality of acquiring timestamps for each video frame,
which in turn is needed for the final synchronization with the
IMU signal.

We use differences in stopwatch values seen on the video
recording to measure actual time intervals between consecu-
tive frames. We compute statistical measures (mean, standard
deviation, median, minimum, maximum) to evaluate the sta-
bility of video data acquisition. Secondly, we employ, in a
similar manner, differences in timestamps recorded with the
custom video recording application to measure the stability of
receiving video data events. Please note, that the timestamps
correspond to Android API data events rather than actual
acquisition time, which may be different.

In the case of inertial sensors, as mentioned before, we
use only a single IMU, as synchronization between IMUs
is handled by their internal software. Data from IMU is
recorded on the mobile device using a modified application
from the manufacturer - we added the functionality of record-
ing Android system timestamps. Similarly, as in the video
recording application, the timestamps correspond to Android
data events rather than actual acquisition and therefore may

773



Fig. 2. Stopwatch recorded with the mobile device camera.

differ from internal timestamps provided by the IMU device.
Internal timestamps have constant time differences, however,
their starting point is arbitrary (resulting from starting the
sensor), hence they can’t be directly compared with video
timestamps. We analyze variability in Android timestamps,
which may be caused both by communication delays, as well
as by the mobile operating system. It is worth noting, that data
received from sensors is preprocessed - we identify missing
packets using the packet counter field provided in sensor
data and recreate them using linear interpolation (including
timestamps).

B. Multi-modal synchronization

Since both video and inertial data are recorded on the same
device, ideally, we would match recorded timestamps to find
corresponding frames in both modalities. However, Android
timestamps do not represent actual acquisition time and their
variability is significant. Therefore, we use matching video and
inertial data frames by closest timestamps only as a baseline
method. To reduce high standard deviation in timestamps, we
perform, as an optional step in all methods, moving average
filtering of the timestamps. Experimentally we choose window
size = 9, as it significantly reduces standard deviation, while
it requires a relatively small time context.

Considering that actual acquisition is much more stable
than Android timestamps, we can select a synchronization
frame and assume constant sampling intervals for other frames.
However, such an approach is prone to errors when we select
a frame with poorly corresponding timestamps and there is no
information available to support selecting any specific frame.
Instead, we employ statistical information extracted from mul-
tiple frames. In our experiments with single frame-based syn-
chronization, we observed that *good’ synchronization frames
occur most often. Therefore, we can compute multiple time
offsets between inertial and video data separately using each
frame as a synchronization frame and then select the median
offset value. However, this approach is not robust to time drift
between modalities, which may occur due to slightly different
sampling rates. Therefore, our final synchronization method
employs windowed median filtering of time offsets. Windowed
median offset is computed for each frame separately. The
length of the filter window is selected experimentally. Due
to employing time windows our proposed method is adaptive
during acquisition.

TABLE I
EXAMPLE OF FINDING CORRECT OFFSET BETWEEN FRAMES OF DIFFERENT
MODALITIES WITH THE PROPOSED METHOD. CONSIDERED FRAME, TIME
WINDOW, AND FINAL COMPUTED OFFSET ARE MARKED IN YELLOW.

IMU Camera
Data Time- Data Time- Closest Median
frame " frame t IMU Offset  offset in
index SMP | jndex SBMP frame window
32 1000 5 1001 32 27
33 1015 6 1020 33 27
34 1031 7 1036 35 28
35 1039 8 1070 37 29
36 1061 9 1079 37 28 27
37 1077 10 1087 37 27
38 1099 11 1110 38 27
39 1131 12 1130 39 27
40 1148 13 1142 40 27

Table I presents an example of matching frames from
video data to IMU data with the proposed method. The
example considers a single, arbitrary selected frame, however
the procedure is the same for each frame. In order to find
matching IMU frame for video data frame with index = 9,
we first find the closest IMU frames for several frames in
the selected time window, using recorded Android timestamps.
Then, we compute offsets between indices of IMU and video
frames. Finally, for selecting the corresponding IMU frame,
we use median offset in the time window (27), instead of
baseline offset (28) computed using single frame. By adding
the computed offset (27) to the video data frame index (9) we
select IMU frame with index = 36. For brevity, in the example,
we use window size = 7, however, actual window size is much
larger (see Section IV-B).

C. Synchronization evaluation

In order to evaluate the proposed method, we employ
event-based synchronization to obtain ground truth for test
recordings. The evaluation procedure is as follows. We put
the IMU on a flat surface and then every few seconds we
apply a small force for a short time (a single push). This is
recorded by the built-in mobile camera. Each push event is
easily identifiable in both the IMU signal (acceleration peak)
and video signal (sensor movement). We manually label push
events in signals from both modalities, therefore obtaining
ground truth synchronization for selected frames.

IV. EXPERIMENTS

For experiments, we employ Xsens DOT sensors and
Samsung Galaxy AS52s Android mobile device. For video
stability acquisition evaluation we also use the Xiaomi POCO
F3 smartphone as a second device. Five IMUs are used in
experiments regarding resource usage on mobile device. One
IMU is used in synchronization experiments, as all IMUs are
synchronized with each other by their internal software.
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TABLE II
STATISTICAL MEASURES OF TIME INTERVALS IN VIDEO DATA AND VIDEO
TIMESTAMPS (MILLISECONDS)

Device Source Mean Median SD Min Max
Samsung | Standard app.  16.71 17 2.01 6 33
Galaxy Custom app 16.80 17 2.02 13 33
Timestamps 16.69 16 4.74 5 38
Xiaomi Standard app.  16.64 17 1.18 14 27
POCO Custom app. 22.09 18 8.28 14 50
Timestamps 22.05 22 2.60 16 31

TABLE III

STATISTICAL MEASURES OF TIME INTERVALS IN ANDROID TIMESTAMPS
FOR INERTIAL DATA (MILLISECONDS)

IMUs Active app. Mean Median SD Min Max
1 IMU record. 16.66 26.00 14.83 0 92
Video preview  16.67 26.00 14.59 0 93
Video record. 16.66 24.00 14.05 0 91
5 IMU record. 16.67 28.00 15.02 0 89
Video preview  16.67 26.00 14.02 0 89
Video record. 16.66 26.00 14.19 0 88

A. Sampling stability evaluation

The first experiment considers the evaluation of the stability
of video acquisition and the stability of recording Android
timestamps for video frames. For each test case, four-second
video (approx. 240 frames) of running stopwatch was recorded
and manually labeled with stopwatch values. Table II presents
a statistical evaluation of time intervals measured for video ac-
quisition, using both standard camera application and custom
video recording application, as well as for timestamps recorded
with Android APIL In the case of Samsung Galaxy, we can
observe that the mean time interval between frames (16.71
ms) is close to expected (16.67 ms due to 60Hz sampling).
However, standard deviation (SD = 2.01 ms), minimum value
(6 ms), and maximum value (33 ms) indicate that acquisition
is not always stable. Both recording apps have similar stability,
however, timestamps are much more unstable than actual
acquisition (SD 4.74 ms vs. 2.01 ms and 2.02 ms), due to
the Android event system. In the case of Xiaomi POCO
stability of video data acquired with the custom application
is much worse than that of the standard application (SD
8.28 ms vs. 1.18 ms) which indicates that the manufacturer’s
camera application probably uses custom hardware functions
not available in Android API. Xiaomi POCO is not used in
further experiments. Fig. 3 depicts time interval variability for
Samsung Galaxy. Custom application and timestamps plots are
for the same recording, however, we can observe that changes
in time intervals are not aligned, which indicates that delays
introduced by the Android event system are independent of
actual camera acquisition. Filtered timestamps, obtained with
a moving average with window size = 9, have much less
variability (SD = 0.75 ms).

In the case of IMUs, we evaluate Android timestamps
stability with regard to the number of active sensors (1
or 5) and which mobile application is in foreground (IMU
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Fig. 3. Measured time intervals for video frames and timestamps (Samsung
Galaxy).
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Fig. 4. Time intervals based on Android timestamps acquired for inertial and
video data (both plots represent the same recording).

recording application, camera application in preview mode,
camera application in recording mode) in order to study the
impact of resources usage. Results are presented in Table III.
We can observe that using either 1 or 5 sensors has no impact
on stability. Interestingly, timestamps are slightly more stable
when the IMU recording application is in the background
rather than the foreground. Simultaneous video recording has
no negative impact. In Fig. 4, in the upper plot, we can observe
very high variability in Android timestamps for inertial data,
which is in turn greatly reduced when a moving average filter
is applied (SD = 0.69 ms). In the lower plot, we can see that
the variability of corresponding video timestamps for the same
recording is independent of IMU timestamp deviations.

B. Synchronization evaluation

Proposed synchronization methods were evaluated using the
protocol described in section III-C. Four test sequences were
acquired, each approx. 30 seconds long, with 15 push events
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TABLE IV
EVALUATION RESULTS FOR SYNCHRONIZATION METHODS, VALUES
PRESENTED IN FRAMES (T. FILT. DENOTES TIMESTAMP FILTERING WITH
MOVING AVERAGE)

Method T. filt. Mean Median SD Min Max
Baseline No 0.81 1 2.20 -14 3
Yes 0.71 1 2.16 -14 3
Single sync. No -0.16 0 0.74 -1 3
frame Yes -0.16 0 0.74 -1 3
Median offset - No 0.10 0 0.71 -1 3
all frames Yes 0.10 0 0.71 -1 3
Median offset - No 0.05 0 0.66 -1 3
time windows Yes 0.03 0 0.65 -1 3
'5 100 4 \-\»/—ﬁw,\,(\/\\ [&——-—-\.\
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Fig. 5. Shoulder angle estimation in yoga exercise based on pose estimation
in video data and rotation provided by IMU mounted on the person. Signals
are synchronized with the proposed method.

per sequence, manually labeled in video and inertial data.
For the windowed median synchronization, window size =
500 was selected experimentally. Results in Table IV contain
aggregated results from all sequences. We can observe that the
baseline method (finding closest timestamps) performs poorly,
due to high variability in Android timestamps. Employing
single synchronization frame yields better results, however, it
depends on being lucky with selecting the frame. The median
of time offsets computed for all frames provides a further im-
provement, however, this approach does not take into account
possible time drift between data from two modalities. Finally,
the median time offset computed in time windows yields
the best results, particularly when used jointly with moving
average filtering of timestamps. One additional experiment was
performed as a proof-of-concept for a practical application of
the proposed methods. Fig. 5 depicts shoulder angle during
yoga exercise, measured with automatic pose estimation from
video (using BlazePose model [19]) as well as with rotation
provided by sensor fusion algorithm built in Xsens DOT
device. We can observe that the proposed synchronization
method enables multi-modal motion analysis.

V. CONCLUSIONS

We identified and evaluated several sources of problems
in the synchronization of external IMUs and built-in camera
on a mobile device. Based on our experiments, we conclude
that the most problematic aspect is the unstable delivery of
data events from the mobile operating system. Timestamps
recorded with data events have significant variability and do

not correspond to actual data acquisition times, which makes
synchronization difficult. However, we were able to employ
a statistical approach to obtain effective synchronization by
using information from multiple frames. Our experiments
confirmed, that the proposed method provides good matching
of IMU and video frames. Also, it does not require any actions
from the user, as is the case with event-based synchronization
methods, which makes it convenient to use in practical appli-
cations.

It is also worth noting, that while in our experiments we
specifically used IMUs and a camera, the proposed method
can be applied to any modalities, as it depends only on the
recorded timestamps, and not on the data itself. The limitations
include sampling rate and missing data frames. The acquisition
from all devices should be performed with the same sampling
rate or the signals need to be interpolated to a common
sampling rate. The signal has to include all frames, otherwise
it must be possible to identify missing frames, usually by using
provided frame numbers. For example, the proposed method
could be used to synchronize multiple IMUs if devices without
internal synchronization were used.
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