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Abstract—This paper considers the adaptation of the e-
coaching concept at times of emergencies and disasters, through
aiding the e-coaching with intelligent tools for monitoring
humans’ affective state. The states such as anxiety, panic,
avoidance, and stress, if properly detected, can be mitigated
using the e-coaching tactic and strategy. In this work, we focus
on a stress monitoring assistant tool developed on machine
learning techniques. We provide the results of an experimental
study using the proposed method.

Index Terms—Affective Computing, E-Coaching, Stress As-
sessment, Deep Learning, Machine Reasoning.

I. INTRODUCTION

The adaptation of e-coaching in terms of the community’s
mental health is an ongoing process [1], [2]. As described
in [3], e-coaching may contribute to a better understanding
of people’s affective responses. Affective computing tech-
nologies may bring real benefits to society by improving
people’s mental health, especially in times of crisis. Some
common symptoms affecting mental health include anxiety,
panic, avoidance, and stress. As an example, we can look at
the COVID-2019 pandemic where COVID-19-related stress
impacted 63 countries and has shown that over 70% of the
respondents had greater than moderate levels of stress [1].
In particular, [1] noted that 59% of the respondents met
the criteria for clinically significant anxiety, and 39% re-
ported moderate depressive symptoms. Global events, such as
climate change and/or armed conflicts, continuously impact
human mental health.

In our study, we suggest that e-coaching should be inte-
grated into a system developed to manage global disaster
events, such as influenza surveillance [4] and epidemic intel-
ligence [5]. This system is known as Emergency Management
Cycle [6]. This is adapted in our study since it provides a
systematic counter-disaster view of e-coaching. The frame-
work proposed in this paper paves the way to a strategic road
mapping for e-coaching technologies in the era of natural and
human-made disasters. This framework is based on the three
technology-society premises.

First premise: E-coaching resources must be integrated
into the standardized four-phase mechanism [6]: prevent,
prepare, respond, and recover phase.

Second premise: When designing the e-coaching com-
ponent, a risk mitigation mechanism should be integrated
into the stress-conditional scenarios which are typical in

pandemics [1]. In other words, the stress detector should
continuously learn the user’s stress pattern in order to adjust
the e-coaching tactic and strategy.

Third premise: Typically, an e-coaching system is viewed
as a network of wearable and wireless sensors. Some of
them can be utilized for stress detection which has tradition-
ally been a part of the affect recognition process. Emotion
recognition or affect recognition includes the detection of
emotional states such as sadness, happiness, and surprise
[7]. Hence, an experiment must be set up in order to
determine what kind of sensors are useful for this purpose.
The measure of usefulness includes performance measures
such as accuracy.

II. RELATED WORKS

In this paper, we propose a two-stage intelligent processing
for the e-coaching system. Two-stage intelligent processing
has previously been used in a variety of works. In [8], fish
classification was performed in two stages: (1) fish images
were segmented into head, scales, and body with the features
from each segment extracted via a deep learning network, (2)
a Bayesian network served as a feature fusion tool, combining
the features from each segment. An efficient combination
of these computational intelligence techniques was reported
in [9] for context awareness in autonomous robots (deep
profiling environmental sounds aimed at the improvement of
context recognition). In [10], video sequences are processed
using deep learning of frames with Bayesian inference of
depth estimates between different time frames. Paper [11]
reports the results of regular inspection videos for identifying
cracks in nuclear power plant components using a deep
learning approach and Bayesian network.

III. TWO-STAGE E-COACHING TECHNOLOGY

The proposed e-coaching system is composed of two-stage
intelligent processing, as seen in Fig. 1, with the following
purposes:

• Stage I: Deep Profiling is aimed at gathering physio-
logical information from a subject for human decision-
making.

• Stage II: Reasoning is aimed at supporting the human
decision-maker via machine reasoning.
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Fig. 1. Illustration of two-stage processing of intelligent tools.

IV. STAGE I: DEEP PROFILING

In this section, we describe the experiments for the first
stage of intelligent processing explained in Fig. 1. In our
experiment, we adopted the concept of continuous stress
monitoring for first responders [12] for e-coaching users.

The public-centric and occupational stresses have tradition-
ally been differentiated in terms of their detection, monitor-
ing, and responses. Occupational stresses have been described
in the standards for decision support [13]. A Wearable
Sensor Network is a preferable tool for stress detection and
monitoring [14] in the workplace and occupational hazard
monitoring scenarios [15].
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Fig. 2. The core of stress monitoring assistants is the deep learning network
of the Res-TCN architecture. The top portion of the network has a general
design, while the bottom network is built for personalized processing which
provides the subject’s identity information which improves the model’s
performance.

A. Measures

To assess the classification algorithm performance, it is
important to determine the most suitable performance indica-
tors. In the case of balanced data, the traditional measures in-
clude: TP – True Positives (correct predictions of emotion),
FN – False Negatives (incorrect predictions of emotion),
TN – True Negatives (correct rejections of emotion), and
FP – False Positives (incorrect predictions of emotion).

These measures form a 2×2 confusion matrix and are used
to derive accuracy, recall, precision, and F1-score [16]. We
selected accuracy and F1-score for evaluating performance:

Accuracy =
TP+TN

TP+FN+TN+FP

F1-score = 2× Precision× Recall

Precision+ Recall

where Recall (also known as sensitivity) represents the
system’s ability to detect a specific emotion, Recall =
TP/(TP+FN), and Precision (also called positive predic-
tive value) is the system’s ability to be correct on a predicted
emotion: Precision = TP/(FP+TP).

Accuracy reflects the number of correctly classified pat-
terns among the samples, and, thus, it is a probability of
success in recognizing the right class of an instance. How-
ever, in the case of highly imbalanced datasets, the accuracy
measure is misleading. A classifier that is very effective in
predicting the majority class but misses most of the minority
classes may easily have very high accuracy [17].

The F1-score is a weighted average (harmonic mean) of
precision and recall rates, representing the system’s balanced
ability to detect a specific emotion correctly. The F1-score
reaches 1 at perfect precision and recall, and 0 at the worst
of both [16]. This measure provides a way of combining the
recall and the precision in order to capture both.

B. Choosing a deep learning network

For analyzing emotional states, we chose the Temporal
Convolutional Network (TCN), and Recurrent Neural Net-
work (RNN). The TCN offers a solution to quickly learn
patterns from time-series data; it consists of a series of causal
1D convolution layers optimized for sequential data. It was
used for the classification of stress [18] and early predictions
[19]. In our work, the TCN is chosen for the task of emotion
classification because of the following reasons:

1) Classification task: Since the goal of this paper is to
perform emotion classification and not image generation, the
GANs are not suitable.

2) Time-series data: Our input data are physiological
signals such as ECG which are time-based data points, the
TCN and RNN are best for such data types.

3) Time complexity: Due to the nature of convolution in
TCN, the process is consistent and easier to parallelize, as
opposed to RNN which requires the previous step to be
finished before performing the next operation.

4) Memory: The TCN requires much less memory (pa-
rameters) compared to RNN when processing the long input
sequences. In addition, the TCN can obtain a specific recep-
tive field based on the number of residual blocks, while the
RNN always uses the maximum length of the sequence.

V. STAGE II: REASONING

In Section IV, deep learning tools were used for stress
continuous monitoring. This is the first stage of intelligent
processing. The goal of the second stage is to interpret these
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results using intelligent reasoning tools. Causal reasoning is
a judgment under uncertainty performed on a causal network
[20]. In this section, we provide two experiments using causal
networks.

A. Causal networks

A review [21] describes the various types of causal net-
works that are deployed in machine reasoning, e.g., Bayesian,
imprecise, interval, credal, fuzzy, and subjective networks. In
our study, among various causal networks, we have chosen
to use Bayesian causal networks. Our motivation for this
choice is driven by the fact that the Bayesian (probabilistic)
interpretation of uncertainty provides acceptable reliability
in decision-making. A Bayesian network is defined as a
causal network with Conditional Probability Tables (CPTs)
representing point probability measures.

Fig. 3 illustrates a basic causal network containing six
parent nodes (representing each of the body sensors) and one
child node representing the fusion of separate predictors.
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Fig. 3. Causal network with parent nodes being the stress predictors and
the child node as a fusion of the predictors.

B. Structural Equation Modeling

In order to validate the relationship strength between each
node in the constructed causal network, we use Structural
Equation Modeling (SEM). In this paper, we used Semopy
[22] to perform structural model analysis. The objective
function used in the SEM is the likelihood function and the
optimization method is Sequential Least-Squares Quadratic
Programming. Fig. 4 illustrates the estimated parameter and
p-values between the sensor nodes and the fused node. The
circular node represents the latent variable and the rectangles
represent observed/measured variables. In this paper, we are
able to measure the performance of each sensor, reported
in terms of accuracy and F1-score. When every sensor is
fused together, the final prediction of stress is dependent on
the prediction result of each sensor. Through SEM, we can
evaluate which sensor provides the most beneficial prediction
of stress.

The regression coefficients in Fig. 4 indicate a strong
relationship to the performance of the classification accuracy
in Table II. We observe that the sensors providing the lowest
accuracy such as EMG also have much lower estimated
values. This indicates that specific sensors, such as EDA,
EMG, and Temp are not suited to be used, specifically intro-
ducing these sensors into the fused results may decrease the
combined performance. The ACC, ECG, and Resp sensors
with estimated values of 1, 1.372, and 1.925, respectively
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Fig. 4. SEM for personalized prediction of stress using chest sensors. The
values on the arcs represent the regression coefficient and its corresponding
p-value. The regression coefficients measure the change between each node
and the p-values are probabilities used to describe how likely the null
hypothesis is true.

provide the best data for personalized prediction of stress.
Thus, the edge weights can be manually altered to focus on
better-performing sensors instead of assigning equal weights
among all sensors.

VI. EXPERIMENTAL RESULTS

In our experiment, we assume the availability of physio-
logical signals supplied by the Wearable Sensor Network,
e.g., ECC, EDA, BVP, etc. In our study, we divide the
stress states into Yes (high level) or No (low level), as
well as the stress state is recognized among other emotional
states. The primary goal of our experiments is to demonstrate
that continuous stress monitoring in e-coaching has been
advanced from the category of a ’working idea’ to the
category of ’prototyping’.

A. Dataset

In modeling, in general, synthetic data should replicate the
real data as closely as possible, the sample sizes must satisfy
the criteria of statistical significance, and a standard protocol
must be followed in order to guarantee the repeatability of
the experiment. A dataset that partially satisfies the above
requirements is the WESAD dataset, Multimodal Dataset for
Wearable Stress and Affect Detection by Schmidt et al. [23].

The WESAD dataset was collected from 17 participants,
each wearing seven sensors (ACC, ECG, BVP, EDA, EMG,
RESP, and TEMP). For each signal, different partition is
labeled by one of the four different affective states: neutral,
stressed, amused, and meditated. There are four different test
scenarios: normal, amusement, stress, and meditation. The
neutral scenario lasted the first 20 minutes: the participants
were asked to do normal activities such as reading a magazine
and sitting/standing at a table. In the amusement scenario,
the participants watched 11 funny video clips for a total
length of 392 seconds. The stress scenario required the
participants to perform public speaking and arithmetic tasks
for a total of 10 minutes. The last scenario involved a guided
meditation session of 7 minutes in duration. The ground truth
labels for the affect states were collected using the Positive
and Negative Affect Schedule (PANAS) scheme [24], upon
completion of each trial.
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B. Experiment I: Identification of a stressed user in the e-
coached team

In this paper, we deploy the analysis of physiological
signals in order to detect and identify the level of stress.

Before analyzing the personalized data, we must determine
whether the provided data can be used for subject identifi-
cation, that is, given a sample of accelerometer data, can we
identify the subject? This is a vital task for personalized stress
detection as it links subjects to their corresponding stress
levels. In Table I, we report the accuracy and F1-score of
using various physiological signals for subject identification.
In this table, the performance is reported for 10 modalities,
including 6 signals from the chest region and 4 from the
wrist region. The performance measures are calculated using
10-fold cross-validation.

Observation 1 (Highest performance): The highest per-
formance is obtained via the RESP signal collected from the
chest region with an accuracy of 99.84%. The next highest-
performing signal is the BVP signal collected from the wrist
region with an accuracy of 99.60%.

These results suggest that it is possible to recognize the
identity of the sensor wearer given these two types of signals.
The least useful descriptors are the TEMP signal from both
the chest and wrist sensors. Analysis of the best and worst
contenders confirms a hypothesis that the more specialized
the signal, the better it is for subject identification. Signals
that provide common data such as temperature do not offer
much for subject identification.

TABLE I
E-COACHING SCENARIO: SUBJECT IDENTIFICATION PERFORMANCE (%

± STANDARD DEVIATION) USING PHYSIOLOGICAL SIGNALS

Modality Accuracy F1-score

Chest

ACC 88.47 ± 2.05 88.51 ± 2.02
ECG 97.37 ± 1.44 97.38 ± 1.41
EDA 60.28 ± 2.45 57.09 ± 2.77
EMG 20.11 ± 4.30 13.68 ± 4.81
RESP 99.84 ± 0.10 99.84 ± 0.11
TEMP 19.15 ± 1.68 11.04 ± 2.73

Wrist

ACC 96.92 ± 0.71 96.92 ± 0.71
BVP 99.60 ± 0.19 99.60 ± 0.19
EDA 51.08 ± 2.75 47.65 ± 3.67

TEMP 24.03 ± 3.35 18.87 ± 3.66

C. Experiment II: Stressed e-coaching classification

Once the identity of the wearer is determined, the next step
is to perform the general and personalized emotion classifica-
tion. This is implemented in this paper via leave-one-subject-
out cross-validation. This form of cross-validation evaluates
the performance of the system when one specific subject’s
data is never seen by the machine-learning model. The
purpose of such evaluation is to analyze the system response
to unknown data. The personalized emotion classification
is then done via 10-fold cross-validation. 10-fold cross-
validation measures the performance of the system when
each subject’s data is partially shown to the machine-learning

model. This validation procedure reports the result when the
user knows the identity of the subject.

TABLE II
E-COACHING SCENARIO: EMOTION CLASSIFICATION PERFORMANCE (%

± STANDARD DEVIATION) USING PHYSIOLOGICAL SIGNALS: (A)
GENERALIZED AND (B) PERSONALIZED

Generalized Mode Personalized Mode
Mod. Accuracy F1-score Accuracy F1-score

Chest
ACC 71.2 ± 13.2 66.6 ± 15.7 84.7 ± 3.8 85.2 ± 3.5
ECG 72.7 ± 13.4 68.4 ± 16.9 92.6 ± 5.7 92.6 ± 5.6
EDA 68.6 ± 20.5 64.1 ± 24.6 60.3 ± 1.8 62.0 ± 1.6
EMG 67.9 ± 11.7 58.9 ± 14.3 56.0 ± 1.4 44.9 ± 4.1
RESP 82.9 ± 9.2 81.4 ± 9.4 99.8 ± 0.1 99.8 ± 0.1
TEMP 75.0 ± 10.3 67.7 ± 11.6 56.8 ± 0.8 47.0 ± 2.7

Wrist
ACC 73.74 ± 16.6 72.4 ± 17.4 97.3 ± 0.5 97.4 ± 0.5
BVP 76.0 ± 10.4 72.5 ± 12.6 99.6 ± 0.2 99.6 ± 0.2
EDA 67.5 ± 18.2 63.8 ± 18.9 65.5 ± 4.0 66.0 ± 4.1

TEMP 59.2 ± 7.1 46.3 ± 11.1 54.6 ± 1.3 42.5 ± 4.6

Table II reports the emotion classification performance for
(a) generalized mode and (b) personalized mode. For each
mode, 10 different signals are used for emotion classification,
including the accelerometer data, the temperature of the
chest, blood volume pulse rate, and electrodermal activity
signal measured at the wrist.

Observation 2 (Resp- and BVP-centric monitoring): In the
general mode, the best-performing signal is respiration (Resp)
and BVP for the chest and wrist, respectively.

Observation 3 (Comparison): An interesting note is that
these results coincide with the identification results. The
biggest contrast between Table I and Table II(a) is that the
TEMP signal performs much better at emotion classification
than subject identification. In the personalized mode, it is
once again the RESP and BVP signals that offer the highest
performance with an accuracy of 99.8% and 99.6% for the
sensors located at the chest and wrist, respectively.

Observation 4 (RESP-centric monitoring): For the RESP
signal, the general mode is characterized by an accuracy of
82.9%. This is boosted to 99.8% if the identity of the wearer
is known.

Observation 5 (TEMP-centric monitoring): TEMP signal
recorded using the chest sensor shows an accuracy of 75.0%
in the general mode, and the accuracy decreases to 56.8% in
the personalized mode.

Signals that provide unique features that can be used for
identification can also be used to boost the performance of
emotion classification. When there is an absence of iden-
tifiable features, the emotion classification performance is
detrimentally impacted.

Observation 6 (Comparison): Comparison between the
different signals provides further conclusions. In particular,
accelerometer data is a common signal collected by wearable
devices and smartphones, while physiological signals such
as ECG are not as readily available on smartphones. When
we compare the performance between ACC data and other
physiological signals, we implicitly compare the performance
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of the sensor devices. Specifically, the usage of accelerometer
data achieves accuracies of 84.7% and 97.3% for the chest
and wrist sensors, respectively, as shown in Table II.

This performance is comparable to the best-performing
signals, Resp, and BVP. There is a greater disparity in
performance between the Chest-ACC and Chest-Resp, as
opposed to the Wrist-ACC and Wrist-BVP. This is most
likely the result of accelerometer data being more useful near
the hand as opposed to the chest which has a lower degree
of movement.

D. Experiment III: Stress inference

In this experiment, we show how a causal network can
be used to estimate the expected prediction from a machine-
learning model. Accuracy measures the relative performance
of the system, e.g., how many predictions rendered by the
machine-learning model are correct compared to the ground
truth. Fig. 5 illustrates the process of populating the CPT for
node R in the BN shown in Fig. 3, using the results of class
prediction from a machine-learning model.

Machine
Learning
Model

Class Prediction

Populate 
Probability Table

Amusement
Stress

Baseline
RESP

R

55.99

30.44

13.57

0 20 40 60

Baseline

Stress

Amusement

Fig. 5. Emotion class-based CPTs population. CPTs are created using the
emotion class predictions provided by the machine-learning model.

The machine-learning model predicts one of three emo-
tional classes for each test sample, and the prediction statis-
tics for all test cases are collected to generate a discrete
distribution for each sensor. This distribution shows what
emotion class each sensor will predict, on average, given a
random sample. For example, given 100 samples, 59 of the
samples are predicted, by the accelerometer node (ACC), as
a baseline, 26 as stress, and 15 as amusement.

This BN can be used for diagnostics or inference, as
shown in the next sections. For example, given an observation
that EDA is ‘baseline’, ACC is ‘stress’, and the subject
(‘Fused’) is reported to be ‘Baseline’ (B), through inference,
the probabilities for the RESP node are as follows: 61.98%
baseline, 26.24% stress, and 11.78% amused.

Machine
Learning
Model

Predicting
Stress

Confidence Level

Populate 
Probability Table

0            9 ACC
A

37.67

11.37
10.59

8.64

8.57

1.73 1.51
2.393.26

14.27

0 1 2 3 4 5 6 7 8 9

StressNo-Stress

Fig. 6. Stress distribution-based CPT population. CPTs are generated using
the stress confidence levels from the output of the machine-learning model.

Observation 7 (Amusement monitoring): Fig. 6 describes
the CPTs populating based on the confidence level for the

stress level predicted by the machine learning model. The
stress confidence level is collected for all test cases and
used to create a confidence distribution for each sensor. Each
distribution acts as a CPT for the proposed BN.

E. Experiment IV: Stress prediction

Fig. 7 further adjusts the causal network to account for the
distribution of a specific emotion, specifically the confidence
or strength in the prediction of the stress emotion. For each
node in the network, the x-axis represents the confidence of
the classifier in prediction where 9 indicates high confidence
in detecting stress, 0 indicates high confidence in the absence
of stress, and 4-5 indicates that the classifier is not confident
in either decision. The distributions in each node report on
average what to expect. This is different from accuracy which
indicates on average whether a random prediction is correct.
For example, consider using the Temperature node (Temp)
as a predictor: given 100 samples, 33 samples indicate very
high confidence (0) in no-stress, 8 samples render medium
confidence (4) in no-stress, and 20 samples suggest high
confidence (9) in stress.

Observation 8 (ECG and Resp-centric monitoring): The
relative strength of stress levels for the ECG and Resp sensors
tend to be close to either 0 or 9. This observation indicates
that both of these sensors are highly confident predictors
of no-stress or stress. The overlapping regions between the
stress and no-stress decisions are minimal, thus providing
two separate distributions.

VII. CONCLUSIONS

This study represents the first attempt to design the e-
coaching that counts for EMC projections. Four pillars,
i.e., prevention, preparedness, response, and recovery, pro-
vide strong systematic requirements for e-coaching during
times of emergencies. The mental state of e-coaching users
became a factor of critical importance. In previous works
on e-coaching, researchers were able only to hypothesize
about psychological factors. Nowadays, evidence has accu-
mulated confirming that the stress of the e-coached users is a
powerful factor impacting the e-coaching tactic and strategy.

Our key recommendation to the designers of the e-
coaching systems is to include the following mandatory
mechanisms:

1) Taxonomical view, i.e., e-coaching should be consid-
ered as a component of EMC surveillance.

2) Continuous stress monitoring, i.e., e-coaching tactic,
and, consequently, strategy, must be adjusted once the
user’s stress state is detected.

We presented a core idea involving two stages of intelligent
processing using deep learning and machine reasoning. Deep
learning techniques are used to recognize mental states such
as stress. Machine reasoning provides graph-based models
that represent the joint distribution of the involved variables
such as each sensor’s prediction accuracy provided by the
machine learning. It also embodies a fusion mechanism,
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Inference in 0.00ms

Fig. 7. Stress distribution-based BN example generated using the PyAgrum library.

thus, representing each sensor’s contribution to the combined
system-level decision. These two tools work hand-in-hand,
with machine learning providing each separate variable (sen-
sor) classification accuracy distribution, and machine reason-
ing for combining those in a joint distribution. Together, these
processes can be applied in many different areas including
stress monitoring for e-coaching.
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