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Abstract—As the distributed energy resources (DERs) 

increasingly penetrate the unbalanced distribution network, it 

becomes challenging to accommodate such penetration 

technically and economically. Therefore, this paper tackles an 

optimal allocation of PV systems (locations and sizes) to 

maximize the penetration while minimizing voltage violation. It 

is challenging because the problem is a mixed integer nonlinear 

programming (MINLP) problem with non-linear and non-

convex properties. In addition, the network is unbalanced which 

brings burdens on solving load flows. Computational intelligent 

methods, particularly evolutionary algorithms (EAs) have 

proven its efficiency and robustness in large optimization 

problems and thus, this paper explores two EAs on the problem 

with the help of a robust unbalanced load flow algorithm. A 

comparative study is conducted on particle swarm optimization 

(PSO) and artificial bee colony (ABC) based on IEEE 13 and 37 

bus systems. Optimal allocation based on peak hour and day-

ahead scenarios are considered. After 30 times run, the test cases 

have shown that both EAs are successful and yet ABC generally 

converges to better solution and yet with larger statistical 

deviations on solutions. 
 

Keywords— Artificial bee colony; Distributed energy 

resources; Evolutionary algorithms; Particle swarm optimization 
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I. INTRODUCTION 

The high penetration of distributed energy resources 

(DERs) into distribution network has positive impacts on 

environment, system reliability and flexibility, and yet it also 

brings challenges from operation and planning perspectives. 

Today, the distribution network has become more active in 

the sense of exchanging energy, decentralized control locally 

in nearly real time, and due to the continuously developing 

distributed energy resource (DER) technologies and 

information and communication technologies (ICT) [1]. The 

IEEE 1547-2018 standard has come out to assist the high 

penetration of DERs in 2018, which also indicated a new era 

for DERs planning and management [2]. Photovoltaic (PV) 

system is one of the popular DERs to be considered by 

planners, thanks to its flexibility, scalability, low operational 

costs, and mitigation of demand peak [3]. Yet PV systems can 

also bring challenges, and one major challenge is that it can 

cause rapid voltage changes on the network, especially during 

sudden changes in solar irradiance. Maintaining voltage 

within acceptable limits becomes a challenge. Thus, optimal 

allocation, regarding PV systems’ location and size, is critical 

for planners.  

Distribution power flow was not invented until 1990s [4] 

and it’s the fundamental tool to ensure the allocation of DERs 

will not violate operating limits such as node voltage and line 

current flow. Newton Raphson method is widely used in 

transmission network and adopted to distribution network 

recently [5]. Yet the computational cost is high due to 

inversion of Jacobian matrix in each iteration. Another 

popular well-known method, backward/forward sweep, is 

proposed in early 90s for balanced network [4].  One of the 

obvious drawbacks is that it only fits for balanced network. 

In this work, a simple yet efficient fixed-point method is 

adopted to tackle 3-phase unbalanced load flow. The fixed-

point method models power conversion elements (generators, 

loads) as Norton current equivalent circuits such that node 

voltages can be solved iteratively with constant system 

admittance matrix. In other words, the matrix inversion is 

calculated only one time and it can solve very unbalanced 

network [6]. Details are explained in Section II. 

The PV allocation problem essentially becomes a mixed 

integer nonlinear programming (MINLP), which is hard to 

solve with traditional mathematical approaches. Recently, 

computational intelligent methods have proven its 

effectiveness in complex engineering problems [7]-[9].  

Janamala and Rani [10] implemented a recent meta-heuristics 

Archimedes Optimization Algorithm (AOA) to solve the 

optimal allocation problem. This work explores the two well-

known EAs, artificial bee colony (ABC) and particle swarm 

optimization (PSO), to demonstrate their effectiveness.  

In all, the contributions of this paper are: 

1) The paper formulates a PV allocation optimization 

problem whose objective is to maximize PV systems 

penetration while not violating operating limits. 

2) A simple yet efficient fix-point method is 

implemented to solve unbalanced power flow to 
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embrace the 3-phase unbalanced feature in 

distribution network.   

3) A comparative study is conducted between ABC 

and PSO to demonstrate the effectiveness of EAs in 

complex MINLP.  

The paper is organized as follows: Section II formulates 

the PV allocation problem and then followed by fixed-point 

method. Section III describes the methodology and 

implementation of ABC and PSO. Section IV presented the 

case study with two EAs and comparative analysis. Finally, 

Section V concludes the paper with recommendation for 

future works. 

II. PROBLEM FORMULATION 

The PV system allocation problem is first introduced in 

this section, which is modelled as MINLP and then followed 

by the iterative load flow method. 

 

 

A. PV Allocation 

Figure 1 illustrates an overview of high PV system 
penetration into an unbalanced distribution network. It 
indicates that there are MW-scale, commercial and residential 
types of PV systems and the power flow is bidirectional. The 
PV allocation problem is to find the optimal location and 
sizing of PV systems to minimize voltage violation while 
maximizing power injection subject to certain equality and 
inequality constraints. The mathematical form is expressed as 
followings: 

       

 min ( )f u                          (1a) 

 ( , , ) 0g u x y                      (1b) 

 ( , , )h u x y                       (1c) 

where u is the control variable including PV locations and 
size, x is the state variable/dependent variable including 
voltages and angles at each bus, y is the known network 
parameters such as network resistance, impendence, device 
rating, etc.; g(٠) is the inequality constraints which include 

line flow limit, voltage limit, PV active power injection limit; 
h(٠) is the equality constraints which is the power balance 

equation at each node (highly nonlinear equations). Details 
can be found in [11].  

 For the objective function f(٠), two objectives, f1 and f2, 

are considered in the study, where f1 is to minimize voltage 
violation while maximizing power injection at specific hour; 
f2 is to minimize voltage violation while maximizing power 
injection in 24-hour horizon as shown below: 
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where Pen is the penalty factor; VL and VH are the low and 
high limits for voltage; Vi and Pi are respectively the bus 
voltage and the real power injection at PV bus i. 

 

B. Unbalanced Load Flow Method 

 Unlike the transmission network, distribution network is 
unbalanced and thus distribution load flow is the foundation 
for many advanced studies. Examples are 1) voltage quality 
analysis:  size and locations of capacitor banks, locations and 
rating of voltage regulators, line upgrades, 2) DER 
integration: given location of new DER, determine impact on 
operations. 3) Outage restoration analysis, which is done by 
real-time power flow: if outage occurs, determine how to 
operate switches to restore load.  

 Popular methods such as backward/forward sweep and 
Newton Raphson have their drawbacks. For example, the 
drawbacks for backward/forward sweep include 1) Handling 
Distributed Generation: The method can have trouble dealing 
with systems that have high penetration of distributed 
generation sources. In this situation, the power flow might not 
be unidirectional, which violates an assumption of the 
method; 2) Computational Efficiency: While it's relatively 
efficient for smaller systems, the computational time can grow 
rapidly for large-scale, multi-phase, and unbalanced 
distribution systems. 

 The drawbacks for Newton Raphson method include 1) 
Jacobian Matrix Computation: The Jacobian matrix used in 
the method needs to be updated and inverted in each iteration, 
which is computationally intensive, particularly for large-
scale power systems; 2) Radial Distribution Systems: The 
Newton-Raphson method is more suited to transmission 
systems (which are generally mesh networks) and can have 
trouble with the unique characteristics of distribution systems, 
which are typically radial and have more unbalanced loads. 

 Therefore, this work adopted an efficient iterative method 
called fixed-point method by OpenDSS [6]. The mathematical 
process is described as following: 

 inj systemI Y V=                          (3) 

where  
injI is the compensation, or injection, currents vector at 

each node from power conversion elements (generator, loads) 
in the circuit, which may be nonlinear elements, not constant 
and depend on node voltage; V is the node voltage vector; 

systemY is the admittance matrix constructed by primY , as 

opposed to the admittance matrix in a transmission network, 

it contains the three-phase information; primY is the primitive 

matrix for a particular element (line, load, generator, etc.) to 
present the admittance information between its terminals. 

 

Fig. 1: High penetration of PV system. 
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The process is straightforward. First, use initial guess of  

0V to calculate  
injI and then voltage is calculated iteratively 

as following until the algorithm converges (the difference in 
current and previous solution is within a predefined 
threshold): 

 
1

1 ( ), 0,1,2, ,n system inj nV Y I V n n−

+ = =     (4) 

III. METHODOLOGY 

Evolutionary computation (EC) has been proven in its 
effectiveness over complex optimization problems, and many 
of which are in energy domain [8][9]. In this work, two 
population-based evolutionary algorithms, ABC and PSO are 
implemented and compared to evaluate their effectiveness. 
The basic ABC and PSO have been proven effective on 
various complex engineering problems with a good balance of 
exploration and exploitation [9][13]. Thus, they are chosen as 
benchmark performance and future work will develop 
improved EAs to tackle the problem. 

A. Solution Vector 

EA’s solution vector structure is demonstrated in Fig. 3. 

The control variables consist of location as discrete variable 

and size as continuous variable over 24-hour periods for day-

ahead planning. The solution vector for peak hour planning 

just consists of location and size variables for 1-hour period. 

 

 
 

B. Artifical Bee Colony on PV Allocation 

The ABC is a population-based search algorithm, 

mimicking the foraging of honeybees. Bees are sent out to 

randomly search in multidimensional feasible space 

(bounded by limits) to look for food sources (solutions) [12]. 

At initialization, each solution Ui = {Ui,1,Ui,2,…,Ui,D} is 

generated randomly within the limits of the variables as 

follows: 

 

, , _ min , _ max , _ min(0,1)( )i j i j i j i jU U rand U U= + −  (5)      

where Ui,j_min and Ui,j_max are the lower and upper bounds for  
the jth dimension for the ith food source. Note that there is a 
total SN number of food sources, and D control variables, and 
rand(0,1) is a random number in (0,1) obtained by uniform 
distribution. 

Every food source will be updated to a new candidate 

solution based on their neighborhood’s information. The 

nectar of new solutions (fitness value) will be evaluated to 

decide whether the current solution is to be replaced by the 

new one. Such selection is known as ‘greedy selection.’  

 

 
The update equation for a new candidate solution vector 

Vi is defined as: 

   

 
, , , , ,( )i j i j i j i j k jV U U U= + −             (6) 

where k is a different integer other than i, randomly chosen 

from the size of employed bees (SN), and Φi,j is a random 

number from [-1,1].  

 

C. Particle Swarm Optimization on PV allocation 

The PSO is also a population-based searching algorithm, 

introduced by Kennedy and Eberhart in 1995, to explore the 

search space by particles [13]. One particle consists of 

velocity and position, and position is the feasible solution 

updated with the help of previous position and velocity as 

shown below: 

1 2( ) ( )new

i I i M i i C G iV W V RW b X R W b X= + − + − (7) 

 
new new

i i iX X V= +                     (8) 

where 𝑊𝐼, 𝑊𝑀, 𝑊𝐶 are weights for inertia, memory, and 

cooperation terms, 𝑅1, 𝑅2 are two random numbers from 0 to 

1, 𝑏𝑖, 𝑏𝐺 are personal best and global best, 
new

iX is the new 

 

Fig. 2: Fixed-point method. 

 

Fig. 3: EAs solution vector structure. 

 

Fig. 4: The overall ABC structure. 

Initialize food sources by (5) and calculate 

fitness by (1a), store the BEST solution

Update solutions by (6)

And evaluate solutions’ 

fitness value by(1a) and

Form a good solution pool by 

roulette wheel with the same 

size in employed bee phase

Replace the old one, if necessary, and 

update the BEST solution

Reinitialize stale solutions 

by (5)

Converged?

DONE

N

Y

Employed Bee Phase

Onlooker Bee Phase

Scout Bee Phase

Initialization

Iterations

Replace the old one if necessary

Update solutions by (6) and 

calculate the fitness value by (1a)
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solution computed with the help of 
new

iV . Figure 5 shows the 

flow chart of PSO on PV allocation.  

 
 

IV. RESULTS AND DISCUSSION 

This section first describes case studies where one 3-phase 
PV is chosen to be installed on the IEEE 13 and 37 bus 
systems, and then followed by performance analysis and 
discussion. Note that the potential buses to install PV systems 
are the ones with three-phase 4.16 kV voltage level. Other 
buses are either in different voltage level or with unbalanced 
phases.  

A. PV and Load Profile 

For this work, a 3-phase PV system with rated 4.16 kV, 
possible output 2,000-20,000 kVA is chosen, and it is assumed 
with power factor = 1. Fig. 6 gives the load profile of the 
chosen date. Fig. 7 shows the temperature and PV output for 
the selected date. It is obvious that PV output has positive 
correlation with the temperature. 

 

 

B. PV Allocation on IEEE 13 and 37 bus Test systems 

In the case study on IEEE 13 bus system, the potential 
buses to interconnect PV systems are {670, 671, 633, 680, 
675, 692} and the possible size is from 2,000 – 20,000 kVA 
as shown in Figure 8.  

 

 

 

 

 

 

 

Fig. 5: The overall PSO structure. 

Initialize particles by (7), (8) and calculate 

fitness by (1), store the BEST solution

Calculate velocity and 

positions by (7), (8) for all 

particles in current iteration

Find and store personal best 

position for all particles in 

current iteration

Converged?

DONE

N

Y

Initialization

Iterations

Evaluate fitness values by (1a) 

for all particles 

Find and store global best position 

among all iterations

 

Fig. 6: load profile. 

 

 

Fig. 7: Temperature and PV output. 

 

Fig. 8: IEEE 13 bus test system. 
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TABLE I.  CASE STUDY ON IEEE-13 BUS 

 Peak-hour planning (13 bus)     

 Min Avg Max Std T(s) Solution (Bus, kVA) #pop/iterations 

ABC -16791 -16788 -16785 1.5 5.1 (670, 16791) 100/200 

PSO -16791 -16790 -16786 1.1 6.3 (670, 16791) 100/200 

 Day-ahead planning (13 bus)     

 Min Avg Max Std T(s) Solution (Bus, kVA) #pop/iterations 

ABC 275663 303226 360556 1659 51 (670, 14069) 80/200 

PSO 325933 325963 326835 164 38 (670, 12243) 60/200 

 As mentioned, there are two scenarios in the case study: 1) 
optimal location and sizing of 1 PV system at 12:00pm (peak 
hour planning); 2) optimal location and sizing of 1 PV system 
over one day (day-ahead planning). 

 Table I shows the results for IEEE 13 bus system for 30 
runs. Column ‘Solution’ means the minimum optimal result 
found by evolutionary algorithms among 30 runs, which 
shows the bus location and kVA injection size. Negative 
fitness value means the solution (location and size of PV 

system) has not led to voltage violation, and yet positive 
fitness value means the solution has introduced voltage 
violation in (2a) and (2b). It is noted that ‘min’ found by ABC 
is much less than that found by PSO in Day-ahead planning 
scenario and yet its standard deviation is much larger than that 
of PSO. The fact that both ABC and PSO cannot find solutions 
which do not result in voltage violation, implies that feasible 
solutions may not exist to penetrate a 3-phase PV systems over 
24-hour periods without violating voltage limits for this 
network.  

TABLE II.  CASE STUDY ON IEEE-37 BUS 

 Peak-hour planning (37 bus)     

 Min Avg Max Std T(s) Solution (Bus, kVA) #pop/iterations 

ABC -8939 -8549 -8151 165 21.1 (705, 8939) 100/200 

PSO -9167 -8984 -8270 272 22.2 (705, 9167) 100/200 

 Day-ahead planning (37 bus)     

 Min Avg Max Std T(s) Solution (Bus, kVA) #pop/iterations 

ABC -8057 -7723 -7579 115 161.1 (705, 8057) 80/200 

PSO -7824 -7807 -7585 60 122.2 (714, 7824) 80/200 

 

In next case study on IEEE 37 bus system as shown in 

Fig. 9, the potential buses to interconnect PV systems are 

{701, 702, 703, 704, 705, 706, 707, 708, 709,  710, 711, 712, 

713, 714, 718, 720, 722, 724, 725, 727, 728, 729, 730, 731, 

732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 744} and 

the possible size is from 2,000 – 20,000 kVA. Similarly, two 

scenarios are conducted under the test system including peak 

hour planning and day-ahead planning. 

Table II shows the results for IEEE 37 bus system for 30 

runs. Column ‘Solution’ means the minimum optimal result 

found by EAs among 30 runs, which shows the bus location 

and kVA injection size. Then ‘min’ found by ABC is less than 

that found by PSO in Day-ahead planning scenario and yet its 

standard deviation is larger than that of PSO. Fitness values 

are all negative which means that solutions don’t result in 

voltage violation for both scenarios. Optimal location found 

by ABC and PSO for Scenario 2 is different. 

 

V. CONCLUSIONS 

Distribution network has become active and complicated, 
containing bi-lateral power flow and large DERs penetration. 
Finding optimal location and size of PV systems is a complex 
planning problem and yet critical to distribution network 
management. This work explored the possibility of using two 
EAs (ABC and PSO) to tackle such problem with the help of 
a simple and yet efficient fixed-point iterative load flow 
method, which ensures the unbalanced network be solved 
successfully. Both EAs are verified on IEEE 13 and 37 bus 
systems with two objectives (peak-hour and day-ahead 
planning). After 30-time runs, both EAs are relatively 
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Fig. 9: IEEE 37 bus test system. 
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successful in finding solutions, but they have different 
attributes such as the ability to find lower fitness values, and 
stable fitness values. The ABC generally converges with 
better solution and yet with statistically larger deviations on 
solutions. This work proves the EAs’ efficiency on solving 
such problem and is a realistic tool for operators to plan PV 
systems’ integration on unbalanced distribution network. 
Future work can focus on integrating multiple PV systems 
using basic EAs and/or improved EAs. 
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