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Abstract—Dynamic portfolio optimization is inherently chal-
lenging due to the complexity of asset price dynamics and
forecasts. Robust optimization is proposed as an alternative that
incorporates return and risk uncertainty in portfolio optimiza-
tion. Directional change (DC) methods complement the standard,
fixed time interval, and asset price data in terms of measuring the
relationships and scaling laws between different types of events.
DC methods can be extended for portfolio optimization using DC
representations of assets and empirical scaling laws which indi-
cate expected price changes and their duration. In this paper, we
study a robust DC-based portfolio optimization (RDC) method,
for returns maximization. The proposed method uses price signals
from the DC representations of multiple assets for portfolio
rebalancing and optimization, together with a robust portfolio
optimization rule that maximizes portfolio returns under return
uncertainty. We empirically study the effect of the robust DC-
based portfolio optimization method with an application to 29
exchange-traded funds where each fund is a well-diversified
asset with typically low-risk values. We compare the obtained
portfolio results with benchmarks. The results indicate that the
proposed method performs comparably to several benchmarks,
and particularly improves a specific risk measure, maximum
drawdown, in comparison to the benchmarks.

Index Terms—Directional changes, financial portfolio optimiza-
tion, robust optimization.

I. INTRODUCTION

Portfolio optimization is an important task for individuals
and institutions that aim at a high financial performance
from their assets. The performance of an optimized port-
folio is affected by general market dynamics as well as
specific realizations of returns and correlations across different
assets. Standard portfolio optimization techniques such as
mean-variance optimization rely on historical or model-based
estimates of returns and correlations to dynamically adapt
portfolios. These methods typically do not incorporate the
uncertainty of inputs and their results are shown to be very
sensitive to small changes in inputs [1], [2].

Robust optimization [3]–[5] was developed and applied in
portfolio optimization in order to incorporate the inherent
randomness in expected returns and to improve the stability
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of portfolio results when the realized values of inputs deviate
from the estimated ones within some given set. The perfor-
mance of specific robust optimization methods depends on
the definition of the uncertain variable, the defined uncertainty
set, and calibration of the uncertainty parameter [6]. In general,
robust portfolio optimization is shown to be valuable in several
applications [7]–[9], but to the best of our knowledge, not yet
been studied in the directional change framework.

Directional change (DC) methods represent price changes of
an asset only when the change in the asset’s price compared
to the last recorded price exceeds a selected threshold [10],
[11]. The DC representation of an asset price complements the
standard, fixed time interval, asset price data in terms of un-
derstanding the data features. Relationships between different
types of events within the DC representations of an asset price
have been studied in detail. A set of scaling laws is shown
to provide accurate estimates of expected price changes and
expected duration of price changes [12]. DC representations
and associated scaling laws have been used to obtain trading
strategies for individual assets [13]–[16]. Recently, the DC
framework was extended to represent multiple assets for the
purpose of DC-based dynamic portfolio optimization [17].

In this paper, we study a simple robust DC-based portfolio
optimization (RDC) method, for returns maximization. The
proposed method joins the price signals obtained from DC
representations of multiple assets and robust portfolio opti-
mization. This robust portfolio optimization objective function
maximizes the portfolio returns while taking into account
return uncertainty. The maximization for portfolio returns is in
line with the empirical scaling laws of DC representations of
asset prices, which have implications for expected asset prices
and returns, specifically their relation to the selected threshold
level, expected continuation of an upward or downward price
movement, and the expected return until the opposite DC point
[12]. The proposed method does not explicitly incorporate
variance or covariance uncertainty in assets and it does not
explicitly aim for risk diversification.

We empirically study the effect of the robust DC-based port-
folio optimization method. We apply the proposed method to a
portfolio consisting of a set of diversified assets: 29 Exchange
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Traded Funds (ETF) for the period between 2 January 2018
and 30 December 2021. We compare the obtained portfolio
results with benchmarks and show that the proposed method
performs comparably to several benchmarks. The proposed
method defines a simple robust optimization rule which maxi-
mizes returns. Despite its simplicity, we find promising results
where metrics such as maximum drawdown improve compared
to benchmarks in the long investment period we analyze.

II. PORTFOLIO OPTIMIZATION AND DIRECTIONAL
CHANGE REPRESENTATIONS OF MULTIPLE TIME SERIES

A. Directional Changes and Intrinsic Time Series Represen-
tation

Directional Change (DC) models aim to create intrinsic time
series that summarize upward and downward market price
movements of a financial instrument [14]. The intrinsic time
series consists of time periods where the price change exceeds
a given pre-defined threshold value θ. A downturn DC event
is defined when the difference between the current price pt
and the last high price ph is lower than θ :

pt ≤ ph(1− θ). (1)

Conversely, an upturn DC event is defined when the difference
between the current market price pt and the last low price pl
is higher than a fixed threshold θ:

pt ≥ pl(1 + θ). (2)

A downward (upward) DC event is followed by a downward
(upward) overshoot (OS) until an opposite, upward, or down-
ward DC event occurs. The combination of these DC and OS
events consists of the intrinsic time series for a given θ [12],
[13]. It is shown that the ratio of the length of OS to DC
events is a reliable signal for market movements particularly
compared to observed prices [14].

The series of DC and OS events are defined as follows:
Let pn,t denote the price level of asset n = 1, . . . , N
at observed time intervals t = 1, . . . , T . Furthermore, let
rn,t = 100 × ln(pn,t − pn,t−1) denote the percentage returns
of asset n at time t. Define DCn,0 as the initial direction of
asset n at intrinsic time k = 0. For k = 1, . . . ,Kn directional
change points with Kn < T , each DC and its sign is calculated
iteratively based on DCn,k−1.

DCn,k = argmin
t≥DCn,k−1

(
pn,t ≥ pn,DCn,k−1

(1 + θ)
)

(3)

where pn,h = pDCn,k
is the last ‘high price’ in the market, and

‘event’ EDCn,k = UDC is the sign of the DC. If DCn,k−1 is
an upward DC, the next directional change is a DDC:

DCn,k = argmin
t≥DCn,k−1

(
pn,t ≤ pn,DCn,k−1

(1− θ)
)

(4)

where pn,l = pn,DCn,k
is the last ‘low price’ in the market,

EDCn,k = DDC and DCn,0 is initialized.
In this paper, we use a set of summary metrics for each asset

n for portfolio optimization. These metrics are the average
time of a DCn (TDCn), the average time of an OSn (TOSn)

after a confirmed directional change, and the average ratio of
OS event length over the average ratio of DC event length
(TOSn/TDCn):

TDCn =
1

Kn

Kn∑
k=1

(DCn,k − DCn,k−1) , (5)

TOSn =
1

Kn

Kn∑
k=1

(OSn,k − DCn,k) , (6)

TOSn/TDCn =
1

Kn

Kn∑
k=1

OSn,k − DCn,k

DCn,k − DCn,k−1
. (7)

B. Portfolio Optimization using joint DCs

Recently, the DC representation approach was extended to
define a joint intrinsic time series for multiple assets and
portfolio optimization [17]. This joint intrinsic time series
representation of a portfolio DC point, PDCk, is defined when
one or more assets have a confirmed DC:

PDCk = argmin
t≥PDCk−1

∃n s.t. DCn,k = t , (8)

where k = 1, . . . ,K and PDC0 is initialized at time 0, similar
to the DC approach for individual assets.

From the joint DCs, joint OS events are obtained at each
point k:

OSn,k =

{
OSn,k if PDCk ∈ DCn,

OSn,k−1 otherwise, (9)

where DCn = {DCn,1, . . . ,DCn,Kn} is the set of DC points
for asset n. The remaining assets are assumed to follow the
direction they had at time k − 1.

Based on the joint DC representations, the portfolio weights
are determined using the relative expected return and risk
properties from historical OS events:

r̂n,UDC =

(
pOSn,k

− pOSn,k−1

)
I (EDCn,k = UDC)∑K

k=2 I (EDCn,k = UDC)
, (10)

r̂n,DDC =

(
pOSn,k

− pOSn,k−1

)
I (EDCn,k = DDC)∑K

k=2 I (EDCn,k = DDC)
, (11)

ŝ2n =
1

K − 1

K∑
k=2

(
pOSn,k

− pOSn,k−1

)2
, (12)

where I[.] is an indicator function which takes the value of 1 if
its argument is true, and the value of 0 otherwise. Furthermore,
pOSn,k

is defined as the price at the end of the OS period
following the kth directional change for asset n.

An example of a joint DC representation for two artificially
generated asset prices is provided in Fig. 1, where the prices
of two assets are shown together with the corresponding DC
and OS events. In this figure, the vertical lines represent
the confirmed DC points for the joint intrinsic time series
representation for the two assets, where at each DC point at
least one asset has a confirmed directional change as defined
in (8).
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Fig. 1. DC representations of two artificially generated asset prices.

III. ROBUST PORTFOLIO OPTIMIZATION FOR JOINT DC
REPRESENTATIONS

We present the proposed DC-based robust portfolio opti-
mization method. In the literature, robust portfolio optimiza-
tion is developed for the standard time series representations of
multiple assets [7], [8]. It is considered as a robust counterpart
of the mean-variance framework [18] in order to mitigate
the sensitivity of a portfolio the input parameters such as
returns where the method optimizes the worst case by defining
uncertainty sets of uncertain parameters [19].

In robust portfolio optimization, the set of uncertain param-
eters can be defined in different ways, such as robustness to
returns and variance or Sharpe ratio uncertainty robustness to
the covariance matrix or the inverse of the covariance matrix
of returns [20]. Despite a large number of robust portfolio
proposals, the literature is not conclusive on which robust
portfolio optimization methods empirically or theoretically
lead to more stable portfolio results or better out-of-sample
performance [21].

In this paper, we define robust portfolio optimization to
maximize portfolio returns. This objective tries to make use
of the DC representations of assets and their empirical scaling
laws which relate to the price changes and expected duration
of price changes [12]. The optimization function for RDC is
defined, based on [8], as follows:

maxmin
z∈Z

N∑
n=1

(r̂n + ŝnzn)ωn (13)

s.t.
N∑
i=1

ωn = 1, (14)

ωn ≥ 0, n = 1, . . . , N, (15)

where r̂n and ŝn is the expected return and the risk metrics of
asset n, obtained from the DC representations of the assets,
respectively. In this notation, ωn are the weights of each asset
in the portfolio and they determine the portfolio allocation.

Dynamic portfolio allocation corresponds to optimizing these
weights at each portfolio rebalancing point.

The optimization in (13) is based on [8], where we define
the expected return and risk metrics according to the historical
OS events for upward and downward movements in equations
(10), (11) and (12). In this formulation, set Z determines
the ‘robust model’ which allows for uncertainty in expected
returns from historical OS events:

Z =

{
{z1, . . . , zN} : 0 ≤ zn ≤ 1,∀n;

N∑
n=1

zn ≤ Γ

}
(16)

where Γ relates to the conservatism of the model [8]. It
is expected that an increase in Γ, the protection parameter,
decreases the extreme returns such as maximum drawdown.
The main motivation for this step is the observation of the
experimental literature that shows that investors perceive the
loss potential as more important than volatility, see, e.g., [22].

Within the DC approach, we obtain the expected risk and
return properties of each asset using (10)-(12) for each time
period that the joint DC representation indicates portfolio
rebalancing. The portfolio is rebalanced when the expected
portfolio return is larger than zero, i.e.

N∑
n=1

r̂nωn > 0. (17)

This additional step to rebalance the portfolio only for positive
expected returns indicates that the number of portfolio rebal-
ancing points can be smaller than the number of confirmed
DC points in the joint intrinsic time series representation.

IV. APPLICATION TO DAILY ETF DATA

We apply the RDC optimization to daily ETF data and
present the results of the obtained portfolio compared to the
benchmarks. Note that the methodology discussed in Section II
uses only prices and expected returns of the assets. It does
not explicitly account for risk diversification since it does
not incorporate measures of co-movements between assets.
As such, we expect the method to work best when using
assets that already are somewhat diversified. ETF data has
such diversification properties since each ETF typically holds
a basket of assets. We use ETFs to apply the methodology
discussed in Section II since Equation (13) uses only the
expected returns of the assets. As such, we expect the method
to work best when using assets that already are somewhat
diversified.

The data are obtained from the mutual fund database of
the Center for Research in Security Prices (CRSP) as the
daily total returns for the ETFs between January 2005 -
December 2021. We chose the largest equity ETFs in terms of
average net asset values within each style category provided
by CRSP. Finally, the risk-free rate is taken from the Fama-
French factor database of Kenneth R. French, accessed through
Wharton Research Data Services. In the DC representation,
the threshold parameter determines how large a change is
considered significant, and price changes that are smaller than
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a threshold are ignored [14]. Due to this property, the DC
representation can be seen as a noise-filtering method. We
therefore do not filter the data prior to DC analysis.

The application of the RDC method depends on the selec-
tion of two parameters, the DC threshold θ and the uncertainty
budget Γ. Intuitively, the number of DC points and portfolio
rebalancing points decrease with θ while the obtained portfolio
returns are more robust to return uncertainty with increasing
Γ. These properties, however, do not translate directly to the
properties, such as the Sharpe ratio, of out-of-sample realized
returns. We, therefore, report the application results for several
values of θ and Γ. Following [8] we report the results for a low,
medium, and high level of Γ where a higher Γ indicates higher
robustness to price uncertainty. We apply the DC algorithm
with, θ = 0.04 (RDC 004), θ = 0.05 (RDC 005), and θ = 0.06
(RDC 006) and robust portfolio optimization parameter Γ = 5,
Γ = 20 and Γ = 50 and denote the results e.g. as RDC 004;5
for θ = 0.04 and Γ = 5.

A. RDC portfolio investment results

We include a comparison to the naive 1/N strategy as this is
a well-diversified strategy and a comparison to the minimum
variance strategy to see the relative performance of the RDC
method compared to a strategy that takes a different approach
to model portfolio risk. Note that DCs and the portfolio
rebalancing points we define in Section II-B do not coincide
with fixed time intervals. DCs happen at non-fixed periods of
time and our rebalancing points are not fixed. We, therefore,
initialize the RDC strategy by investing according to the 1/N
strategy until the first rebalancing point. This ensures that all
strategies start at the same time point.

TABLE I
ROLLING WINDOW PORTFOLIO RESULTS

Exc. Ret. Std. Dev. Sharpe Ratio ẑJK M.Draw.
S&P 500 0.087 0.251 0.348 -1.020 -0.651
1/N 0.107 0.193 0.554 -0.545 -0.579
Min. Var. 0.103 0.142 0.726 0.537 -0.465
RDC 004;5 0.107 0.193 0.553 - -0.579
RDC 004;20 0.113 0.173 0.652 - -0.393
RDC 004;50 0.113 0.173 0.652 - -0.393
RDC 005;5 0.117 0.213 0.548 - -0.622
RDC 005;20 0.062 0.237 0.263 - -0.647
RDC 005;50 0.062 0.237 0.263 - -0.647
RDC 006;5 0.132 0.216 0.610 - -0.592
RDC 006;20 0.107 0.193 0.553 - -0.579
RDC 006;50 0.107 0.193 0.553 - -0.579

Table I presents the standard portfolio evaluation measures,
the mean, variance and Sharpe Ratio of these realized returns,
which are out of sample observations during which the portfo-
lio was held. We also report the statistical significance of the
differences in Sharpe Ratios [23] in the second to last column
which shows the realized values for a test that is asymptotically
standard normal. Finally, we show the maximum drawdown
experienced by the portfolio strategies within the period in
the last column of the table.

The statistics of most interest are the Sharpe ratio and the
maximum drawdown, as they relate the return to the risk

of the portfolio strategy. Concerning the first measure, we
see that the RDC with θ = 0.04 and Γ = 20 strategy
yields the second largest Sharpe ratio. However, this result
is statistically indistinguishable from the simple buy-and-hold
and the naive diversification strategies, both resulting in lower
realized Sharpe ratios. In addition, the minimum variance
strategy, which yields the largest realized Sharpe ratio, is also
statistically indistinguishable from the RDC 004;20 results.

Since the robust optimization technique has the goal to limit
large losses we now turn to the maximum drawdown results.
We see that the best-performing RDC strategy in terms of the
Sharpe ratio is able to achieve this in combination with the
smallest absolute value for the maximum drawdown. Note that
the drawdown of -39.3% is the lowest realized drawdown of all
strategies. It is also interesting to see that, although achieving
the lowest value for the standard deviation, the minimum
variance strategy has a drawdown of -46.5%.

Concerning the calibration for the parameters θ and Γ we
have the following observations. The parameter θ controls the
threshold for a directional change and we see that for a small
value, the robust component of the optimization matters, i.e.,
large values of Γ improve the Sharpe ratio and the values for
the maximum drawdown. In contrast, for large values of θ, i.e.,
a larger threshold for the directional change, the value for Γ
is less important, if anything, larger values have a detrimental
effect on the performance.

The results in Table I indicate two conclusions for these
calibration parameters. First, the results for Γ = 20 and Γ = 50
are indistinguishable across all values for θ. This indicates
pushing this parameter beyond a certain value does not lead
to performance differences. Second, there is no clear pattern in
the results concerning Sharpe ratios. Despite this, we observe
that an increase in θ leads to a loss in performance with respect
to the maximum drawdown. The same conclusion holds for the
realized standard deviations.

We conclude from this analysis that it is possible to con-
struct a portfolio strategy using RDC that is able to generate
a performance that is on par with the benchmark strategies
in terms of Sharpe ratios and is able to generate a lower
maximum drawdown. This performance is found for parameter
values θ = 0.04 and Γ = 20.

V. CONCLUSION

We combine DC methods with robust optimization tools
to set up a portfolio optimization strategy. The algorithm
is applied to an asset menu consisting of 29 exchange-
traded funds. We find that the algorithm does not produce
significantly different from the benchmark methods in terms
of Sharpe ratios but can improve on the maximum drawdowns
realized in the investment period under consideration. Since
the robust part of the optimization algorithm has the goal to
limit the downside risk in the portfolio strategy we view this
as a promising result.

As future work, we want to extend our methodology to other
robust portfolio optimization rules that incorporate uncertainty
in estimated variances and covariances of a portfolio [20], but
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Fig. 2. Rolling window portfolio results with θ = 0.04 and Γ = 5.
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Fig. 3. Rolling window portfolio results with θ = 0.04 and Γ = 20.
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Fig. 4. Rolling window portfolio results with θ = 0.05 and Γ = 5.
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Fig. 5. Rolling window portfolio results with θ = 0.05 and Γ = 20.
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Fig. 6. Rolling window portfolio results with θ = 0.06 and Γ = 5.
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Fig. 7. Rolling window portfolio results with θ = 0.06 and Γ = 20.
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such an extension requires the study of DC representations of
variance and covariance matrices.
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