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Abstract—Feature extraction is essential in bioinformatics
because it transforms genome sequences into the feature vectors
required for data mining activities such as classification and clus-
tering. The data mining activities enable us to classify or cluster
the newly sequenced genome to the known families. Nowadays, a
variety of feature extraction strategies are available for genome
data. Nevertheless, several existing algorithms do not extract
context-sensitive key properties, also some approaches extract
features, which are unable to distinguish between two non-similar
sequences. In addition, the efficacy of existing feature extraction
techniques is evaluated on either supervised or unsupervised
learning models, but not on both. Thus, an efficient feature
extraction technique that extracts significantly relevant features
from genome sequences is required. In this paper, a novel feature
extraction method is proposed that extracts features based on
the length of the sequence, the frequency of nucleotide bases, the
modified positional sum of nucleotide bases, the distribution of
nucleotide bases, and the entropy of the sequence to generate
a 14-dimensional fixed-length numeric vector to describe each
genome sequence uniquely. By applying extracted features to
both supervised and unsupervised machine learning approaches,
the performance of the proposed feature extraction method
is assessed. The experimental results show that the proposed
strategy for clustering and classifying novel genome sequences
into recognized genome classes is highly effective and efficient.
The same is proven by comparing the proposed method to the
standard state-of-the-art method.

Index Terms—Feature extraction, Genome sequences, Cluster-
ing, Classification, Single nucleotide polymorphism

I. INTRODUCTION

In bioinformatics, the classification or clustering of bio-
logical sequences [1] is a crucial problem. Biologists are
frequently interested in determining the family of a newly
generated genome sequence. This will allow scientists to in-
vestigate the evolution and biological activities of this genome.
Biologists typically use sequence alignment to search for
sequence similarity and homology in order to classify novel

biological sequences into established families/classes. Yet, this
method is exceedingly ineffective. One of the biggest problems
with using this method, for example, in metagenomics, is that
between 25% and 65% of the sequences have no homolog
(orphan sequences) in the databases, making these sequences
useless for any further analysis [2]. Employing techniques
of machine learning is one method for overcoming such
problems. Due to the nature of biological sequences, in which
features are embedded within the sequence itself, it is not
viable to apply the well-known classification methods that
are highly effective in real-world data mining applications
when applied to relational data. Thus, a method of feature
extraction is required to transform biological data into a
new format suited for various data mining algorithms [3].
Extracting features from genome sequences [3] allows for the
conversion of genome sequences into numerical data, which
makes it possible to use data mining techniques to study these
sequences.

The set of instructions that comprise an organism is referred
to as the Genome, and it is composed of Deoxyribonucleic
Acid (DNA) [4]. The four nucleotide bases that makeup DNA
are adenine (A), cytosine (C), guanine (G), and thymine (T).
A single nucleotide polymorphism (SNP) [3] is a type of
mutation/alteration in DNA that can occur when a single
nucleotide is added to or removed from the DNA.

This remaining paper continues as follows: Section II re-
views the existing literature. Section III introduces the pro-
posed novel 14-dimensional feature extraction technique for
the clustering and classification of genome data. Section IV
presents the experimental findings on the benchmark and real-
life plant genome datasets in comparison with other state-of-
the-art approach. Finally, Section V concludes and outlines
future research.
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II. LITERATURE SURVEY

Marwah A. Helaly et al. [4] proposed a deep learning
strategy for the taxonomy classification of bacterial sequence.
To describe the genome data, they employed a variety of
representations, including one-hot encoding, inter-encoding,
and k-mers-based representation. They evaluated their strategy
on the 16S rRNA dataset utilizing a deeper convolution neural
network (CNN) and obtained an accuracy of 91.7% with
a more representative representation and 90.0% with a less
figurative representation. The problem with this method is
that it can only be used with labeled data. After that, Jasbir
Dhaliwal and John Wanger [5] made a new way to extract
features for SNPs that are highly expressed. As features, they
employed k-mer to describe the SNP sequence. According
to them, ideal k-mer and feature size may vary between
research problems. They assessed their technique using a
multinomial naive bayes on 49 human tissues and obtained
optimal k-mer of size 3. One of the biggest problems with
using k-mer is that storing an SNP sequence with large-sized
k-mers takes a lot of memory. Later on, Preeti Jha et al.
[3] presented a feature extraction method named 12d-FV for
the SNP sequencing analysis of unlabeled real-world plant
genome datasets. To describe an SNP sequence, they employed
three sorts of features: frequency, total distance, and nucleotide
distribution. They used kernelized scalable random sampling
with iterative fuzzy c-means (KSRSIO-FCM) to test their
method and evaluated the results using the silhouette index
[?]. The disadvantage of this strategy is that the total distance
and the distribution for each nucleotide may be the same
for dissimilar sequences. This technique may be incapable
of differentiating between the sequences as a result of this
incapability. In addition, the sequence length, which differs
between organisms, has not been used in this method. In
2022, Bonidia et al. [6] proposed a new package named
MathFeature, for extracting the numerical features from the
ribonucleic acid (RNA), DNA and protein sequences. In this
package they used 20 numerical feature extraction descriptors
based on the numerous numeric mappings, chaos game theory,
gemonic signal processing, complex networks and entropy
for converting the biological sequences into numerical values.
They evaluated their method on eight benchmark datasets and
found that MathFeature outperformed competing methods.

According to the aforementioned literature, the majority of
feature extraction algorithms are either available for labeled
data or unlabeled data, but not for both. In addition, several
algorithms do not extract context-based properties. In contrast,
some algorithms fail to extract essential features such as length
and entropy. To overcome the limitations identified in this
study, a novel 14-dimensional feature extraction technique is
proposed, which extracts features based on length, frequency,
modified position sum, distribution, and entropy to character-
ize the genome sequence uniquely.

In the further section we will brief about the concept-by-
concept analysis of the proposed method, i.e., the five distinct
categories of features and their extraction procedure, illus-

trated with an example and the implementation of proposed
approach.

III. METHODOLOGY

This section presents a novel 14-dimensional feature ex-
traction technique (14d-FET) that extracts five different types
of sequence features, namely sequence length, frequency of
nucleotide bases, modified positional sum of nucleotide bases,
distribution of nucleotide bases, and sequence entropy. The
proposed method also eliminates the disadvantage of having
the same positional sum and same distribution in two dis-
similar sequences by employing a novel power mechanism.
The architecture and pseudo code of of proposed approach
is shown in Fig. 1 and Algorithm 1, respectively. The five
different types of features are discussed subsequently.

Fig. 1: Proposed 14d-FET Architecture

Algorithm 1 14d-FET

Input: Genome sequence; x : {A, T,G,C}
Output: Seqlength, Fn, MPSn, Disn, EntS

1: Initialize the Seqlength and Fn with 0, where n ∈
{A, T,G,C}

2: Let n is a input character.
3: for n in x do

Seglength = Seqlength + 1 ( Increase the seqlen by
1)

Fn = Fn + 1 (Increase the frequency of nucleotide
n by 1)

4: end for
5: Compute the MPSn for all nucleotides using Eq. (1).
6: Calculate the Disn for all nucleotides using Eq. (2) and

(3).
7: Compute the EntS using Eq. (4).

a) Sequence length: The sequence length of a genome
vary from organism to organism, which provides useful in-
formation for categorization and clustering. Hence, in the
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proposed approach we extracted sequence length (Seqlength)
as a feature. The sequence length is the number of nucleotide
present in a sequence. For example, a genome sequence is
presented in Table I. For this sequence the Seqlength will be
9.

TABLE I: Example of genome sequence with a novel power
method

40 41 42 43 44 45 46 47 48

1 2 3 4 5 6 7 8 9
Seq 1 A G T C T A T G C

b) Frequency of nucleotide bases: This type of feature
computes the frequency of each nucleotide (Fn). For example,
in Table I the number of A, T, G, and C is 2, 3, 2, and 2. Hence,
FA, FT , FG, and FC will have the values 2, 3, 2, and 2.

c) Modified positional sum of nucleotide bases: In this
type of feature, we removed the lacunae of 12d-FV [3]
approach by fixing the problem of having the same positional
sum for a nucleotide n in different sequences by using a new
power method, in which we multiply the distances (sp) by
their place values and named these types of features as features
based on the modified positional sum. Let us understand the
problem of the positional sum of 12d-FV approach [3], if A
appears at positions 3 and 4 in one sequence and positions
2 and 5 in another sequence, the positional sum = 7 will be
the same for both sequences. Owing to this, the feature based
on positional sum cannot correctly differentiate between two
distinct genome sequences.

So by using a novel power method, for each nucleotide n,
the modified positional sum from the first nucleotide MPSn

is calculated using Eq. (1).

MPSn =

Fn∑
p=1

sp ∗ 4(sp−1), (1)

where sp is the distance between the pth and first nucleotide.
In this technique, we chose four as the base number because
there are only four letters in any genome sequence, namely A,
T, G, and C. For instance, the nucleotide A appears at locations
1 and 6 in the sequence depicted in Table I, hence the modified
positional sum of A is MPSA = 1∗40+6∗45 = 6145. With
this method, the probability of obtaining the same MPSn for
a nucleotide n in two dissimilar sequences is extremely low.

d) Distribution of nucleotide bases: In this type of fea-
ture, the distribution of nucleotides is computed by combining
features based on frequency (Fn) and features based on mod-
ified positional sum (MPSn). For a nucleotide n, distribution
(Disn) is calculated by using Eq. (2) and (3).

Avgpsn = MPSn/Fn. (2)

Disn =

Fn∑
p=1

(sp −Avgpsn)
2

Fn
, (3)

where Avgpsn is the average of modified positional sum of
a nucleotide n.

e) Entropy: Entropy is used to characterize the amount
of randomness in a given sequence. If S is a sequence
of nucleotide bases such that S = N1, N2, N3, ..., Nn,
and let N1, N2, N3, ..., Nn occur in S with probability
P (N1), P (N2), P (N3), ..., P (Nn), then the entropy of the
sequence (EntS) is computed using Eq. (4).

EntS = −
n∑

i=1

P (Ni)logP (Ni). (4)

After combining all five types of features, the feature vector
consists of fourteen features is represented as < Seqlength,
FA, MPSA, DisA, FG, MPSG, DisG, FT , MPST , DisT ,
FC , MPSC , DisC , EntS >. The feature vector corre-
sponding to the genome sequence shown in Table I will be
< 9, 2, 6145, 9418767.25, 2, 131080, 4294836234, 3, 30000,
99900027.66, 2, 590080, 87044766128.5, 1.36 >.

The next subsequent section will brief about the experi-
mental findings of the proposed approach on various real life
datasets.

IV. EXPERIMENTAL FINDINGS

In this study, we collected two types of data, i.e., labeled and
unlabeled. In the labeled category, we collected two real-life
genome sequence datasets called Bacteria and Fungi from the
NCBI repository [7] and one Molecular biology dataset named
promoter from the UCI machine learning repository [8]. We
have two real-life rice plant SNP datasets in the unlabeled cate-
gory: SNP-seek rice [9], and MAGIC-rice [10]. We performed
classification tasks for the labeled datasets and clustering tasks
for the unlabeled dataset. To evaluate the proposed method
for labeled data, we have used multiple classifiers named
Support Vector Machine (SVM) [11], Decision Tree (DT)
[12], Random Forest (RF) [13], Gaussian Naive Bayes (G-
NB) [14], Multi-Layer Perceptron (MLP) [15], and K-nearest
neighbor classifier (K-NN) [16]. To evaluate the performance
on unlabeled data, we have used k-means clustering [17].

This section is divided into four subsections. The first
subsection briefs about the datasets used for the experimen-
tation. The second subsection briefs about the performance
evaluation measures. The third subsection discusses about the
parameter settings for the various parameters. Finally, the
fourth subsection explains the experimental findings on the
labeled and unlabeled datasets.

A. Dataset details

We used three labeled and two unlabeled datasets in the
experimental study presented in Table II. Details of these
datasets are discussed subsequently.

The bacteria dataset contains the gene sequences of four
bacteria named Bacillus-Subtilis, Aeropyrum-pernix, Aquifex-
aeolicus, and Bucchera-sp. The fungi dataset contains the
gene sequences of four types fungus named as Cryptococcus,
Debaryomyces, Kazachstania africana, and Saccharomyces
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TABLE II: Dataset Details

Dataset Name Count of sequences Count of classes Type
Bacteria 340 4 Labeled
Fungi 1051 4 Labeled
Promoter 106 2 Labeled
SNP-seek rice 252 - Unlabeled
MAGIC-rice 16932 - Unlabeled

cerevisiae. The promoter dataset contains promoter gene se-
quences having two types of labels, positive and negative. We
converted these symbolic labels to the numerical form of 0
and 1.

The SNP-seek rice data includes information about rice
chromosomes 1 through 12. We put all rice chromosomes from
ch1 to ch12 into a single file to perform clustering on a large
SNP dataset. Details of this data can be found in Mansueto et
al. [9]. The MAGIC-rice dataset contains the SNP sequences of
rice crops. The MAGIC rice dataset comprises 1,411 samples
separated into 12 files (for each chromosome). We put together
all chromosome files from 1 to 12 to make the MAGIC-rice
dataset. Detailed analysis of the MAGIC-rice dataset is given
by Bandillo et al. [10].

B. Evaluation measures

To evaluate the performance of the proposed method, we
employed two measures, training accuracy and testing accu-
racy, for labeled datasets and two metrics, silhouette index and
silhouette visualizer, for unlabeled datasets. The details of the
metrics are as follows:

a) Accuracy: Accuracy [18] is one of the best parameters
to assess the quality of classification models. Accuracy can
be defined as the percentage of times our model correctly
predicted a given outcome. The accuracy can be computed
using Eq. (5). Training accuracy represents the accuracy of the
training data, which means the classification model is tested
on the same data used in training of the model. Testing or
validation accuracy represents the accuracy of testing data. In
testing accuracy, the samples used for testing differ from the
samples used in training of the model.

Accuracy =
Total no. of correct predictions

Total no. of predictions
(5)

b) Silhouette index: In unsupervised learning, silhouette
index (SI) [19] is widely used as a standard for measurement
and analysis. It is based on how similar a data point to the
other points in its cluster, which is called cohesion, and to
the cluster that is closest to it, which is called separation. The
silhouette value ranges from -1 to +1. The SI is calculated by
taking the average silhouette coefficient of all data objects.

Let pi is a ith data point, then its silhouette coefficient Spi

is evaluated by Eq. (6).

Spi
= (bpi

− api
)/(max(bpi

, api
)), (6)

where api is the mean distance of the pi data point to all
other data points within the same cluster, and bpi is the mean
distance of pi to all other data points in the nearest cluster.

c) Silhouette visualizer: The silhouette visualizer shows
which clusters are dense and which are not by displaying the
silhouette coefficient per cluster for each sample. It also shows
how many clusters have achieved a median SI value.

C. Parameter settings for evaluation models

Various parameters are used in evaluation models to perform
the experiments are listed here, and their values are presented
in Table III.

TABLE III: Parameter settings for evaluation models

Evaluation Model Parameters Parameter Value
SVM Kernel rbf
MLP Hidden layer sizes (10, 10, 10)
MLP Activationfunction relu
MLP Maximum iteration 10, 000
DT min sample split 5
K-NN K 3
RF min sample split 5
G-NB var smoothing 1e− 9
k-means Maximum iteration 300

D. Experimental Analysis

1) Experimental results on labeled datasets: We run exper-
iments on the labeled datasets listed in Table II and compare
the proposed approach to a 12d-FV [3] approach, because both
of these methods employ a feature extraction technique for
genome sequences. The experiments are performed in a ten-
fold cross-validation manner, in which the dataset is divided
into ten parts, nine parts are used for training, and one part
for testing purposes. The results are quantified in terms of
mean training accuracy and mean testing accuracy, which is
the mean of training accuracies and testing accuracies of ten
folds, respectively.

Experimental results on the bacteria dataset are shown in
Table IV. It can be observed that the proposed approach is
performing better than 12d-FV [3] in all evaluation models in
terms of mean training accuracy and mean testing accuracy.
The RF classifier achieves the highest validation accuracy of
92.35%. In comparison to 12d-FV, The proposed approach
shows a minimum increment in the mean testing accuracy is
of 2.65% when the MLP classifier is used. On the other hand,
the proposed approach shows the maximum increment in mean
testing accuracy is of 45.1% when the G-NB classifier is used.

TABLE IV: Results on Bacteria Dataset

Evaluation Model 12d-FV Proposed approach (14d-FET)
Mean training
accuracy (%)

Mean testing
accuracy (%)

Mean training
accuracy (%)

Mean testing
accuracy (%)

SVM 61.50 60.58 82.06 79.70
DT 96.92 83.82 99.11 88.23
RF 98.72 86.47 99.70 92.35
K-NN 63.87 56.86 79.54 74.50
MLP 86.63 79.70 99.11 82.35
G-NB 28.65 20.58 70.15 65.68
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Experimental results on the Fungi dataset are shown in Table
V. It can be observed that the proposed approach is performing
better than 12d-FV approach [3] in all evaluation models in
terms of mean training accuracy and mean testing accuracy.
The RF classifier achieves the highest validation accuracy of
93.81%. In comparison to 12d-FV, the proposed approach
shows a minimum increment in mean testing accuracy of
0.23% when the MLP classifier is used. On the contrary, the
proposed approach shows the maximum increment in mean
testing accuracy is of 36.71% when the G-NB is used, which
shows the power of proposed approach for enhancing the
validation accuracy.

TABLE V: Results on Fungi Dataset

Evaluation Model 12d-FV Proposed approach (14d-FET)
Mean training
accuracy (%)

Mean testing
accuracy (%)

Mean training
accuracy (%)

Mean testing
accuracy (%)

SVM 84.62 84.30 90.71 90.20
DT 98.37 85.44 98.64 92.19
RF 99.14 89.82 99.16 93.81
K-NN 94.13 89.81 95.11 91.15
MLP 94.11 91.81 96.91 92.04
G-NB 46.32 40.18 84.37 76.89

Experimental results on the promoter dataset are shown
in Table VI. It can be observed that the proposed approach
performs better than 12d-FV [3] in all evaluation models in
terms of mean testing accuracy. However, in terms of mean
training accuracy, the 12d-FV approach is giving higher values
than the proposed method for the DT and RF, due to the
over-fitting of the model. The proposed method removes this
drawback, giving more general models that are not biased
towards the training data and produce better results.

TABLE VI: Results on Promoter Dataset

Evaluation Model 12d-FV Proposed approach (14d-FET)
Mean training
accuracy (%)

Mean testing
accuracy (%)

Mean training
accuracy (%)

Mean testing
accuracy (%)

SVM 88.05 75.27 92.13 78.27
DT 97.59 65.90 97.06 72.27
RF 98.65 69.81 98.63 78.18
K-NN 78.50 64.18 85.32 72.54
MLP 99.68 68.63 99.89 73.18
G-NB 77.57 74.36 84.06 79.09

2) Experimental results on unlabeled datasets: We per-
formed extensive experiments on the unlabeled datasets listed
in Table II for a different number of clusters (k) using k-
means and presented the results only few best performing k
values. We compared the proposed approach with the 12d-FV
[3] approach and presented results in terms of SI and silhouette
visualizer.

Table VII displays the results achieved by the proposed 14d-
FET on the SNP-seek rice for k = [2, 10]. The proposed
method yields a greater SI than that of 12d-FV [3] for all
k values. It can be seen from the table that k = 2 yields
the highest SI compared to other k values. So, the silhouette
visualizer for 2 clusters, derived from the proposed 14d-FET
shown in Fig. 3 demonstrates that all clusters have a higher
average SI than the silhouette visualizer presented in Fig. 2
derived from the method of 12d-FV [3].

TABLE VII: SI on k = [2,10] for SNP-seek rice

Number of clusters (k) 12d-FV Proposed 14d-FET
2 0.8010 0.8128
3 0.7043 0.7589
4 0.6163 0.7187
5 0.5980 0.6839
6 0.5636 0.7369
7 0.5600 0.7067
8 0.5554 0.6832
9 0.5558 0.6654
10 0.5611 0.6300

Fig. 2: SNP-seek rice using 12d-FV

Fig. 3: SNP-seek rice using Proposed 14d-FET

Table VIII displays the results achieved by the proposed
14d-FET on the MAGIC-rice for k = [2, 10]. The proposed
method yields a greater SI than that of 12d-FV [3] for all k
values. It can be seen that proposed 14d-FET yields the highest
SI on k = 3 compared to other k values. So, the silhouette
visualizer for 3 clusters, derived from the proposed 14d-FET
shown in Fig. 5 demonstrates that all clusters have a higher
average SI than the silhouette visualizer presented in Fig. 4
derived from the 12d-FV method.

V. CONCLUSION

In this paper, we proposed a novel 14-dimensional feature
extraction method, abbreviated as “14d-FET” for genome data
made up of the four nucleotide bases A, T, G, and C. Utilizing
a novel power method, the proposed 14d-FET tackled the
problem of positional sum and distribution features, which can
sometimes be the same for dissimilar sequences. In addition,
we extracted the most essential features, such as sequence
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TABLE VIII: SI on k = [2,10] for MAGIC-rice

Number of clusters (k) 12d-FV Proposed 14d-FET
2 0.7345 0.7612
3 0.7806 0.8328
4 0.6487 0.7178
5 0.6564 0.7067
6 0.6045 0.6614
7 0.4914 0.6609
8 0.4861 0.6919
9 0.4797 0.7003
10 0.4459 0.7244

Fig. 4: MAGIC-rice using 12d-FV

Fig. 5: MAGIC-rice using Proposed 14d-FET

length and entropy, to improve the effectiveness of the pro-
posed feature extraction approach. Moreover, experimental
results demonstrate that the proposed method generates the
generalized strategy for feature extraction regardless of the
evaluation method employed. When the labeled dataset was
evaluated on six different classifiers, the proposed method
performed better than the existing method. It increased the
precision of validation across all labeled datasets. In the case
of unlabeled datasets, the proposed method likewise performed
well and yielded an enhanced SI compared to existing strategy.
Therefore, we can conclude that the proposed method performs
well in both supervised and unsupervised learning. In the
future, additional feature extraction criteria can be added in
proposed feature extraction method to enhance the efficacy of
feature extraction method.
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