
A Two-Stage Hybrid GA-Cellular Encoding
Approach to Neural Architecture Search

Trevor Londt, Xiaoying Gao, Peter Andreae, Yi Mei
Centre for Data Science and Artificial Intelligence & School of Engineering and Computer Science

Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
trevor.londt@ecs.vuw.ac.nz, xiaoying.gao@ecs.vuw.ac.nz, peter.andreae@ecs.vuw.ac.nz, yi.mei@ecs.vuw.ac.nz

Abstract—Neural Architecture Search (NAS) aims to automate
the creation of Artificial Neural Networks, including Convolu-
tional Neural Networks (CNN), lessening the reliance on labour-
intensive manual design by human experts. A CNN architecture
can be decomposed into a micro- and macro-architecture, each
influenced by distinct design and optimisation strategies to con-
tribute to the overall construction and performance of the CNN.
Cellular Encoding (CE), an evolutionary computation technique,
has been successfully used to represent diverse network topologies
of varying complexities. Recently, CE has been applied to evolve
CNN architectures, showing promising results. However, current
CE-based NAS approaches focus on evolving either the micro-
or macro-architectures without considering the evolution of
both in the same algorithm. Evolving the micro- and macro-
architecture together can increase the performance of evolved
CNN architectures. This research introduces a novel two-stage
hybrid approach, combining Genetic Algorithms (GA) and CE
to evolve both the micro- and macro-architectures to synthesise
CNNs for classification tasks. Candidate macro-architectures are
evolved using a CE approach, while a GA approach is used
to explore the micro-architecture search space. The proposed
algorithm is evaluated across four commonly used datasets and
compared against six NAS peer competitors and five state-of-the-
art manually designed CNN architectures. The results validate
the approach’s high competitiveness, outperforming several peer
competitors on image and text classification tasks.

Index Terms—Neural Architecture Search, Convolutional Neu-
ral Networks, Cellular Encoding.

I. INTRODUCTION

Designing state-of-the-art CNNs for classification tasks
is non-trivial, demanding expert proficiency and substantial
developmental time. Moreover, as the complexity of CNN
architectures has increased, the time required for training has
been significantly extended. Researchers have concentrated on
developing innovative Neural Architecture Search (NAS) algo-
rithms to counter these challenges. These automated solutions
aim to design CNNs without human intervention. Evolutionary
Neural Architecture Search (ENAS) is a promising approach
[1]. Current ENAS approaches primarily revolve around the
evolution of micro-architectures consisting of network layers
such as convolutional, pooling, and activation layers and
then constructing the macro-architecture as an arrangement of
sequentially stacked micro-architectures. The rationale behind
this strategy lies in the reduced training time associated with
micro-architectures as opposed to training the entire macro-
architecture as a whole [2]. This evolved micro-architecture
is used as a building block that forms the backbone of the

CNN macro-architecture. While this approach has evolved
performant CNNs, especially within image classification tasks,
it inherently limits the exploration of multi-path CNN macro-
architectures. Multi-path CNN architectures [3] facilitate the
reuse of features across network layers and provide di-
verse processing pathways similar to network ensembles,
thereby improving classification performance. Furthermore,
there are limited research works that evolve multi-path macro-
architectures, and those that do typically use a predefined
micro-architecture. While this approach has succeeded [4],
particularly for text classification tasks [5], the opportunity
to evolve micro-architectures tailored to the dataset being
modelled is missed. In this work, we propose a new two-
stage hybrid ENAS algorithm to mitigate these limitations and
automatically evolve both micro- and macro-architectures to
synthesise CNN architectures of varying sizes and complexity
for both image and text classification tasks. The evolution
of the micro- and macro-architecture are separated into two
distinct evolutionary processes: a Genetic Algorithm (GA) ap-
proach to evolve micro-architectures and a Cellular Encoding-
based approach to evolve macro-architectures. Experiment
results show that the algorithm is performant in both the image
and text domains. For image classification tasks, the proposed
algorithm attains test classification accuracies of 95.83% and
95.66% on Fashion-MNIST and CIFAR-10, respectively. On
text classification tasks, the proposed algorithm achieved test
classification accuracies of 92.44% and 61.96% on AG’s
News and Yelp Reviews Full, respectively. The results are
highly competitive compared to the current state-of-the ENAS
algorithms and manually designed CNN architectures.

II. BACKGROUND AND RELATED WORK

A. Evolutionary NAS

Early Evolutionary Neural Architecture Search (ENAS)
involved evolving the topology, weights and biases of artificial
neural networks (ANN). With the advent of CNNs, containing
millions of trainable weights, back-propagation (BP) was
found to be a superior approach to training CNNs. However,
with modern innovations and the ever-increasing complexity
of CNN architectures, the need to automatically design the
complex architectures and hyperparameters of CNNs has re-
sulted in renewed interest in ENAS. The modern approach to
ENAS is to use Evolutionary Computation (EC) techniques to
evolve a candidate CNN architecture and to use BP to train

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1814

the architecture [4]. This combined approach has resulted in
impressive performance gains and the introduction of novel
CNN architectures for a range of problem domains and tasks.
A CNN architecture can conceptually be decomposed into a
macro- and micro-architecture, each representing a distinct
search space. It is a common approach for ENAS algorithms
to focus on the micro-architecture search space when involved
in the image domain and the macro-architecture space when
dealing with the text domain [4]. ENAS algorithms in the
image domain typically evolve micro-architectures stacked one
after the other to form the macro-architecture [2]. In contrast,
ENAS algorithms for text domains use a predefined micro-
architecture to be placed as nodes (cells) in the topology of the
evolved macro-architectures [5]. Limited research works con-
sider the evolution of the micro- and macro-architecture in the
same algorithm, which could offer novel CNN architectures
with increased performance. Therefore this work considers the
evolution of both the micro- and macro-architecture.

Genetic Algorithms (GA) have been successfully used in
numerous ENAS algorithms. GAs are generally used for
direct encoding of CNN architectures, which implies that the
size of a chromosome is directly related to the size of an
architecture. This property means that a CNNs architecture
is restricted to the size of the chromosome. Modern CNN
architectures, particularly macro-architectures, are large due to
their increasing depth over recent years. Therefore this work
uses a GA to evolve micro-architectures instead, which are
significantly smaller in size.

B. Cellular Encoding

Cellular Encoding (CE) [6] draws inspiration from how bio-
logical cells divide to create complex organisms. It constitutes
an indirect encoding approach for generating artificial neural
networks. CE has proven its efficacy in evolving Convolutional
Neural Network (CNN) architectures [5], [7]. In CE, genotypes
take the form of tree structures and are encoded as a sequence
of program instructions. These instructions are applied to an
initial neural network, denoted as the ancestor network. The
ancestor network comprises a single ancestor neuron, referred
to as a cell. With each execution of an instruction in the
genotype, the ancestor network undergoes transformations,
leading to complex topologies as cells are added, modified,
or removed. This method permits the neural network topology
to expand organically until a suitably sized network containing
enough capacity to model the given problem is produced. The
set of instructions within cellular encoding is comprehensive,
with the core instructions pertaining to cell duplication. These
encompass Sequential (SEQ), Parallel (PAR), and Recursion
(REC) duplication operations. Sequential duplication involves
a cell undergoing division into two cells connected in series.
Parallel duplication results in a cell dividing into two cells con-
nected in parallel, sharing their inputs and outputs. Recursion
involves reprocessing the genotype from the root node up to a
point in the genotype where the recursion operation was exe-
cuted. Recursion operations are only performed once. Terminal
operations include the END operation, which signifies a leaf

node. Additional instructions relate to manipulating weights
and bias values within the network. The term mother cell
means a cell currently undergoing a CE operation. In contrast,
a child cell refers to the resultant duplicate cell emerging
from SEQ or PAR operations performed on a mother cell.
Our previous research [5] on CE uses Genetic Programming
(GP) [8] to facilitate evolutionary processes. GP genotypes are
variable-length programs represented by tree structures. The
variable length property of individuals in GP algorithms is
an attractive property that allows the representation of various
network topologies sizes ranging from small to very large.
Therefore, this work uses GP to facilitate CE to represent
macro-architectures, allowing both shallow and very deep
CNN macro-architectures to be explored.

C. Related Work

In recent years, CE-based NAS algorithms have successfully
been applied to evolving CNN architectures. Broni-Bediako et
al. [7] have proposed a new version of Cellular Encoding [7]
representation. Their proposed representation is a symbolic
linear generative encoding scheme that embeds local graph
transformations in Cellular Encoding-based chromosomes.
Evolved micro-architectures are stacked according to manually
designed macro-architecture structures. This approach limits
their algorithm to predefined macro-architecture configura-
tions, missing out on exploring novel macro-architectures.
Their work implements four CE operations: SEQ, CPI, CPO
and END. SEQ is the sequential split operation. CPI is also a
sequential split operation; however, the child and parent have
the same inputs but different outputs. CPO is a sequential
split operation, but the child and parent share the same
outputs but different inputs. The final implemented operation
is the END terminal. Another limitation of their approach is
that they have not implemented the parallel split operation
(PAR), where a child and parent share the same inputs and
outputs. This limitation removes a significant and potentially
important subset of the micro-architecture search space. Each
chromosome has a fixed-length number of genes represent-
ing grouped CE operations and network layers. In essence,
they have produced a hybrid direct-indirect encoding scheme
where Cellular Encoding is used to evolve the CNN’s micro-
architecture topology, and the configuration parameters of
convolutional layers are embedded in the chromosome. Results
indicated the algorithm is highly performant, particularly on
the CIFAR-10 dataset. Their algorithm has not been extended
to other domains, such as the text domain. Our previous work
[5] proposed a CE-based NAS algorithm, GP-Dense, to evolve
character-level CNN architectures for text classification tasks.
We define a network cell as containing a manually designed
micro-architecture. Our algorithm evolves macro-architectures
containing several network cells. The core operations of CE
are implemented, namely, the SEQ, PAR and END operations.
The SEQ operation duplicates a parent cell to produce a
child cell, and the two are connected in series. The PAR
operation performs similarly, except the child and parent cell
are connected in parallel, sharing inputs and outputs. Results

1815

indicated competitive performance across various text datasets
against manually designed CNN architectures. A limitation of
our algorithm is using manually designed micro-architectures,
as it is unknown which are optimal for a particular text dataset.
Furthermore, our algorithm has yet to be extended to the image
domain.

III. PROPOSED METHOD

The performance of a micro-architecture is measured in
conjunction with an appropriate macro-architecture, which
together constitute the main parts of a CNN architecture.
However, different macro-architectures may display different
performance accuracies, even when using the same micro-
architecture. This situation presents the problem of which
macro-architecture to use to measure the performance of
an evolved micro-architecture. To overcome this challenge,
we propose a two-stage NAS algorithm, GACE-NAS, which
first focuses on evolving micro-architectures using a set of
predefined macro-architectures and then, in stage two, evolves
a population of candidate macro-architectures using the best-
evolved micro-architecture from stage one. A new GA encod-
ing is proposed to represent candidate micro-architectures, and
the CE representation, as proposed in our previous work, GP-
Dense [5], is used to facilitate the representation and evolution
of macro-architectures. However, the CE representation intro-
duced by GP-Dense is modified to facilitate the evolution of
CNNs for both image and text classification tasks.

The overall process of the proposed algorithm is presented
in Fig. 1. The algorithm begins with generating a subset of the
training set as the GP-Dense algorithm does. Three candidate
macro-architectures are generated using the CE representation
as used by GP-Dense. These macro-architectures are used
to determine the fitness of the micro-architectures that will
be evolved during this stage. Only three candidate macro-
architectures are considered due to the high computational
cost and limited hardware resources available. Next, a popula-
tion of randomly generated micro-architectures is constructed.
Each of the candidate micro-architectures is evaluated in
all three macro-architectures. The micro-architecture fitness
is calculated as the average of the validation classification
accuracies of the three macro-architectures using the candidate
micro-architecture. The evolutionary process to further evolve
micro-architectures is conducted until a terminating criterion
is achieved. The evaluation and calculation of the fitness of
a candidate micro-architecture is the average fitness value at-
tained from evaluating all three candidate macro-architectures.
Note that if a CNN architecture does not fit into the GPU
memory, the micro-architecture’s fitness measure in the current
macro-architecture is assigned a value of -1.0. This approach
means that a micro-architecture’s fitness is partially reliant
on the ability of a CNN to fit into the GPU memory. This
approach is acceptable because the GPU memory is part of
the evolutionary environment in which the micro-architecture
must be fit enough to survive. Once a terminating criterion
has been met, the best-evolved micro-architecture is supplied
to stage two of the proposed algorithm. A population of macro-

architectures using the GP-Dense [5] representation is created,
with each candidate macro-architecture using the best-evolved
micro-architecture from stage one to synthesise a CNN archi-
tecture. The macro-architecture evolution process is conducted
until a terminating criterion is met. The best-evolved macro-
architecture with the best-evolved micro-architecture from
stage one is then, along with the entire training dataset, used
to synthesise and train a CNN architecture, after which the test
set is used to conduct inference to attain the final test accuracy
result.

A. Micro-architecture Representation

A new micro-architecture representation is proposed, and a
visual representation is displayed in Fig. 2. Each genotype is
represented as a chromosome consisting of a specified small
number of genes, of which all genes except the last, can each
take a value in the range [0, 8], inclusive. The possible values
represent a particular layer type or operation, as presented in
Table I.

Layer type Layer type Layer type Layer type Link typeLayer type Layer type

Fig. 2. GA-XCGP: Genotype for micro-architecture representation.

Each gene represents a layer connected to its neighbours,
implying that this encoding will facilitate the representation
of micro-architectures with linearly-chained topologies. Since
each chromosome is limited to a small number of genes, the
generated micro-architectures are small and similar in depth
to those of expert-designed micro-architectures, as in ResNet
[9], DenseNet [10], and VDCNN-Convolution [11]. Three
commonly used kernel sizes are catered for, namely 3, 5, and
7. These kernel values are effective sizes for CNN applied
to image and text classification tasks, as seen in ResNet [9],
InceptionNet [12], DenseNet [13], and VDCNN-Convolution
[11] architectures. The padding values are chosen to ensure
that the resultant feature maps retain their dimension size
to reduce the pooling operations needed when concatenating
feature maps on the macro-architecture level as is implemented
by GP-Dense [5].

TABLE I
LAYER TYPES AND VALUES.

Gene Value Layer Type Kernel Size Stride Padding
0 Convolution 3 1 1
1 Convolution 5 1 2
2 Convolution 7 1 3
3 ReLU - - -
4 Leaky ReLU - - -
5 Batch Normalisation - - -
6 Max Pooling 2 2 1
7 Average Pooling 2 2 1
8 Ignore - - -

Two activation functions are available, ReLU, and its mod-
ern variant, LeakyReLU. Catering for both activation functions
will allow the evolutionary process to determine which variants
are favoured for the task at hand. Batch Normalisation is
catered for, and two pooling functions are provided: Max

1816

Init ialise
micro-architecture

populat ion Micro-architecture
Evolut ionary

search

Terminate?
Best

micro-architecture
InferenceYes

Training
Set

Test Set

Validat ion
Set

Training subset Full t raining set

No

Random candidate
macro-architectures

Augmented
training data

Init ialise
macro-architecture

populat ion

Macro-architecture
Evolut ionary

search
Terminate?

Training subset

No

Best micro- and
macro-architecture

Yes
Retrain from

scratch

Stage One Stage Two

Fig. 1. Framework of GACE-NAS.

and Average Pooling. These pooling operations are commonly
used in the literature for text and image classification tasks.
The pooling operations use a kernel size of two and a stride
of two, as frequently used in the literature. The final available
gene value is an ignore layer, represented by the number
eight, which allows the construction of micro-architectures of
varying depths.

The last gene can take a value in the range [0, 2] as
listed in Table II, representing the type of skip link to be
used or if a skip link is absent. A value of 0 indicates
that the micro-architecture has no skip link. A value of 1
or 2 indicates that a skip link is present with a connection
operation of either concatenation or summation, respectively.
The summation operation, as ResNet uses, allows the number
of channels to remain fixed, resulting in a compact micro-
architecture [9]. The concatenation operation, as used in In-
ceptionNet and DenseNet, allows feature reuse; however, this
has the disadvantage that the micro-architecture requires larger
memory sizes in which to be hosted [12]. Note that each skip
link type has a 33.33% chance of being selected, meaning that
there is a 66.66% chance that a micro-architecture will have
a skip link. This approach is deliberate as a skip link is more
valuable than not, especially in deeper CNNs [14].

TABLE II
LAYER TYPES AND VALUES.

Gene Value Skip link Type
0 No Skip Link
1 Concatenation Skip Link
2 Summation Skip Link

B. Macro-architecture Representation

This work uses a modified version of the CE representation
implemented in the GP-Dense algorithm [5]. To capture the
general workings of cellular encoding, the sequential cell
division (S) and parallel cell division (P) operations are imple-
mented. Four new modifier operations are introduced, namely,
Increment Depth (ID), Decrement Depth (DD), Increment
Width (IW), and Decrement Width (DW). These modifiers
can be applied with the S and P operations, for example, SID,

SDDIW, PDW, PIDDW, etc. The modifier operations apply a
transformation to the micro-architecture blocks contained in a
cell that is currently being operated on. Note that the modifiers
ID and DD can not be applied together. Neither can IW and
DW. This means that there are 18 possible combinations for
the proposed encoding.

The workings of the implemented operations and modifiers
are explained below:

1) S: A child cell is constructed that inherits the mother
cell’s number of filters and depth. The child cell is
inserted into the network in series after the mother cell.
The mother cell’s output channels are connected to the
child’s input channels. The child cell’s output channels
will be connected to the mother cell’s original output
destination.

2) P: A child cell is constructed that inherits the mother
cell’s number of filters and depth. The child cell is
connected in parallel with the mother cell in the network.
The mother and child cells receive the same input
channels, and their output channels are concatenated in a
channel-wise format and connected to the mother cell’s
original output destination.

3) ID: The depth of a child’s cell is twice as deep as the
inherited mother’s cell. i.e. the child cell will contain
twice as many stacked micro-architecture copies as the
mother’s cell contains.

4) DD: A child cell’s stacked micro-architecture blocks are
half that of the mother cell’s number of stacked micro-
architecture blocks. A child cell will always contain at
least one micro-architecture block.

5) IW: The child cell inherits twice as many filters as the
mother cell.

6) DW: The child cell inherits half the number of filters
from the mother cell or a minimum specified number of
filters, whichever is the largest.

C. Population Initialisation

1) Micro-architecture initialisation: the population initial-
isation method ensures that every individual contains
at least one convolutional layer. The values in the

1817

chromosome of an individual are randomly chosen from
the available layer types until a predefined chromosome
length between a specified minimum and maximum size
has been attained. After an individual is generated, it is
checked for at least one convolutional layer. If none are
found, a random position in the individual is selected to
be converted to a convolutional layer.

2) Macro-architecture initialisation: Individuals between
specified minimum and maximum depths are randomly
generated, with each possible combination of operator
and modifiers in the function set, selected based on a
uniform distribution basis.

D. Mutation

1) Micro-architecture mutation: A random gene in the
chromosome is selected. If the selected gene is a skip
link type, then a different, randomly selected skip link
type is chosen to replace the gene’s value. Suppose
the gene represents a convolutional layer, and it is the
only convolutional layer type in the chromosome. In that
case, the gene can only be mutated to another convolu-
tional layer with different kernel sizes and corresponding
padding values. This design decision ensures that a
micro-architecture will always contain a convolutional
layer. On the other hand, if the gene does not represent
the only convolutional layer, then the gene can be
mutated to any other layer type as presented in Table I.
Note that all initially created genotypes will always have
at least one convolutional layer, as previously discussed.

2) Macro-architecture mutation: A uniform single-point
mutation operation is chosen for the proposed algorithm.
The operation involves randomly selecting a node in
the genotype that is replaced by a randomly generated
subtree of a specified size. The operation is based on
that used by GP-Dense [5].

E. Crossover

1) Micro-architecture crossover: A random position in each
of the parent chromosomes is selected. The point rep-
resents the position indices where the first and second
parents exchange genes. Once the exchange of gene
information has been completed, the results are two
new offspring genotypes. Both offspring genotypes are
checked to ensure each contains at least one convolu-
tional layer. If either does not include a convolutional
layer, the crossover operation is considered a failure and
the offspring are discarded.

2) Macro-architecture crossover: The single-point
crossover operation is chosen for its simplicity
of operation and implementation. The single-point
crossover operation works by randomly selecting a
point in each parent genotype, and the sub-trees formed
below these two points are crossed over between the
parents to create two offspring. The operation is based
on the same operation used in GP-Dense [5].

F. Selection

Tournament selection is used for both the micro-architecture
and macro-architecture evolutionary processes. Tournament
selection is chosen as it reasonably balances exploration and
exploitation, which the tournament size can control. Further-
more, tournament selection is a popular method in evolution-
ary NAS algorithms in the literature.

G. Fitness Function

During stage one, each candidate micro-architecture is eval-
uated in three predefined macro-architectures. The fitness of
the micro-architecture is calculated as the average validation
accuracy attained by each predefined macro-architecture us-
ing the candidate micro-architecture. In stage two, a new
population of macro-architectures is evolved using the best
micro-architecture produced during stage one. The validation
accuracy determines the fitness of each candidate’s macro-
architecture during stage two.

H. Data Augmentation

Data augmentation is standard practice in the NAS literate,
particularly for image classification tasks. However, using data
augmentation when designing character-level CNN architec-
tures for text classification tasks is not common practice. To
ensure that the performance of the proposed algorithm is fairly
compared against peer competitors, data augmentation is only
used by the proposed algorithm when evolving CNNs image
classification tasks.

IV. EXPERIMENT DESIGN

A. Benchmark Datasets and Peer Competitors

Four datasets are chosen to test the utility of the proposed
algorithm for classification tasks. Two datasets are from the
image domain, and the other two are from the text domain.
Fashion-MNIST and CIFAR-10 are chosen to benchmark
image classification tasks. Similarly, AG’s News and Yelp Re-
views Full are commonly used benchmark datasets to evaluate
CNNs for text classification tasks and, therefore, used in this
work. The algorithm is evaluated across thirty independent
experiment runs per dataset. To accelerate the training times
of candidate CNN architectures, the experiment runs are
distributed across four NVIDIA RTX 2080 GPUs. For image
classification tasks, the manually designed ResNet [9], Incep-
tionNet [12], and DenseNet [13] are selected. Furthermore,
the peer competitor NAS algorithms EvoCNN [15], FPSO
[10], CGP-CNN-ConvSet [16], EIGEN [17] and CE-GeneExpr
[7] are chosen as peer competitors for image classification
tasks. Two manually designed CNN architectures, Zhang-
Full-Convolution [18] and VDCNN-Convolution [11], and the
state-of-the-art GP-Dense [5] NAS algorithm are chosen as
peer competitors for text classification tasks.

B. Parameter Settings

The parameter settings are based on community conventions
and those used in CE-based NAS algorithms [5], [7]. Table III
lists the parameters for the GA algorithm used in stage one

1818

to evolve candidate micro-architectures. A small population
and the number of generations are chosen to reduce the
required computational time and costs associated with ENAS
algorithms.

TABLE III
PARAMETERS FOR MICRO-ARCHITECTURE EVOLUTION.

Parameter Setting
Population Size 10
Generations 10
Chromosome Length [4,7]
Minimum filter count 32
Elitism 0.1
Mutation Probability 0.01
Mutation Type Custom single point
Crossover Probability 0.50
Crossover Type Custom single point

Table IV lists the parameter settings used for the GP-based
CE algorithm used in stage two to evolve macro-architectures.
Since the GP-based algorithm used in stage two is based on
the representation used by GP-Dense [5], the same parameter
and evolutionary operation settings are also used. The number
of generations and population size are both set to twenty. This
number is chosen to reduce the amount of computation time
required and is based on current CE-based ENAS algorithms
[5], [7].

TABLE IV
PARAMETERS FOR MACRO-ARCHITECTURE EVOLUTION.

Parameter Setting
Number of generations 20
Population size 20
Elitism 0.1
Mutation probability 0.01
Mutation growth type Grow
Mutation tree growth size [1,3]
Crossover probability 0.5
Crossover type Single point
Tournament selection size 3
Function set (Operations) SEQ,PAR
Terminals {END}
Max tree depth 17
Initial tree depth [1, 6]
Initial tree growth Half and Half

V. RESULTS AND DISCUSSIONS

A. Test Accuracies

The best test results produced from the thirty independent
experiment runs of the proposed algorithm are presented in
Table V and VI for the image and text datasets, respectively.
On the image datasets, GACE-NAS has attained a test accu-
racy of 95.83% on the Fashion-MNIST dataset, outperforming
all other competitors. On the CIFAR-10 dataset, GACE-NAS
has performed well, outperforming all peer competitors, except
the current state-of-the-art CE-GeneExpr NAS algorithm and
the manually designed DenseNet architecture. It is interesting
to note that the top-performing NAS algorithms are both CE-
based, highlighting the utility of using CE to evolve CNN
architecture for image classification tasks.

TABLE V
IMAGE CLASSIFICATION: TEST ACCURACIES (%) COMPARED TO PEER

COMPETITORS. (M = MANUAL, N = NAS, ’-’ = NOT AVAILABLE)

Algorithm Type Fashion-MNIST CIFAR-10
GACE-NAS (ours) N 95.83 95.66
EvoCNN [15] N 94.53 -
FPSO [10] N 95.07 93.72
CGP-CNN-ConvSet [16] N - 93.25
EIGEN [17] N - 94.60
CE-GeneExpr [7] N - 96.26
ResNet [9] M 93.40 93.57
InceptionNet (GoogLeNet) [12] M 92.74 93.64
DenseNet [13] M 93.91 96.54

On the text datasets, GACE-NAS has attained a test ac-
curacy of 92.44% for the AG’s News dataset, outperform-
ing all peer competitors. GACE-NAS has outperformed the
current state-of-the-art GP-Dense NAS algorithm for the Yelp
Reviews Full Full dataset. VDCNN-Convolution remains the
top-performing architecture, highlighting the difficulty of NAS
algorithms to model the challenging Yelp Reviews Full dataset.
However, it should be remembered that VDCNN-convolution
is a human-expert, manually designed architecture. GACE-
NAS is performant across both image and text classification
domains and, to date, is the only CE-based NAS algorithm
effective in more than one classification domain.

TABLE VI
TEXT CLASSIFICATION: TEST ACCURACIES (%) COMPARED TO PEER

COMPETITORS. (M = MANUAL, N = NAS)

Algorithm Type AG’s News Yelp Reviews Full
GACE-NAS (ours) N 92.44 61.96
GP-Dense [5] N 89.58 61.05
Zhang-Full-Convolution [18] M 90.15 61.60
VDCNN-Convolution [11] M 91.27 64.72

B. Best Evolved Micro-architectures

Fig. 3 displays the best micro-architectures evolved for
the image datasets. For the Fashion-MNIST dataset, the
micro-architecture consists of a LeakyReLU activation layer,
two convolutional layers, two batch normalisation layers,
and a skip link using a summation operation. The evolved
micro-architecture is similar to a ResNet convolutional block,
demonstrating that GACE-NAS can evolve highly competitive
ResNet-like micro-architectures.

B
at

ch
 N

or
m

al
is

at
io

n

C
on

vo
lu

ti
on

 k
=3

L
ea

ky
R

eL
U

B
at

ch
 N

or
m

al
is

at
io

n

C
on

vo
lu

ti
on

 k
=3

Sum

(a) Fashion-MNIST

R
eL

U

C
on

vo
lu

ti
on

 k
=3

C
on

vo
lu

ti
on

 k
=3

C
on

vo
lu

ti
on

 k
=3

R
eL

U

Cat.

B
at

ch
 N

or
m

al
is

at
io

n

(b) CIFAR-10

Fig. 3. Best micro-architectures for image datasets.

The evolved micro-architecture for CIFAR-10 consists of
six layers. CIFAR-10 is more challenging to model than

1819

Fashion-MNIST. This would explain why the evolved micro-
architecture is more complex than the one for Fashion-MNIST.
The evolved micro-architecture consists of two ReLU acti-
vation layers, three convolutional layers with a kernel size
of three and one batch normalisation layer. In addition, a
skip link is present using a concatenation operation. Interest-
ingly, the evolutionary process has favoured a concatenation
operation over a summation operation, in contrast to the
micro-architecture evolved for the Fashion-MNIST dataset.
This observation implies a DenseNet-like approach should be
considered when modelling CIFAR-10.

Fig. 4 displays the best micro-architectures evolved for
the text datasets. The micro-architecture for AG’s News
contains a batch normalisation layer, two ReLU activation
layers and two convolutional layers with a kernel size of
three. The state-of-the-art architecture, VDCNN-Convolution
[11], contains a micro-architecture that consists of the same
type and quantity of layers except for an additional batch
normalisation layer. GACE-NAS has successfully evolved a
micro-architecture with properties similar to the state-of-the-
art VDCNN-Convolution micro-architecture, which demon-
strates the effectiveness of GACE-NAS for evolving micro-
architectures on par with those designed by human experts.

R
eL

U

C
on

vo
lu

ti
on

 k
=3

C
on

vo
lu

ti
on

 k
=3

B
at

ch
 N

or
m

al
is

at
io

n

R
eL

U

Cat.

(a) AG’s News

B
at

ch
 N

or
m

al
is

at
io

n

C
on

vo
lu

ti
on

 k
=5

R
eL

U

C
on

vo
lu

ti
on

 k
=3

Cat

R
eL

U

C
on

vo
lu

ti
on

 k
=3

(b) Yelp Reviews Full

Fig. 4. Best micro-architectures for text datasets.

For the Yelp Reviews Full dataset, the evolved micro-
architecture is relatively complex and has no similarities to
known expert-designed micro-architectures. Regardless, the
micro-architecture has achieved competitive results. This ob-
servation means an evolutionary approach to evolving un-
orthodox micro-architectures appears promising on the Yelp
Reviews Full dataset.

VI. CONCLUSIONS

This paper introduces an EC based NAS algorithm that
automatically evolves high-performance micro- and macro-
architectures to synthesise CNN architectures for classification
tasks. The proposed algorithm uses a hybrid GA and CE
approach to evolve the micro- and macro-architectures, respec-
tively. Experiment results show that the algorithm can evolve
highly competitive CNN architectures. Our best-evolved net-
works defeated all state-of-the-art peer competitors for image
and text classification tasks across the AG’s News and Fashion-
MNIST datasets and achieved competitive results on the Yelps
Reviews Full and CIFAR-10 datasets. Further research will ap-
ply the algorithm to larger image datasets, such as ImageNet,

and innovate a novel approach to evolve the micro- and macro-
architectures simultaneously but in isolation to further improve
classification performance.

REFERENCES

[1] Z.-H. Zhan, J.-Y. Li, and J. Zhang, “Evolutionary deep learning: A
survey,” Neurocomputing, pp. 42–58, 2022.

[2] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient
Neural Architecture Search via parameter Sharing,” in 35th International
Conference on Machine Learning, ICML 2018, vol. 9, pp. 6522–6531,
International Machine Learning Society (IMLS), 2 2018.

[3] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,” Artificial
Intelligence Review, vol. 53, no. 8, pp. 5455–5516, 2020.

[4] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A
Survey on Evolutionary Neural Architecture Search,” IEEE Transactions
on Neural Networks and Learning Systems, 2021.

[5] T. Londt, X. Gao, and P. Andreae, “Evolving Character-Level DenseNet
Architectures Using Genetic Programming,” Lecture Notes in Computer
Science, pp. 665–680, 2021.

[6] F. Gruau, F. Gruau, L. C. B.-l. I, O. A. D. De Doctorat, M. J. Demongeot,
E. M. M. Cosnard, M. J. Mazoyer, M. P. Peretto, and M. D. Whitley,
“Neural Network Synthesis Using Cellular Encoding And The Genetic
Algorithm.,” 1994.

[7] C. Broni-Bediako, Y. Murata, L. H. B. Mormille, and M. Atsumi,
“Evolutionary NAS with Gene Expression Programming of Cellular En-
coding,” in 2020 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 2670–2676, 2020.

[8] J. R. Koza, “Genetic programming as a means for programming com-
puters by natural selection,” Statistics and Computing 1994 4:2, vol. 4,
pp. 87–112, 6 1994.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 770–778, 12 2016.

[10] J. Huang, B. Xue, Y. Sun, and M. Zhang, “A Flexible Variable-
length Particle Swarm Optimization Approach to Convolutional Neural
Network Architecture Design,” 2021 IEEE Congress on Evolutionary
Computation, CEC 2021 - Proceedings, pp. 934–941, 2021.

[11] A. Conneau, H. Schwenk, Y. L. Cun, and L. Barrault, “Very deep
convolutional networks for text classification,” in 15th Conference of
the European Chapter of the Association for Computational Linguistics,
EACL 2017 - Proceedings of Conference, vol. 2, pp. 1107–1116,
Association for Computational Linguistics (ACL), 2017.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 1–9, 10 2015.

[13] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-
Janua, pp. 2261–2269, 11 2017.

[14] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016.

[15] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving Deep Convolu-
tional Neural Networks for Image Classification,” IEEE Transactions on
Evolutionary Computation, pp. 394–407, 4 2020.

[16] M. Suganuma, S. Shirakawa, and T. Nagao, “A Genetic Programming
Approach to Designing Convolutional Neural Network Architectures,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’17, pp. 497–504, 2017.

[17] J. Ren, Z. Li, J. Yang, N. Xu, T. Yang, and D. J. Foran, “Eigen:
Ecologically-inspired genetic approach for neural network structure
searching from scratch,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 9051–
9060, 6 2019.

[18] X. Zhang, J. Zhao, and Y. LeCun, “Character-Level Convolutional Net-
works for Text Classification,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1,
NIPS’15, (Cambridge, MA, USA), p. 649–657, MIT Press, 2015.

1820

