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Abstract—The hypervolume-based multi-objective evolution-
ary algorithms (HV-MOEAs) have proven to be highly effec-
tive in solving multi-objective optimization problems. However,
the computation time of the hypervolume calculation increases
significantly as the number of objectives increases. To address
this issue, an R2-based hypervolume contribution approximation
(R2-HVC) method was proposed. Nevertheless, the original R2-
HVC generates a large number of vectors and computes the
HVC only once. In this study, we propose an ensemble method
based on the R2-HVC method. By using a small number of
vectors for repetitive computation and majority voting, the
ensemble method can reduce the probability of making incorrect
choices. Experimental results show that the proposed method can
improve the approximation accuracy while maintaining a similar
computation time to the original R2-HVC method.

Index Terms—Multi-objective Optimization, Hypervolume
Contribution, Ensemble Method, Majority Voting

I. INTRODUCTION

In multi-objective optimization problems (MOPs), a set of
m conflicting objectives F (x) = (f1(x), f2(x), . . . , fm(x))
are optimized simultaneously, where each objective is a func-
tion of d decision variables (x1, . . . , xd).

Over the years, various multi-objective evolutionary algo-
rithms (MOEAs) have been proposed to solve MOPs. In the lit-
erature, MOEAs can be classified into three categories: Pareto
dominance-based algorithms [1], decomposition-based algo-
rithms [2], and indicator-based algorithms [3, 4]. In the con-
ventional Pareto dominance-based algorithms such as NSGA-
II [1] and SPEA2 [5], the quality of a solution is determined
by its rank in the non-dominated sorting. However, as the
number of objectives increases, the number of non-dominated
solutions also increases, which leads to convergence issues.
The decomposition-based algorithms (e.g., MOEA/D [2]) de-
compose MOPs into a set of subproblems and optimize them
simultaneously, showing an excellent performance for both
multi-objective and many-objective problems [6]. However,
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the MOEA/D’s performance is highly dependent on the shape
of the Pareto front [7]. The MOEA/D with a standard weight
vector set is less effective on problems with an irregular
Pareto front [8]. The indicator-based algorithms, such as IBEA
[4] and SMS-EMOA [3], employ performance indicators like
hypervolume (HV) [9], inverted generational distance (IGD)
[10], and R2 indicator [11] to guide the evolutionary search.
These indicators measure the quality of the current population
and guide the algorithm to obtain the optimal set.

Among the indicator-based algorithms, hypervolume-based
MOEAs convert the multi-objective problem into a single-
objective problem, which performs exceptionally well on
MOPs with two or three objectives. However, the computation
of hypervolume is NP-hard, and its computation time grows
exponentially with the increase of the dimension of objective
space [12], making it impractical for many-objective problems.
To deal with this issue, hypervolume approximation methods
such as the Monte Carlo sampling method [13] and R2-based
HV approximation (R2-HV) method [14] were introduced to
speed up the computation.

The goal of SMS-EMOA is to maximize the hypervolume of
the population. To achieve this goal, the algorithm computes
the hypervolume contribution (HVC) of each solution indi-
vidually. At each iteration, the solution with the lowest HVC
is removed from the population. In the conventional method,
the HVC of a solution s to a population A is calculated as
the difference between HV(A) and HV(A\{s}). To compute
the HVC approximation directly, a new R2-based method
called R2-based HVC approximation (R2-HVC) has been
introduced [15]. Experimental results demonstrate that the R2-
HVC outperforms both the Monte Carlo sampling method
and the traditional R2-based method in terms of accuracy and
efficiency [15].

In the original R2-HVC, a large number of vectors are
utilized, and the worst solution is selected by estimating the
HVC only once, leading to potential errors. To address this
issue, we present an ensemble method based on the original
R2-HVC in this paper. The main idea is to use a small number
of vectors to perform multiple approximations and select the
solution with the highest frequency through voting.

The remainder of this paper is organized as follows. In
Section II, the concepts of HV and HVC are briefly explained.
Then the R2-HVC and the correct identification rate (CIR)
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(a) HV (b) HVC

Fig. 1. Illustration of (a) the HV of the solution set A = {a1,a2,a3}, and
(b) the HVC of the single solution a2 to A.

indicator are introduced. In Section III, we first present a
baseline ensemble method and then improve its ensemble
process. Section IV compares our proposed method with the
original R2-HVC to validate the effectiveness of the number of
vectors and the number of iterations. In Section V, we make
two improvements based on the sampling ensemble method
and evaluate them experimentally. Finally, we conclude and
discuss this paper in Section VI.

II. PRELIMINARIES

In this section, we briefly explain the concepts of hyper-
volume (HV) and hypervolume contribution (HVC). Then, we
introduce the R2-HVC, which is used to estimate the HVC and
serves as the basis for our ensemble method. Additionally, we
introduce the correct identification rate (CIR). We also explain
the limitation of the R2-HVC.

A. Hypervolume and Hypervolume Contribution

Throughout this paper, we assume the maximization of m
objectives. We define A ⊂ Rm as a solution set, r ∈ Rm as a
reference point for HV calculation, and s as a single solution
in the set A. Figure 1 illustrates the concepts of HV and HVC
for a 2-objective maximization problem. Specifically, Figure
1(a) depicts the HV as the area enclosed by the solution set
A and the reference point r. Figure 1(b) explains the HVC of
a2 as the red region which is only dominated by a2.

The mathematical formula for the HV of the set A is defined
as:

HV(A, r) = L

(⋃
a∈A

{b | a ≻ b ≻ r}

)
, (1)

where L is the Lebesgue measure of a set, and a ≻ b means
b is dominated by a.

The HVC of a single point s to the set A is the difference
of HV(A) and HV(A\{s}), which can be written as:

HVC(s, A, r) = HV(A, r)−HV(A\{s}, r). (2)

B. R2-based Hypervolume Contribution Approximation

As computing the exact value of HVC can be time-
consuming, Shang et al. [15] proposed a method that calculates
HVC using the length of the vectors. Figure 2 depicts the usage
of a set of vectors to estimate the area of HVC.

Fig. 2. A 2-objective case using R2-based method to approximate the HVC
of solution a2.

(a) Situation 1 (b) Situation 2

Fig. 3. Illustrations of (a) the vector which intersects with the attainment
surface of the set A\{s}, and (b) the vector intersects with the attainment of
the reference point.

In situation 1 in Figure 3(a), each vector starts from the
single point s = a2 and intersects with the attainment surface
of the set A\{s} (i.e., in Figure 3(a)). The length is calculated
using the following formula:

L1(s, A\{s}, λ) = min
a∈A\{s}

{g∗2tch(a|λ, s)}, (3)

where λ = (λ1, λ2, ..., λm) is one of the vectors, the minimum
value in Equation (3) is the length from s to the attainment
surface, and g∗2tch is the 2-Tch function defined as follows:

g∗2tch(a|λ, s) = max
j∈{1,...,m}

sj − aj
λj

, (4)

In Situation 2 in Figure 3(b), the intersection point is located
on the edge of the reference point, as shown in Figure 3(b).
The length is calculated as follows:

L2(s, r, λ) = gmtch(r|λ, s) = min
j∈{1,...,m}

|sj − rj |
λj

, (5)

At each calculation, the smallest value of L1 and L2 is
chosen as the length of the vector λ:

Lλ = min{L1(s, A\{s}, λ), L2(s, r, λ)}. (6)

The average of all vector lengths with m-th power is
calculated in Equation (7) as the final HVC approximation,
where V is a set of vectors and m is the number of objectives.

RHV C
2 (s, A, V, r) =

1

|V |
∑
λ∈V

Lm
λ . (7)
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Fig. 4. Experimental results of the R2-HVC on different PF shapes.

Note that Equation (4) is only applicable for maximizing all
objectives in MOPs, which is assumed throughout this paper.
In the case of minimization, the positions of sj and aj should
be swapped. For details. please refer to [15].

C. Correct Identification Rate

The correct identification rate (CIR) measures the ability to
correctly identify the worst solution using the approximated
HVC. The approximation method evaluates l solution sets,
each containing n solutions (e.g., S1 = {a11, a21, ..., an1}).
From each set Si, we select k worst solutions according to
the approximated HVC and name them SR2

i . Furthermore,
aWorst
i represents the worst solution calculated according to

the true HVC. A correct identification occurs if aWorst
i is

included in SR2
i . CIR is the ratio of the total number of correct

identifications to the total number of solution sets.
R2HCA-EMOA [16] is a multi-objective evolutionary al-

gorithm that uses the R2-HVC to estimate the HVC. In each
iteration, R2HCA-EMOA searches for the solution with the
smallest HVC and eliminates it. In this process, we only
focus on the worst solution. Consequently, this paper solely
considers the scenario where k = 1.

To evaluate the R2-HVC, we conduct a straightforward
experiment and measure its performance using the CIR indica-
tor. We generate solution sets from m-objective maximization
problem with various Pareto front (PF) shapes, including
linear, convex, concave, linear inverted, convex inverted, and
concave inverted. Each Pareto front shape contains 100 solu-
tion sets, and each solution set contains 100 solutions. We use
the R2-HVC to select the worst solution from each solution
set, and then calculate the CIR value based on the different
shapes. Let us take the 8-objective and 10-objective problems
as examples and observe the change in the CIR value.

The formulations of the linear, concave and convex PFs are
as follows: f1+f2+...+fm = 1, f2

1+f2
2+...+f2

m = 1,
√
f1+√

f2 + ... +
√
fm = 1, where fi ∈ [0, 1]. For inverted cases,

we invert the solution and remap it to [0, 1] using the formula
fi = 1 − fi, where i = 1, 2, ...,m. We use the Unit Norm
Vector (UNV) method to generate vectors in the R2-HVC,
as recommended in [17]. The UNV method firstly samples a
set of vectors from a normal distribution and then transforms
these vectors to satisfy

∑M
i=1 λi = 1 [18]. The reference point

is fixed at (−0.1, ...,−0.1). We specify the number of vectors
as |V | ∈ {10, 20, 50, 100, 200, 500, 1000} for each experiment
and repeat 21 runs to obtain the average CIR value.

Figure 4 illustrates the change of the CIR value with the
number of vectors for 8-objective and 10-objective problems,
respectively. Different subplots represent different PF shapes.
A general trend in Figure 4 is that increasing the number
of vectors improves the identification accuracy. However, this
trend is not effective for some specific shapes of solutions.
For instance, the CIR values for inverted concave PFs (the
rightmost figure in Figure 4) are about 0.3 even when the
number of vectors is 1000. In general, better results are
obtained for 8-objective problems than 10-objective problems.

D. The Limitation of R2-HVC

In the original R2-HVC, the length of vectors is used to
approximate the area of the HVC, which means the R2-
HVC depends on the choice of vectors. As we have already
explained in Figure 4, the increase in the number of vectors
improves the accuracy of R2-HVC. However, even when we
use 1000 vectors, the accuracy of R2-HVC is not so high in
some cases. Moreover, the increase in the number of vectors
also extends the computation time. Thus, we cannot use a
large number of vectors. To further examine the characteristic
features of R2-HVC, we generate a set of 100 solutions from
the 8-objective linear triangular PF. Then we apply R2-HVC
with 1000 vectors 1000 times to select the worst solution.
Due to the randomness in creating vectors in R2-HVC, a
different solution can be selected as the worst solution in each
of the 1000 runs. We count the number of runs where each
solution is selected as the worst solution. Experimental results
are summarized in Figure 5 where the true worst solution is
solution 11. In Figure 5, this solution is correctly selected in
about 300 runs. This means that the worst solution selection
is incorrect in about 700 runs. From Figure 5, we choose the
top eight solutions and show the true HVC of each solution
in Table I. From Table I, we can see that the difference of
HVC between the true worst solution (i.e., solution 11) and
the second most frequently selected solution (i.e., solution
76) is very small. That is, we need a very accurate HVC
approximation for correctly selecting solution 11. Whereas
the correct selection of solution 11 is about 300 runs (i.e.,
about 30% accuracy), we can see that the correct solution
(i.e., solution 11) is most frequently selected in Figure 5. This
observation motivates us to use a voting scheme. If we use
a simple majority vote in Figure 5, solution 11 is correctly
selected whereas the average accuracy of individual runs is
about 30%.
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TABLE I
THE TRUE HYPERVOLUME CONTRIBUTION (HVC) OF THE TOP 8 SOLUTIONS IN FIGURE 5

Index Solution 11 Solution 76 Solution 68 Solution 71 Solution 13 Solution 80 Solution 93 Solution 20

HVC (1e-6) 0.1293 0.1354 0.1468 0.1682 0.1719 0.1798 0.1911 0.1925

Fig. 5. Illustration of an 8-objective set using the R2-HVC to select the worst
solution in 1000 runs. The x-axis is the solution index, and the y-axis is the
number of runs where each solution is identified as the worst solution.

III. PROPOSED METHOD

In this section, we present our ensemble R2-HVC method.
The first is a baseline ensemble method, which simply repeats
R2-HVC and conducts majority voting. Based on the experi-
mental results, we enhance the ensemble process to improve
its performance.

(a) Original R2-HVC Method.

(b) Baseline Ensemble Method: Generate Different Vectors.

Fig. 6. The simple example to illustrate the different processes of the original
R2-HVC method and the baseline ensemble method.

A. Baseline Ensemble Method
The baseline method repeats the original R2-HVC multiple

times but uses fewer vectors generated for each iteration. In
each iteration, new vectors are generated and R2-HVC is
applied to estimate the HVC of each solution. The solution
with the lowest HVC value is selected in each iteration. The
final result is the solution that is most frequently selected.
When multiple solutions are equally chosen, we randomly
select one of them.

Fig. 7. CIR values of the original R2-HVC and the baseline ensemble method
in the 10-objective problem.

The difference between the original R2-HVC and the base-
line ensemble method is illustrated in Figure 6. Specifically,
Figure 6(a) shows that the original R2-HVC determines the
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worst solution based on a single calculation using 1000 vec-
tors. In contrast, Figure 6(b) shows that the baseline ensemble
method generates 100 vectors in each iteration, repeats the
process 10 times, and then selects the most frequently selected
solution.

To verify the performance of this baseline method,
we use the solution sets with six PF shapes. Same
as in Section II-C, each shape contains 100 sets, and
each set contains 100 solutions. We generate different
vectors in different iterations and set the number of
vectors p and the number of iterations q as (p, q) ∈
{(5, 200), (10, 100), (20, 50), (50, 20), (100, 10), (200, 5)}.
Thus, the total number of generated vectors in each case (i.e.,
pi × qi) is fixed as 1000.

We repeat the experiment in 21 runs, and show the aver-
age result in Figure 7. Unfortunately, only one combination
(p = 200, q = 5) for the inverted concave set outperforms the
original R2-HVC. This suggests that simply repeating the pro-
cess of generating vectors does not improve the performance.

B. Sampling Ensemble Method

In Figure 7, we fix the total number of generated vectors
to 1000. However, in the following, We will now break
this constraint. Figure 8 shows CIR values of the ensemble
method where the number of vectors p is fixed (i.e., 100)
and the number of iterations q increases from 1 to 500
(i.e, 1,10,20,50,100,200,500). When q is larger than 100, the
ensemble method performs better than the original R2-HVC
with 1000 vectors. Therefore, we can conclude that the poor
performance of the baseline method is due to the limited
number of vectors or iterations, which is required from the
time limitation.

To address the above issue, we propose an improved version
named the sampling ensemble method. First, a pre-specified
number of vectors (e.g., 1000 vectors) are generated in the
same manner as in the original R2-HVC algorithm. The length
of each vector for each solution is calculated in the same
manner as in the original R2-HVC. Then, we iterate to sample
a subset of vectors and select the worst solution in q times.
It should be noted that the length of each vector for each
solution has already been calculated. Thus the worst solution
can be easily found based on the average length calculation
through the sampled vectors. After iterating this procedure q
times, we can use the simple majority voting to choose the
final solution. The computation time of the R2-HVC mainly
depends on the length calculation for each vector, while the
calculation of the average length is not time-consuming. Thus
the time complexity of the ensemble method is very similar
to the original R2-HVC.

Figure 9 illustrates the sampling ensemble method. Initially,
1000 vectors are generated and their lengths are calculated,
which takes the same computation time as the original R2-
HVC in Figure 6(a). In each iteration, 100 vectors are ran-
domly sampled from the 1000 vectors. Since the time on
average length calculation is small, this method can repeat
more times than the baseline ensemble method.

Fig. 8. The performance of the baseline ensemble method with 100 vectors
for various numbers of iterations q and the performance of the original R2-
HVC with 1000 vectors.

Fig. 9. A simple example to illustrate the process of the sampling ensemble
method.

IV. EXPERIMENTS

In this section, we perform a detailed experimental analysis
of the sampling ensemble method, focusing on CIR value. We
investigate the effects of the number of iterations q and the
number of vectors p.

Specifically, solution sets of 10-objective problems with
six different PF shapes (i.e., linear, convex, concave, linear
inverted, convex inverted, concave inverted) are considered
in this section. We evaluate the sampling ensemble method
under various combinations of the number of iterations q and
the number of vectors p. In addition to the sampling ensemble
method, we also include the original R2-HVC for comparison.
The total number of vectors used by the original R2-HVC is
set to 1000. The same number of vectors is also used in the
sampling ensemble method, where a subset of p vectors is
randomly selected in each of q iterations.

The experiment is conducted on a CPU of Intel(R)
Core(TM) i7-8700k CPU @ 3.70GHZ. All codes are imple-
mented in MATLAB R2022b. It is also repeated 21 times to
calculate the average result.

Since the sampling ensemble method is fast, we can try
various combinations of p and q and analyze its perfor-
mance in detail. We set the number of sampled vectors as
p ∈ {5, 10, 20, 50, 100, 200}, and the number of iterations as
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Fig. 10. CIR values of the sampling ensemble method and the original
R2-HVC with different combinations of {p, q} in the 10-objective problem.
Different lines correspond to different values of p and the x-axis represents
the value of q.

q ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 800}. In each iteration,
p vectors are sampled randomly without replacement. Thus,
there are no duplications among the sampled p vectors.

Figure 10 shows CIR values of the sampling ensemble
method and the original R2-HVC. The x-axis denotes the
value of q, and the y-axis is CIR value. Points with the same
color on each connected line show the CIR values obtained
from the same value of p. The results of the R2-HVC are
shown in dotted blue. From Figure 10, we can observe that
when the number of iterations q is 1 (same as the original R2-
HVC with a smaller number of vectors), the proposed method
is always inferior to the original R2-HVC. As q increases
from 1 to 100, the CIR values of all parameter combinations
improve. In general, several parameter combinations of the
sampling ensemble method outperform the original R2-HVC
in Figure 10. The computation time of the proposed method
with p = 200 and q = 1000 (the largest specification in Figure
10) is about 1.5 times longer than the original R2-HVC (see

Fig. 11. CIR values and computation time of the original R2-HVC (red penta-
gram) and the sampling ensemble method (dots) under different combinations
of p and q in the 10-objective problems.

Figure 11).
The CIR values and computation time of the sampling

ensemble method for each combination of {p, q} are shown
in Figure 11. Results from different values of p are shown by
different colors. Each connected line has 5 points correspond-
ing to different specifications of q ∈ {50, 100, 200, 500, 800}.
When q ranges from 50 to 100, the CIR values increase while
the time consumption remains stable. However, when q is
larger than 100, the computation time significantly increases
while the CIR value remains unchanged in some cases (es-
pecially when p = 100 and p = 200). The original R2-HVC
is illustrated by a red pentagram. Since the R2-HVC method
does not involve sampling and voting, it consumes the least
time among all the points.

For a decision-maker, selecting an appropriate combination
of parameters to achieve higher accuracy and lower time con-
sumption is crucial. From Figure 11, we recommend choosing
the points that are vertically above the red pentagram. Specif-
ically, for the concave, inverted linear, and inverted concave
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cases, selecting the green or blue points (q = 50 or q = 100) in
Figure 11 can achieve better results than the original R2-HVC
method with almost the same time consumption. For the other
three cases, a slightly longer time (approximately 3 seconds)
is needed to obtain similar or better results than the original
R2-HVC method. In the inverted linear and concave cases in
Figure 11, it can be observed that using 200 vectors is less
effective than using 50 vectors. This suggests that each vector
plays a different role in estimating HVC, and some may even
have negative effects.

V. FURTHER ENHANCEMENT ON THE PROPOSED METHOD

In the above experiments for the sampling ensemble
method, we find that many combinations of parameters {p, q}
can exceed the performance of the original R2-HVC. There-
fore, in this section, we continue to investigate whether the
sampling ensemble method can be further improved. The
enhanced approach has two aspects: changing the number of
vectors in each iteration, and assigning a different weight to
the vote (i.e., use of the weighted voting).

(a) Computation Time

(b) CIR
Fig. 12. Performance comparison between the improved version, the sampling
ensemble method, and the original R2-HVC on a 10-objective problem.

In the previous experiment, the same number of vectors
were sampled in each iteration, and the worst solution is
selected. To increase the diversity, we change the number of
sampled vectors pi from a set of {5, 10, 20, 50, 100, 200} in
each iteration. For example, {p1 = 100, p2 = 20} means we
will randomly sample 100 vectors in the first iteration and 20
vectors in the second iteration. And this value pi is randomly
chosen from the pre-defined set {5, 10, 20, 50, 100, 200}.

The previous experiment only focuses on the worst solution
in each iteration. Moreover, only the worst solution in an
iteration could be recorded for voting. However, as discussed
in Section II-D, the R2-HVC can be easily confused when
two solutions have very similar HVC values. Therefore, the
correct solution may be the second or third worst solution in a
calculation, and the previous voting schema lost some valuable
information. To improve the method, we can assign weights
to a few worst solutions in each iteration. For instance, we
set the weights [5, 4, 3, 2, 1] to the top 5 worst solutions. Then
we store these 5 solutions with their accumulated weights.
Finally, in the voting session, the solution with the highest
accumulated weight is selected.

Figure 12 compares the improved version with the R2-
HVC and the sampling ensemble method on the 10-objective
set. In the sampling ensemble method, we select a relatively
good parameter combination (p = 200, q = 100) according to
Figure 10. And in the improved method, we fix the number
of iterations q = 800.

As it can be seen from Figure 12, even we repeat the
computation 800 times in the sampling ensemble R2-HVC,
the time is nearly the same as the R2-HVC. Due to the effect
of the ensemble, the overall performance of the two ensemble
methods is better than the R2-HVC in all solution sets. In
addition to the convex case, the improved version performs
better than the sampling ensemble method and its computation
is faster.

VI. CONCLUSIONS

In this paper, we proposed an ensemble-based R2-HVC
method for selecting the worst solution from a solution set.
In comparison to the original R2-HVC, the ensemble method
aims to reduce the probability of errors by performing repeti-
tive calculations and utilizing majority voting. However, since
repetitive calculations consume additional time, we used fewer
vectors in this step. We focused on improving the process
of sampling and voting and recommended the best parameter
combination (i.e., the number of vectors p and the number
of iterations q) for decision-makers. The experimental results
indicated that our ensemble method outperforms the original
R2-HVC.

In the future, we hope to optimize our ensemble method
further by assigning dynamic weights to each vector and
performing put-back-free sampling. This will make it easier
to choose the best parameter combination, leading to more
interesting results. We believe that such improvements to the
R2-HVC can enhance its performance in various applications.
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