
Quantum Representation Based Job Shop
Scheduling

Kazi Shah Nawaz Ripon
Oslo Metropolitan University

Oslo, Norway
karip8799@oslomet.no

Ashay Singh
Ostfold University College

Halden, Norway
ashay.singh@hiof.no

Abstract—This paper proposes a quantum representation-
based genetic algorithm for solving the job-shop scheduling
problem, aiming to minimize the makespan. The job-shop
scheduling is a typical scheduling problem that falls under
the NP-hard combinatorial optimization problems and has
undergone extensive investigation in the literature. Over time,
various heuristic and intelligent methods have been developed
to tackle this challenging problem. Inspired by the promise
of quantum computing, this paper explores using quantum
information representation and processing techniques to en-
hance the performance of conventional genetic algorithms on
classical computers to solve the job-shop scheduling problem.
The proposed quantum-inspired genetic algorithm employs a
conversion mechanism of quantum representation to code the
schedule; and utilizes a rotation angle table to update the
population. The effectiveness of the quantum-inspired genetic
algorithm is compared to that of a standard genetic algorithm,
with experimental results confirming the potential of the pro-
posed approach in tackling complex combinatorial optimization
problems.

Index Terms—quantum genetic algorithm, job-shop schedul-
ing problem, converted quantum representation, rotation angle
table

I. INTRODUCTION

Scheduling aims to efficiently allocate shared resources,
such as machines or personnel, over a specified period to
complete multiple tasks or jobs while adhering to prede-
termined constraints. Typically, the process of scheduling
involves solving an optimization or search problem by simul-
taneously arranging time, space, and often scarce resources.
One of the most challenging scheduling problems is the job
shop scheduling problem (JSSP), which consists of schedul-
ing n distinct jobs on m identical machines. Each job must
be processed on a set of m machines, one after the other,
following a specific technological sequence. The jobs need
to be scheduled without interruption, cancellation, or without
prior knowledge of the upcoming jobs. The complexity of
JSSP escalates with the number of constraints and the search
space’s size, making it one of the most difficult combinatorial
optimization problems [1].

Due to industrial automation’s growth, real-world JSSPs
entail more jobs, machines, and additional constraints and
flexibilities. Consequently, the JSSP has become a practical
issue in the manufacturing industry. As a result, both the re-
search community and the manufacturing sector have shown
substantial interest in addressing this issue. As real-world
JSSPs become larger and more complex, exact methods like

dynamic programming or branch-and-bound become compu-
tationally expensive, especially when aiming to find optimal
solutions [2]. Therefore, obtaining near-optimal solutions
using stochastic techniques such as evolutionary algorithms
(EAs) is more practical and feasible. The existing literature
justifies the effectiveness and robustness of EAs in solving
practical combinatorial problems [3]–[5].

Genetic algorithms (GAs) belong to the family of EAs,
which draw inspiration from natural selection. They work
with a population of solutions and use evolution operators,
such as selection, mutation, or recombination, to improve
the quality of the solutions. GAs provide effective and
robust optimization and search techniques for large-scale
combinatorial optimization problems. Since the first coming
of the GA [6], the field of scheduling has seen a significant
amount of research utilizing GAs, with various methods
proposed in the literature to tackle the JSSP [1], [2], [7]–[9].
However, GAs still have limitations regarding low search-
ing efficiency, slow convergence speed, and susceptibility
to premature convergence [10]. Researchers have therefore
focused on addressing these shortcomings by introducing var-
ious improvement methods. This paper proposes a quantum
representation-based genetic algorithm combining GAs and
quantum theory in this context.

Quantum algorithms utilize quantum mechanics principles
to achieve efficient computation. This efficiency is evident
when the algorithm is executed on a quantum computer,
while performing the same operation on a classical computer
may consume considerable resources [11]. Quantum-inspired
computation utilizes the principles and concepts of quan-
tum mechanics, like qubits, superposition, quantum gates,
or quantum measurement, to solve various problems in a
classical computing environment [12]. Recent advancements
in quantum technology have demonstrated that for specific
problems, especially for polynomial-time problems like fac-
toring [13] or searching in an unstructured database [14],
quantum computers can provide a significant advantage over
classical computers. Given the exceedingly large search in
most real-world problems tackled by GAs, investigating how
GAs can leverage quantum parallelism on classical computers
can be an intriguing research avenue.

Since the late 1990s, researchers have been exploring
the potential interaction between quantum computing and
evolutionary computation [15]. While quantum-inspired GA

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1227

is based on quantum computing and quantum mechanics, it is
not a quantum algorithm and was proposed for classical com-
puters rather than quantum mechanical hardware [16], [17].
The quantum-inspired GA provides advantages in developing
quantum phenomena such as entanglement or superposition.
Here, the smallest unit of information is a qubit rather than a
classical bit. Unlike classical bits, the qubit represents a 0 and
1 superposition. An N–qubit chromosome is a string of N–
qubits representing a linear superposition of binary states in
the probabilistic sense. Unlike the classical population, where
individuals can only represent one potential solution, each
“individual” in a quantum population is a superposition of
multiple possible solutions. Consequently, the qubit individ-
ual guarantees higher population diversity than other known
representations [16]. Thus, the quantum-inspired GA offers
an advantage in population diversity, as quantum populations
can be exponentially larger than classical populations of the
same size.

Despite the increasing importance and diversity of scien-
tific literature on quantum solutions for hard combinatorial
optimization problems, there are still very few studies on
the JSSP [18]. The limited existing research on the JSSP
mainly consists of “real” quantum algorithms designed for
use on quantum processors [19], [20]. This paper, however,
explores the feasibility of using a quantum representation-
based genetic algorithm (QGA) to solve the JSSP on classical
computers. Drawing on ideas from [21], this work employs a
quantum representation of the population, achieved through
a conversion mechanism and a similar rotation table for
population updates. The objective of the QGA is to mini-
mize the makespan of the JSSP, defined as the maximum
completion time of all jobs. The experimental results on
several benchmark JSSP datasets of varying sizes indicate
that the proposed QGA is effective in reaching the optimal
schedule compared to the standard genetic algorithm (sGA).
It is imperative to note that the primary objective of this
study is to investigate the viability of quantum effects within
GAs for addressing combinatorial optimization problems,
emphasizing feasibility rather than an exclusive focus on
attained performance.

This paper is structured as follows. Section II provides
background on the JSSP and quantum computing. Section III
explains the proposed QGA for solving the JSSP, including
quantum representation of chromosomes and the effect of
rotation gates on chromosomes. Section IV presents the
experimental setup, results, and discussion, while Section V
concludes the paper and outlines potential future research.

II. BACKGROUND

This section introduces the concepts associated with JSSP
and provides an overview of quantum computing and quan-
tum GA.

A. The Job Shop Scheduling Problem (JSSP)

In a traditional nxm JSSP, there are n separate jobs
({Jj}1≤j≤n), that must be executed using m machines
({Mk}1≤k≤m). The objective is to find the optimum order in

which the jobs should be processed, aiming to minimize spe-
cific performance measures. These measures could include
the overall time needed to finish all jobs (makespan), the
average duration of jobs from start to finish (mean flow time),
or the average delay of jobs from their scheduled deadlines
(mean tardiness). Every job Jj requires an uninterrupted
processing on each machine Mk. The processing of job
Jj on machine Mk is identified as an operation Ojk. The
duration of each operation is continuous and exclusive to a
machine for a duration of tjk, which is its processing time. A
technological sequence of xj operations is assigned to each
job. Table I illustrates a 4x3 JSSP, where Job-1 undergoes
processing on Machine-3 for a duration of 4 unit and then
by Machine-1 for 3 units, and so forth.

TABLE I: A 4 x 3 JSSP

(k, t) (k, t) (k, t)
Job-1 3,4 1,3 2,6
Job-2 2,8 3,5 1,4
Job-3 1,5 3,4 2,2
Job-4 2,4 1,4 3,2

The JSSP poses a significant difficulty as a combinatorial
optimization problem. The task of minimizing makespan in
even a simple version of the JSSP becomes NP-hard when
involving more than two machines. The search space for the
standard JSSP is n!m, making it impractical to explore each
potential solution due to the exponential rise in computational
time needed with larger problem sizes.

B. Quantum Inspired Genetic Algorithm

In the context of quantum GA, qubits are utilized for en-
coding genetic individuals, Q-gates are applied to manipulate
qubits and produce offspring, and a probabilistic observation
process connects genotypes and phenotypes [11]. The state
of a qubit can be characterized by (1).

ψ = α |0⟩+ β |1⟩ (1)

Where the values |0⟩ and |0⟩ correspond to classical
bit values of 0 and 1, respectively. The complex numbers
α and β represent the probability amplitudes associated
with the “0” and “1” states, respectively. When a quantum
particle is observed, it takes on one and only one state in
the measurement basis (either |0⟩ or |1⟩) [15]. Similarly,
When a qubit is in a state of superposition, it exists in
both states simultaneously but collapses to one state upon
observation [22]. Thus, upon observation, the values |α|2 and
|β|2 correspond to the probabilities that the qubit is in the ‘0’
or ‘1’ state. Hence, the condition is met for the normalized
state (2).

|α|2 + |β|2 = 1 (2)

In quantum GA, a chromosome is composed of N qubits,
and its state vector contains all the information for the
quantum system. For instance, if there are two qubits, they
can be in any one of four possible states: |00⟩, |01⟩, |10⟩,
or |11⟩. Because qubits exist in a superposition state until
observed, a chromosome with p qubits can represent 2p states

1228

simultaneously. In contrast, a classical GA would require
chromosomes that are 2p bits long to represent the same
number of states.

The traditional quantum GAs deploy a quantum gate to
replace the crossover operation used in GAs. The phase
rotation gate (3) is the most basic type of quantum gate.
When it is applied to the initial state vector ψ in (1), a new
state vector ψ′ is generated, as shown in (4). The scope of
quantum GA can also be expanded by incorporating other
evolutionary operators, like quantum mutation [23], along
with implementing parallelization techniques [24], which can
reduce the overall computational time.

R(θ) =
cos θ − sin θ
sin θ cos θ

(3)

R (θ|ψ′) =
cos (θ0 + θ)
sin (θ0 + θ)

(4)

III. QUANTUM GENETIC ALGORITHM FOR JSSP

This section elaborates on the quantum chromosome repre-
sentation, the impact of the rotation gate on the chromosome,
the operational procedure of the schedule builder, and the
genetic operators used in the proposed QGA.

A. Quantum Chromosome Representation

The primary advantage of quantum chromosomal rep-
resentation is the ability to utilize quantum parallelism,
which enables the recording and simultaneous searching of
multiple solutions. This feature can accelerate achieving the
global optimal solution and improve optimization compared
to typical GA representations [25]. This work employs an
indirect chromosome representation for solving the JSSP. The
binary format is used to mimic the quantum representation
of qubits. However, the schedule builder, mutation, and
crossover operations necessitate decimal numbers. Hence, the
initial quantum population is converted to decimal format.

Considering the example in Table I, which pertains to a
JSSP with 4 (n) Jobs and 3 (m) Machines, a single chromo-
some representing one complete schedule should consist of
12 decimal digits. For instance:

Chrom–1 = 1 2 4 2 2 3 1 3 4 1 3 4 (5)

To convert a decimal value of any single gene into binary,
we need ⌈log2 n+ 1⌉ bits. Considering the chromosome in
(5), it would be ⌈log2 4 + 1⌉ = 3 bits. Consequently, for a
chromosome consisting of 12 genes (decimal values), we
would require 12∗3 = 36 bits to represent it in binary format.

To expedite the generation of the 36 bits representing a
complete chromosome, smaller gene sequences are generated
individually for each machine and combined to obtain the
final chromosome. Instead of generating 36 bits all at once,
12 bits are generated in parallel for each machine, and these
segments are subsequently merged to form the complete chro-
mosome. The following steps (1 to 8) outline the procedure
for generating the gene sequences in quantum representation
and converting them into decimal format. Finally, in step 9,

these sequences are combined to produce a single decimal
sequence, which can be considered one Final Chromosome
(C) within the initial population, as shown in (6).

C = gene sequence M1 + gene sequence M2

+ gene sequence M3

(6)

Step 1: An initial binary string of length n ∗ ⌈log2 n+ 1⌉
with all zeros is generated to represent all the gene sequence
values for one machine. Considering the chromosome in (5),
the total number of bits required to represent one complete
job sequence for one machine (G) = the number of jobs ∗
bits needed for one job = 4 ∗ 3 = 12 bits. Hence,

G = 0 0 0 0 0 0 0 0 0 0 0 0

Step 2: A two-dimensional array stores the probability am-
plitudes (α and β) for all positions, as depicted in Fig. 1.
This array holds the probability amplitudes of the 12 bits for
quantum operations. This step aims to simulate the standard
binary bits as qubits by assigning them probability amplitudes
α and β.

α1 α2 α3 α4 α5 α6 · · · · · · · · · α12

β1 β2 β3 β4 β5 β6 · · · · · · · · · β12

Fig. 1: Quantum chromosome structure

Step 3: To achieve an equal superposition state for the qubits,
all amplitude values are initialized to 1√

2
, as explained in the

Hadamard Gate [26]. It ensures that the probability of all
quantum superposition states is identical. This is done by
applying a rotation angle (θ) to the probability amplitudes,
resulting in modified amplitudes α′, β′, as shown in (7).(

α′
i

β′
i

)
= R(θ)

(
αi

βi

)
=

[
cos θ − sin θ
sin θ cos θ

](
αi

βi

)
(7)

Step 4: The rotation gate is applied to each column of a
chromosome, which represents a bit value, using a rotation
angle θ (0.02π ≤ θ ≤ 0.05π) and a unit vector n along
the axis of rotation. This results in a new set of probability
amplitude values. This process ensures that the final values of
the columns are not all the same, introducing some variation
among them. Let’s assume that Fig. 2 represents the modified
values after applying the rotation gate. In this modified state,
the sum of the squares of each column value adds up to 1,
as stated in (2). These amplitude values are stored for future
use in subsequent steps as well.

0.707107 0.707107 · · · · · · −0.707107 −0.866025

0.707107 −0.707107 · · · · · · 0.707107 0.500000

Fig. 2: Modified probability amplitudes

Step 5: Next, a random number, r, is selected within the
range of 0 to 1. The value of r is then compared with the
ith index of the modified probability amplitude in Fig. 2.
If |αi|2 is greater than r, the corresponding bit (Gi) in the
gene subsequence G (which initially consisted of all zeros) is

1229

assigned a value of 1; otherwise, it remains as 0. For instance,
in Fig. 2, this process would be applied as follows:

Let, r1 = 0.4. Since, |α1|2 ≥ r1, G1 is set to 1. This step
is repeated for all 12 bits to obtain the final binary string
consisting of zeros and ones; and, finally, generates the gene
sequence for Machine–1 (M1). For example,

G = 0 0 0 0 0 0 0 0 0 0 0 0 −→ 1 0 1 1 0 0 0 0 1 1 1 0

Step 6: Afterwards, the gene sequence is divided into
sections of 3 (⌈log2 n+ 1⌉) bits each, and subsequently
converting these sections into decimal values.

1 0 1 1 0 0 0 0 1 1 1 0 −→ 1 0 1 | 1 0 0 | 0 0 1 | 1 1 0 −→ 5 4 1 6

Step 7: The decimal values of each section are subjected to
the modulus with n (job) to ensure that no values exceed
the number of jobs for that particular JSSP. Additionally,
the resulting values are incremented by 1 to ensure that the
smallest value remains 1 instead of 0.

5 % 4, 4 % 4, 1 % 4, 6 % 4 −→ 1 + 1, 0 + 1, 1 + 1, 1 + 1
−→ 2 1 2 3

Step 8: The previous step generates a decimal sequence
ranging from 1 to n, allowing for possible repetitions. To
eliminate duplicates in the sequence, unique values are cho-
sen from the range (1, n), and any duplicates are substituted
with missing values within that range. These replaced values
are then appended at the end of the sequence to form a
valid gene sequence. In the context of the JSSP, a valid
chromosome is characterized by the occurrence of each job
only once and the inclusion of all jobs.

Taking the above gene sequence for M1 as an example,
there are two occurrences of ‘2’. The second ‘2’ is removed
and replaced by the first missing job, which is ‘4’ for this
machine. Accordingly, Job-4 is added at the end, and a valid
job sequence for M1 is generated.

2 1 2 3 −→ 2 1 – 3 −→ 2 1 3 4

Step 9: The steps from 1 through 8 are repeated for M2

and M3 to obtain their final valid gene sequences. Finally,
following (6), all these sequences are combined to generate
one initial valid chromosome. Assuming that the sequence
for M2 is (4 1 2 3), and M3 is (3 2 1 4) after repeating the
steps, the one final valid chromosome (C1) for the 4–job,
3–machine JSSP is shown below. It is used as one of the
initial chromosomes in the population.

C1 = 2 1 3 4 4 1 2 3 3 2 1 4

After the sequence is finalized, it is sent to the schedule
builder (discussed in Section III-B) to assess its fitness and to
estimate the makespan. In this process, the best makespan is
recorded for later use in the rotation gate. The use of rotation
gates aids in the development of the solution. After a gener-
ation concludes, the population undergoes adjustments based
on the guidelines outlined in the look-up table (Table II),
following the recommendations in [21] and implementing the
quantum rotation gate as defined in (7).

TABLE II: Look-up table to decide the rotation angle for the
individual [21]

pi bi f(p) < f(b) ∆θi
s (αi, βi)

αiβi > 0 αiβi < 0
0 0 F 0.2π −1 +1
0 0 T 0 0 0
0 1 F 0.5π +1 −1
0 1 T 0 0 0
1 0 F 0.5π −1 +1
1 0 T 0 0 0
1 1 F 0.2π +1 −1
1 1 T 0 0 0

In this context, pi refers to the ith bit of the current
individual, while bi represents the ith bit of the best individ-
ual obtained in one generation. The fitness of an individual,
denoted as f(a), is determined by its makespan value, with
a lower value indicating greater fitness. The rotation angle
for the ith bit is represented by ∆θi. The sign of the ith

probability amplitudes, after their multiplication, is denoted
by s(αi, βi). It is worth noting that the probability amplitudes
stored in Step-4 play a crucial role in this process.

After the first generation, the best individual (b) and
the current individual (p) are converted into binary format,
and a comparison is made based on their respective ith bit
positions. As an illustration, suppose the best individual after
a generation is represented as (4 3 3 2 3 1 2 1 4 1 2 4) and
one of the current individuals is (2 1 3 3 2 1 4 3 4 4 1 2).
Their corresponding binary formats are:

b = 100 011 011 010 011 001 010 001 100 001 010 100

p = 010 001 011 011 010 001 100 011 100 100 001 010

If the rotation gate is to be applied at the 3rd index, then
we have: i = 3, pi = 0, bi = 0, f(p) < f(b) = True,
∆θ = 0, and s(αi, βi) = 0. We utilize these values to obtain
new probability amplitudes for an individual, where θ = 0.
Consequently, a new individual is generated based on the
updated probability amplitudes. This rotation operation shifts
all individuals towards the direction of the best individual
in that generation. The individuals are transformed into new
probability amplitude values by employing the rotation gate.
Once this step is completed, we repeat Steps 5 to 8 to
generate the next generation of valid chromosomes in decimal
format.

B. Schedule Builder
As this study employs an indirect chromosome represen-

tation for encoded schedules, the inclusion of a schedule
builder module is necessary to transform the encoded chro-
mosomes into valid schedules. Throughout the evaluation
phase, the schedule builder’s role is pivotal, selected based
on the optimization performance criterion (minimizing the
makespan). The existing literature also suggests that using a
powerful schedule builder can improve the genetic minimum-
makespan in JSSP [1]. This work uses a modified version
of the hybrid Giffler & Thompson Algorithm [27] as the
schedule builder that can generate an active schedule. An
active schedule builder employs a type of local search that

1230

introduces heuristic improvements into the genetic search
process [1]. The schedule is active if no permissible left shift
is possible. The permissible left shift reduces the makespan
by shifting an operation to an earlier position without causing
delays for other jobs. By restricting the search space to active
schedules, a substantial reduction in search complexity can be
achieved while ensuring the possibility of finding an optimal
schedule. This work’s modified version of the algorithm
integrates the original Giffler & Thompson Algorithm to
discover initial schedules. Then it uses Thompson Sampling,
a concept from reinforcement learning, to select the best
schedules from the generated initial schedules [28].

C. Crossover Operation

In GA, searching for the optimal solution relies on creating
new individuals from existing ones. The crossover process
facilitates this by exchanging genetic information between
parents, resulting in chromosomes that are more likely to
be superior to their parents. However, not all crossover
techniques are appropriate for problems like the JSSP that
use permutation-based representations. Simple techniques
like single-point or two-point crossover fail to maintain the
order of elements in the permutation, potentially leading
to infeasible solutions. Therefore, specialized crossover op-
erators are necessary, like the generalized order crossover
(GOX), which has proven effective in permutation-based
representations. The GOX can preserve the order of elements
in a chromosome, making it a viable option for this problem.

Parent-1: [1 2 1 1 3 2 3 3 2]

Parent-2: [1 2 2 1 3 2 3 1 3]

Child: [1 2 1 1 3 2 2 3 3]

Fig. 3: Generalized order crossover

Fig. 3 demonstrates the GOX for a 3 × 3 JSSP. To
begin, two substrings are chosen from the parents, ensuring
they contain sufficient information. This is accomplished by
selecting a substring between 30% to 50% of the parent’s
length. Once the substrings are chosen, the elements from
Parent-1 are located in Parent-2 and removed from it. Subse-
quently, the elements from Parent-1 are inserted into Parent-2
while maintaining their order. The entire substring is placed
where the first corresponding element was found, and the
remaining elements are appended to the end of Parent-2.

D. Mutation Operation

After crossover, based on probability, parents randomly un-
dergo mutation to alter a small portion of their chromosome.
It helps to avoid getting stuck in local optima by increasing
population diversity. However, due to the permutation-based
representation for the JSSP, a specialized mutation operator
is necessary to maintain feasibility while enabling the explo-
ration of new schedules. This involves selecting two random
jobs and swapping their positions in the schedule, resulting
in a minor change that increases diversity while ensuring

the schedule remains valid. Fig. 4 illustrates this mutation
operation for a 3× 3 JSSP. Here, the initial instance of Job-
2 in Parent-1 is exchanged with the second occurrence of
Job-2 in Parent-2. Likewise, the first occurrence of Job-3 in
Parent-2 is interchanged with the third occurrence of Job-3
in Parent-1.

Fig. 4: The job pair exchange mutation operation.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To assess the efficacy of the proposed quantum
representation-based GA (QGA) and find its feasibility in
addressing the JSSP, we tested it using benchmark problems
in the existing literature. It includes the initial three bench-
mark problems (mt06, mt10, and mt20) proposed by Muth
and Thompson; and the “ten tough problems” (abz and la
problems) collected by Applegate and Cook from literature.
Still, some of the “ten tough problems” remain unsolved. The
description of the data, including problem size, best lower
limit, and optimal solution status, are available in the OR-
library [29]. The performance of the QGA is compared with
the standard genetic algorithm (sGA) that does not utilize
any quantum principles. The QGA and sGA are run for
300 iterations, the population size is 40, and crossover and
mutation probabilities are 0.9 and 0.15, respectively.

TABLE III: Comparison between sGA and QGA

Instance
Makespan (sGA) Makespan (QGA)

Best Avg Worst Best Avg Worst
mt06 55 55 55 55 55 55

mt10 987 1012.1 1077 959 987.13 1022

abz7 735 780.6 799.2 729 767.6 782.3

abz8 756 787.33 825 747 768.16 812

abz9 771 798.2 835 759 773.01 815

la21 1081 1133.23 1170 1067 1105.56 1150

la24 1003 1023.63 1054 987 1007.63 1048

la25 1061 1092.01 1143 1047 1085.13 1121

la27 1325 1377.76 1425 1294 1331.76 1380

la29 1261 1318.66 1353 1242 1296.66 1337

la38 1323 1372.33 1426 1311 1357.23 1398

la40 1282 1368.1 1422 1261 1357.13 1407

We conducted an analysis to examine how incorporating
some quantum computing benefits could enhance the algo-
rithm. Table III shows the outcomes of the comparison. The
values in the table demonstrate that using a rotation gate
successfully and effectively moves all individuals towards
the best individual, resulting in a lower upper bound score
and, on average, better scores. The table shows that the QGA
outperforms sGA in generating near-optimal schedules for all

1231

problems except mt06, where the achieved makespans are
the same. The superior average values for all the benchmark
problems also imply that the QGA discovers near-optimal
schedules and demonstrates consistent performance across
generations for most of the population. This result supports
the notion that incorporating quantum phenomena enhances
the GA’s overall convergence. It is worth noting that in some
isolated cases, the QGA produces a relatively worse outcome
than the sGA when examining the worst value. This outcome
could be attributed to the mismatch between the binary-to-
decimal format for quantum crossover operators, as well as
the absence of an elitism mechanism in the QGA framework
for solving the JSSP. Nevertheless, this is a rare occurrence,
and considering the QGA’s better performance across the
benchmark problems, its overall performance is promising
and efficient.

Fig. 5: Comparison of QGA and sGA on mt10.

Fig. 6: Comparison of QGA and sGA on abz7.

Fig. 5 and Fig. 6 compare the performance of the QGA
and sGA on the mt10 and abz7 benchmark problems, respec-
tively. As illustrated in these figures, the QGA outperformed
the sGA and exhibited smaller fluctuations in makespan.
Evidently, the QGA performed significantly better for the
mt10 and showed slight improvement for the abz7. These
figures also visually illustrate the optimization behaviour of
the solutions obtained through QGA and sGA. Both QGA and
sGA begin with randomly selected initial solutions that are
almost identical. However, in just a few generations, QGA
demonstrates faster convergence than sGA, and this trend
persists until termination. It proves the better convergence
capability of the QGA.

Fig. 7: Gantt chart for mt06.

Fig. 8: Gantt chart for abz9.

Fig. 7 and Fig. 8 depict the Gantt charts, showing the
makespan value, for the mt06 and abz9 problems. In sum-
mary, QGA is found to perform better than sGA for smaller
benchmarks, but the difference in performance is not as
significant for larger benchmarks with a wider search space.
Various aspects of QGA were modified to see if performance
could be improved, but some quantum crossover methods did
not seem to provide any noticeable gains in performance.
One possible reason for this could be that the quantum
crossover operation was in binary format, while the prob-
lem required decimal notation, which may have impacted
the learning process due to the need for conversion to a
suitable format. An alternative representation that requires
minimal changes could be utilized to address this issue. To
improve performance, other aspects of the QGA could be
modified, such as preventing solutions from getting stuck at
local optima, using multiple starting populations, or breaking
the starting population into competing subgroups to obtain
the best individuals. These modifications could lead to a
more diverse solution and a more optimal or near-optimal
makespan.

V. CONCLUSION

This paper proposes a quantum representation-based ge-
netic algorithm (QGA) to solve the job shop scheduling
problem (JSSP) on classical computers. Although there has
been limited research in scheduling incorporating quantum
phenomena, the existing works are primarily designed for
quantum processors. In contrast, this paper utilizes qubits
as a probabilistic representation for solving the JSSP within
the QGA to be executed on classical computers. The update
mechanism for the QGA uses the quantum rotation gate,
which helps guide the search direction towards the optimal
solution. While the primary objective of this paper is to
assess the applicability of the QGA in addressing JSSPs, with

1232

less emphasis on attained performance, the paper evaluates
the QGA’s effectiveness through experiments conducted on
benchmark JSSPs of varying sizes. Additionally, it provides
a comparison with the standard genetic algorithm (sGA).
The results indicate its feasibility and efficiency in solving
JSSPs. However, the QGA sometimes struggles with larger
benchmark JSSPs due to the conversion required from binary
to decimal format for quantum crossover operators. In future,
it is essential to focus on designing quantum crossover
operators that eliminate this conversion requirement. Another
natural extension for future research is developing an elitism
mechanism for the QGA.

REFERENCES

[1] K. S. N. Ripon, C.-H. Tsang, and S. Kwong, “An evolutionary
approach for solving the multi-objective job-shop scheduling problem,”
Evolutionary Scheduling, pp. 165–195, 2007.

[2] K. S. N. Ripon, N. H. Siddique, and J. Torresen, “Improved prece-
dence preservation crossover for multi-objective job shop scheduling
problem,” Evolving Systems, vol. 2, pp. 119–129, 2011.

[3] M. Karimi-Mamaghan, M. Mohammadi, P. Meyer, A. M. Karimi-
Mamaghan, and E.-G. Talbi, “Machine learning at the service of meta-
heuristics for solving combinatorial optimization problems: A state-of-
the-art,” European Journal of Operational Research, vol. 296, no. 2,
pp. 393–422, 2022.

[4] K. S. N. Ripon, K. Glette, M. Høvin, and J. Tørresen, “Multi-objective
evolutionary approach for solving facility layout problem using local
search,” in Proceedings of the 2010 ACM Symposium on Applied
Computing, 2010, pp. 1155–1156.

[5] A. Slowik and H. Kwasnicka, “Evolutionary algorithms and their appli-
cations to engineering problems,” Neural Computing and Applications,
vol. 32, pp. 12 363–12 379, 2020.

[6] J. Holland, “Adaptation in natural and artificial systems mit press,”
Cambridge, MA, 1975.

[7] B. Akay and X. Yao, “Recent advances in evolutionary algorithms
for job shop scheduling,” Automated Scheduling and Planning: From
Theory to Practice, pp. 191–224, 2013.

[8] L. Davis, “Job shop scheduling with genetic algorithms,” in Proceed-
ings of the first International Conference on Genetic Algorithms and
their Applications. Psychology Press, 2014, pp. 136–140.

[9] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-shop
scheduling problems using genetic algorithms, part ii: hybrid genetic
search strategies,” Computers & Industrial Engineering, vol. 36, no. 2,
pp. 343–364, 1999.

[10] J. Gu, X. Gu, and M. Gu, “A novel parallel quantum genetic algorithm
for stochastic job shop scheduling,” Journal of Mathematical Analysis
and Applications, vol. 355, no. 1, pp. 63–81, 2009.

[11] A. Malossini, E. Blanzieri, and T. Calarco, “Quantum genetic opti-
mization,” IEEE Transactions on Evolutionary Computation, vol. 12,
no. 2, pp. 231–241, 2008.

[12] M. Moore and A. Narayanan, “Quantum-inspired computing,” Dept.
Comput. Sci., Univ. Exeter, Exeter, UK, 1995.

[13] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations
of computer science. Ieee, 1994, pp. 124–134.

[14] L. K. Grover, “Quantum mechanics helps in searching for a needle in
a haystack,” Physical review letters, vol. 79, no. 2, p. 325, 1997.

[15] G. Zhang, “Quantum-inspired evolutionary algorithms: a survey and
empirical study,” Journal of Heuristics, vol. 17, no. 3, pp. 303–351,
2011.

[16] K.-H. Han and J.-H. Kim, “Genetic quantum algorithm and its ap-
plication to combinatorial optimization problem,” in Proceedings of
the 2000 congress on evolutionary computation. CEC00 (Cat. No.
00TH8512), vol. 2. IEEE, 2000, pp. 1354–1360.

[17] A. Narayanan and M. Moore, “Quantum-inspired genetic algorithms,”
in Proceedings of IEEE international conference on evolutionary
computation. IEEE, 1996, pp. 61–66.

[18] R. Aggoune, “Quantum solutions to job shop scheduling problems,” in
24ème édition du congrès annuel de la Société Française de Recherche
Opérationnelle et d’Aide à la Décision ROADEF 2023, 2023.

[19] D. Amaro, M. Rosenkranz, N. Fitzpatrick, K. Hirano, and M. Fioren-
tini, “A case study of variational quantum algorithms for a job shop
scheduling problem,” EPJ Quantum Technology, vol. 9, no. 1, p. 5,
2022.

[20] B. Denkena, F. Schinkel, J. Pirnay, and S. Wilmsmeier, “Quantum
algorithms for process parallel flexible job shop scheduling,” CIRP
Journal of Manufacturing Science and Technology, vol. 33, pp. 100–
114, 2021.

[21] J. Gu, C. Cao, B. Jiao, and X. Gu, “An improved quantum genetic
algorithm for stochastic job shop problem,” in Proceedings of the
first ACM/SIGEVO Summit on Genetic and Evolutionary Computation,
2009, pp. 827–830.

[22] A. Lentzas, C. Nalmpantis, and D. Vrakas, “Hyperparameter tuning
using quantum genetic algorithms,” in 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2019,
pp. 1412–1416.

[23] H. Wang, J. Liu, J. Zhi, and C. Fu, “The improvement of quantum
genetic algorithm and its application on function optimization,” Math-
ematical problems in engineering, vol. 2013, 2013.

[24] K.-H. Han, K.-H. Park, C.-H. Lee, and J.-H. Kim, “Parallel quantum-
inspired genetic algorithm for combinatorial optimization problem,” in
Proceedings of the 2001 congress on evolutionary computation (IEEE
Cat. No. 01TH8546), vol. 2. IEEE, 2001, pp. 1422–1429.

[25] C. Durr and P. Hoyer, “A quantum algorithm for finding the minimum,”
arXiv preprint quant-ph/9607014, 1996.

[26] H. Y. Wong, “Walsh–hadamard gate and its properties,” in Introduction
to Quantum Computing: From a Layperson to a Programmer in 30
Steps. Springer, 2022, pp. 153–162.

[27] B. Giffler and G. L. Thompson, “Algorithms for solving production-
scheduling problems,” Operations research, vol. 8, no. 4, pp. 487–503,
1960.

[28] C. Bierwirth, “A generalized permutation approach to job shop schedul-
ing with genetic algorithms,” Operations-Research-Spektrum, vol. 17,
no. 2-3, pp. 87–92, 1995.

[29] “OR library,” http://mscmga.ms.ic.ac.uk, accessed: 30-03-2023.

1233

