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Abstract—Pedestrians and cyclists are some of the most
vulnerable, but also least predictable traffic participants. Due to
their ability to move in urban environments with high degrees
of freedom and sudden changes of direction, their movement
is still challenging to predict. We present a driver assistance
system that tackles some of these challenges. Our system consists
of a world model made of a variational autoencoder and a
long short-term memory network. The world model takes vision
and action data from the perspective of the vulnerable traffic
participant and generates a visual prediction (image) of their
environment up to one second in advance. The second part of
our system is a transformer-based description system that takes
the predicted perceptions and here, as a showcase, abstracts
them down to a textual warning if a collision between car and
vulnerable traffic participant seems imminent. Our description
system helps contextualize the dangerous situation for the driver
and could be extended to other driver assistance systems, such
as blind spot detection. We evaluate our system on a dataset
generated in simulations using CARLA.

Index Terms—autonomous driving, machine learning, video
description, world models

I. INTRODUCTION

Due to the continuously increasing demand for automo-

biles over the years, road traffic injuries became one of the

leading causes of death. According to the World Health Orga-

nization’s report on road safety in 2018, around 20-50 million

people experience non-fatal injuries and 1.35 million people

die each year, globally [1]. Introducing roundabouts has been

effective in reducing the frequency and severity of accidents

in comparison to traditional stop-controlled intersections.

According to a study by the Federal Highway Administration,

they resulted in a 90% reduction in fatal accidents, a 75%

reduction in non-fatal ones, and a 35% reduction overall [2].

However, they led to higher risk than intersections for cyclists

due to narrower lanes and stronger curves. A cyclist is 1.4

times more likely to be involved in an accident that leads to

an injury in a roundabout [3]. Therefore, developing methods

to improve traffic safety became an immediate necessity.

The recent introduction of automated driver assistance

system (ADAS) functions, such as adaptive cruise control,

lane keeping assist, automatic emergency braking, blind spot
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detection, etc. have proven to improve road safety [4]. Still,

the development of further ADAS functions that consider

the safety of vulnerable road users (VRUs), i.e., pedestrians

and cyclists, could significantly reduce the casualty numbers

mentioned above. In urban areas, VRUs are heavily involved

with vehicles in traffic, which can not be properly detected

and tracked using the current radar-based systems [5]. How-

ever, the recent success of vision-based machine learning

solutions indicates their enormous potential for such ADAS

functions. Predicting VRU trajectories and behavior is crucial

for ensuring their safety as well as vehicle passengers. If an

autonomous vehicle can accurately predict the movements of

pedestrians, it can take appropriate actions to avoid collisions

and ensure safe and smooth driving.

This paper builds upon previous work, where vision-based

prediction models were trained to anticipate the behavior

of VRUs in a simulated unsignalized pedestrian crossing

scenario [6]. In this work, we train prediction models in more

dangerous traffic situations. More specifically, we design two

scenarios. The first one involves a pedestrian that crosses

a signalized 4-way crossing. In the second one, a cyclist

enters a roundabout, then exits at the third-next exit. The

two situations are considered the most dangerous situations

for both pedestrians and cyclists. We collect synthetic data

from the perspective of the pedestrian and cyclist. We use the

data to train convolutional variational autoencoder (VAE) and

long short-term memory (LSTM) networks. The networks

can be used to build an ADAS that predicts the traffic and

signals a warning in case of predicted dangerous situations.

Finally, we train a video captioning network which pro-

vides a base for semantic processing of traffic situations as

a showcase. This semantic processing base could be used

as input for various ADAS functions and output types, such

as an alarm signal for impending collisions, an audio-based

lane keeping system, or a textual description of the traffic

situation. In our case study, the network textually describes

predicted footage and raises warnings in case of anticipated

accidents.

II. RELATED WORK

Traffic prediction approaches can be broadly categorized

into three perspectives: vehicle, pedestrian, and road infras-
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tructure. Many of these approaches rely on datasets that

include images, as well as prior information about the actions

and environment of the pedestrians being tracked [7]–[9].

These priors provide additional context that can help to

account for feature relevance and enhance prediction per-

formance. Here, we present relevant approaches from each

category, as well as video captioning.

A. Vehicle perspective-based predictions

Vehicle perspective-based prediction approaches typically

use monocular RGB images as input, where autoencoders

are used to convert such images into a lower-dimensional

representation to improve processing efficiency [10]. For

instance, Hoy et al. [11] implemented an autoencoder-based

approach to track objects in the Daimler Pedestrian Path

Prediction Dataset [12] and generated a binary classification

of pedestrian crossings/stops. Poibrenski et al. [13], [14]

proposed a multimodal approach to trajectory prediction that

involves feeding past trajectories and pedestrian scales into

a conditional autoencoder with a Recurrent Neural Network

(RNN) architecture. Makansi et al. employed mixture density

networks to anticipate the behavior of pedestrians in traf-

fic [15]. To achieve this, they utilized semantic segmentation

data to establish a reliability prior, which allowed them

to identify all potential future locations for a particular

object class. They used this information to account for the

movements of the ego-vehicle and make predictions about the

future positions of pedestrians. Mangalam et al. segmented

the pedestrian motion and pose prediction task into two

distinct components, namely local and global motion [16].

To tackle these individual subproblems, they utilized an RNN

that employs a recurrent encoder-decoder architecture. Yin et

al. [17] utilized a transformer network, which is another state-

of-the-art encoder-decoder architecture example, to combine

various inputs such as ego-vehicle speed, optical flow, and

previous pedestrian trajectories to forecast trajectories.

B. Pedestrian perspective-based predictions

Egocentric pedestrian trajectory prediction, where the tra-

jectory is predicted from the first-person point of view, is

a challenging task due to the highly dynamic nature of the en-

vironment and the limited field of view of the camera. There-

fore, researchers proposed incorporating additional sensor

data, such as inertial measurement units (IMUs), to improve

the accuracy of the predictions. For example, Park et al. [18]

introduced an EgoRetinal map representing the surrounding

indoors environment, encoding occlusion likelihood, depth

information, and semantics. Using a convolutional neural

network (CNN), they generate a set of credible trajectories.

To confirm occluded spaces, they assess the frequency with

which the predicted trajectories are in proximity of the

occluded regions. Also, using a person’s past locations,

body poses, and first-person camera images, Qiu et al. [19]

proposed an encoder-decoder framework based on LSTM

to predict future trajectories. In traffic scenarios (e.g., road

crossing), Petzold et al. [6] conducted a study where they

gathered data from the pedestrian viewpoint in simulations

to train ANNs. The study utilized a synthetic environment

generated through the CARLA traffic simulator [20]. The

researchers trained VAE and LSTM networks to predict the

positions and trajectories of VRUs in the immediate future,

up to one second ahead.

C. Infrastructure-based predictions

Alternative methods for traffic prediction do not rely on

either the vehicle’s or the pedestrian’s perspectives, but

rather on infrastructure-based sensors. For example, Zhao

et al. [21] introduced a pedestrian tracking system that

employs roadside LIDAR data as input to a Deep Autoen-

coder Neural Network. At road intersections, LIDAR sensors

were set up to gather information on pedestrians, including

their presence, position, speed, and direction. Also, Sun et

al. [22] used an external SLAM system and suggested the

T-Pose-LSTM, which enables real-time 2D predictions of

pedestrian trajectories. Other approaches used 2D maps for

readily available training data [23]. For example, Zhang

et al. [24] utilized a standard LSTM to predict pedestrian

jaywalking based on video data from a camera placed at

a crosswalk. They transformed the perspective of the video

data to a 2D map representation and incorporated various

factors such as location, traffic light state, and social fac-

tors to make predictions. Similar to the previous approach,

Vasquez et al. [25] used 2D maps and implemented Inverse

Reinforcement Learning (IRL) to safely navigate a mobile

robot through pedestrian crowds. Also, Fahad et al. [26] used

IRL to generate authentic pedestrian trajectories with social

interactions on a 2D navigation grid.

D. Video captioning

Given the increasing importance of video content in our

daily lives, video captioning networks have become an active

area of research and development, with numerous advanced

models being developed and tested to improve their accuracy

and performance. For example, Ging et al. [27] presented

a cooperative hierarchical transformer architecture (COOT)

that incorporates long-range temporal context in a cross-

level manner. The authors employed two novel components

to model interactions within and between hierarchy levels,

specifically an attention-aware feature aggregation module

for modeling frame and word interactions, and a contextual

transformer for modeling local and global context interac-

tions. Furthermore, they introduced a cross-modal cycle-

consistency loss to ensure semantic alignment between clips

and sentences. SwinBERT [28] is another example that is

composed of two modules, namely the VidSwin Transformer
and the Multi-modal Transformer Encoder. The VidSwin
Transformer takes in raw video frames as input and produces

a spatio-temporal representation of the video as a sequence.

This sequence is then utilized as an input for the Multi-modal
Transformer Encoder, which transforms it into a natural

language description. This approach differs from previous

research by incorporating a built-in generator for spatial-

temporal representations within the transformer architecture.

As a result, it can learn using variable numbers of video
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tokens and end-to-end training, eliminating the need for

offline-extracted video features. The model also uses BERT

Transformer [29] for natural language generation, making it

a fully transformer-based architecture.

III. METHODS

Our contributions can be separated into three compo-

nents: a realistic simulation scenario with fully control-

lable pedestrians containing roundabouts and traffic lights

in CARLA [20], a prediction model [30] for cyclist vision

in traffic, and a captioning and data collection method for

swinBERT (see Section II-D) that transforms it into a driver

assistance system for collision prediction.

In our approach, we collect action and vision data for

pedestrians and cyclists in CARLA. Using this data, we

train a VAE-LSTM vision prediction model [6] to generate

predicted vision data. This in turn is the input to our textual

description model, which interprets a sequence of actual and

predicted vision data. If our description model predicts an

anomalous scene, it warns the driver of a potential accident.

A. CARLA-based traffic scenarios

Our data generation and collection methods are based

on [6]. We designed a map that resembles a German town,

as, for our case, this ensures realism and facilitates a later

transfer of our pedestrian perception prediction model to

real-world data. The map consists of a 4-way intersection

and a roundabout, providing relevant scenarios for collect-

ing pedestrian and cyclist data. To generate traffic scenario

data, the map is populated by a specific traffic participant

whose perspective we use to collect data and multiple other

pedestrians and vehicles (see III-B). Depending on their

mode of locomotion, the data-collecting traffic participant

is either called an ego-pedestrian or an ego-cyclist. The

ego-pedestrian’s movement is controlled by two finite state

machines (FSMs). The other traffic participants, including

the ego-cyclist, are controlled by CARLA’s AI systems. The

roundabout has 5 exits, 2 car lanes and a cyclist lane, which

we modeled in CARLA as a modified car lane. Cars are only

spawned on car lanes and cyclists are only spawned on the

cyclist lane. To prevent cars from merging onto the cyclist

lane, we have disabled automatic lane switching.

The 4-way intersection contains three traffic lights with

realistic light patterns. CARLA does not provide pedestrian

behaviors that are compatible with traffic lights out of the

box. Therefore, we implemented the waiting behavior of

pedestrians at intersections by disabling their AI controllers

whenever they approach a red traffic light. This is deter-

mined by the orientation and position of the pedestrian.

The ego-pedestrian is controlled by two FSMs. One FSM

controls the body movements and the other FSM controls

the head. We define the ego-pedestrian’s starting position.

The ego-pedestrian then moves along the sidewalk, until

they encounter the traffic light. They turn right by 90◦ and

check the status of the traffic light. When the traffic light is

green, the ego-pedestrian looks left to check if any vehicle

is approaching. If the intersection is clear, the ego-pedestrian

crosses the street. While the light is red, the body FSM stays

in a waiting state (look) and the ego-pedestrian stands still in

front of the traffic light, mimicking a waiting behavior similar

to the pedestrians controlled by CARLA. After the traffic

light the ego-pedestrian follows the sidewalk. See Fig. 1 for

the ego-pedestrian’s body FSM and see Fig. 2 for the ego-

pedestrian’s path.

walk

turn look walk

rest

turn

walk

turnwalk

end

5.8s

−90◦ green light 2.4s

10s

0.6s

90◦3s

−90◦

40s since start

Fig. 1: A finite state machine describing the ego-pedestrian’s

movement in the recorded traffic light scenarios. Turn angles

are given in clockwise direction.

Fig. 2: A top-down view of the ego-pedestrian’s path through

the traffic light environment in CARLA.

B. Data collection

To collect data for our prediction models, we generate

1000 episodes with 1000 time steps each in both scenarios.

The first scenario is a cyclist traversing a roundabout and

the second scenario is a pedestrian crossing a traffic light.

We sample the number of traffic participants populating each

episode from a uniform random distribution. This guarantees

varied but realistic scenarios. For the cyclist episodes, we

sample a uniform distribution unif{70, 100} for the number

of cars, unif{150, 220} for pedestrians and unif{25, 35} for

other cyclists. The same is done for cars (unif{20, 60})

and pedestrians (unif{150, 300}) in the traffic light variant.

Starting locations and destinations for the AI traffic partic-

ipants are randomly generated within within the bounds of

expected traffic behavior. Vehicles are placed on the street

and pedestrians are placed on the sidewalk.

To collect data in each time step t, we attach a camera to

the head joint of the ego-pedestrian and -cyclist, capturing
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their view of the surroundings. We use this camera to collect

semantic segmentation data using CARLA’s own semantic

segmentation camera [20] and RGB data. Both RGB and

semantic segmentation images have a resolution of 450×850.

The semantic segmentation can identify 26 types of objects.

These include the 23 base classes from CARLA, a class

for crosswalks (present at the entrances and exits of the

roundabout) and two classes for traffic lights that encode

the state of the traffic light for the approaching pedestrian

(red or green). To obtain the traffic light state in semantic

segmentation, we match the RGB and segmentation images

pixelwise. To determine the traffic light state, we use the

average color of all RGB pixels corresponding to pixels of

the traffic light class in the segmented image. Additionally,

we save the ego-agent’s action vector at in each time step.

For the ego-cyclist, at consists of the cyclist’s speed, steering

angle (direction of movement) and yaw angle (yaw angle

of the camera). For the ego-pedestrian, we save movement

speed, body rotation (direction of movement) and head

rotation (yaw angle of the camera).

In the roundabout episodes we simulate a cyclist entering

the roundabout from the south-most entrance and exiting

it at the north-most exit, as shown in Fig. 3. As the ego-

cyclist navigates the roundabout, the other AI-controlled

vehicles and cyclists also navigate the roundabout, entering

and exiting at randomized times and streets. In multi-lane

roundabouts in Germany, the outermost lanes have the right

of way. Therefore, a car exiting the roundabout has to wait for

passing cyclists on the outermost lane. Since CARLA does

not support this behavior out of the box, we implemented it

post-hoc and discarded any recorded episodes in which cars

cut off the cyclist. We do not count the discarded scenarios

against the size of our dataset. An example frame of the ego-

cyclist’s perceptions is shown in Fig. 4.

In the traffic light episodes, the ego-pedestrian approaches

the intersection from the south on the left side of the street

(see Fig. 2). They cross a traffic light to their right and then

continue eastward on the sidewalk. During the episode, other

vehicles and pedestrians also traverse the intersection with

random start and target points. Before we spawn all traffic

participants and start to collect data, we run the scenario for

a random number of ticks (unif{0, 1600}). This ensures that

the traffic lights are in a random state at the beginning of

each episode.

Due to constraints in compute resources both during training

and execution of our models, we resize all images down

from 450 × 850 pixels to 45 × 85 pixels before training.

To avoid losing details like street markings or distant traffic

lights during the resizing, we transform the semantically

segmented images from their original RGB encoding to a 26-

channel encoding beforehand, representing all classes present

in the original image’s pixels proportionally. Our dataset Ψp

contains the traffic light scenarios with the ego-pedestrian p.

Each sample ψp ∈ Ψp contains the action vector a, an RGB

image xRGB and a semantically segmented image xsem. Our

dataset Ψc contains the roundabout scenarios with the ego-

cyclist c. Here, each sample ψc ∈ Ψc contains the action

vector a and a semantically segmented image xsem. Both

datasets contain 1m samples each.

Fig. 3: A top view of the ego-cyclist’s path through the

roundabout environment in CARLA.

Fig. 4: The ego-cyclist’s perception as captured in CARLA

(down-sampled to 45× 85 pixels, left) and reconstructed by

our VAE (right).

C. Training VAE-LSTM prediction models

Our perception prediction models consist of a VAE and an

LSTM. They predict a traffic participant’s (ego-pedestrian or

ego-cyclist) perception at the next time step (60 ms ahead)

using images and actions as inputs. Therefore, they constitute

a type of world model [30]. For the pedestrian prediction

model, the VAE encodes the semantically segmented image

xt captured by a pedestrian at time step t and compresses

it into its latent vector representation zt. The LSTM takes

latent vector zt and action at to predict latent vector zt+1

at the next time step. Since LSTMs have limited memory

capacity [31], the LSTM does not operate directly on high-

dimensional image inputs. To reach a desired time horizon for

predictions, the LSTM is fed with its own output (and a new

action vector at+1 ∈ Ψp) repeatedly. The cyclist prediction

model operates in the same way.

We create the pedestrian perception model using dataset Ψp

and the cyclist prediction model using Ψc. Both models have

the same architecture. Their VAEs consist of 4 convolutional

and 4 deconvolutional layers. Their LSTMs consist of a

single layer with 512 memory cells. We split both datasets

into 86% training data, 10% validation data and 4% test data

each. The VAEs are trained on the semantically segmented

images of each sample ψ ∈ Ψ individually, while the LSTMs

are trained on sequences of 1000 consecutive samples with

each sequence corresponding to one collected episode. The

samples for LSTM training consist of the latent vector z
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generated by the VAE and the collected action vector a.

During VAE training we use the Kullback–Leibler (KL)

divergence [32] not only as regularization loss, but also as

reconstruction loss. The pixels in our semantically segmented

images represent classes like ”sidewalk” or ”traffic light

(red)”. They are categorical variables rather than real-valued

variables. For this reason, we did not chose a more typical

image reconstruction loss like L2 loss. The KL divergence

is able to map the different classes to each other without

inferring similarities between classes that do not exist. The

VAEs were trained for 150 epochs on batches with size

2000. After training we picked the models with the lowest

validation loss to prevent overfitting.

To make our model robust against randomness and uncer-

tainty in the environment, we make our LSTM a mixture

density network (MDN), similar to Ha and Schmidhuber [30].

An MDN does not produce fixed output values, but a proba-

bility density function p(z) containing a mixture of Gaussian

distributions. To obtain a prediction for the next time step,

we sample from p(z). The level of randomness is controlled

by the temperature variable τ ∈ [0, 1]. If τ ≈ 0, p(z)
returns the median of the distributions and thus behaves

deterministically. A high value of τ makes the prediction

task harder, as it introduces uncertainty. During training, this

may lead to a more robust prediction network. We train the

LSTMs with τ = 1×10−8 for 1.8×106 steps on batches with

size 2000. We chose the networks with minimum validation

loss to prevent overfitting.

D. Training a video description model

We use the video description model swinBERT [28] in our

ADAS, as it confers multiple advantages over using a simple

binary classifier that only detects an impending collision

or not. Using a transformer-based approach may introduce

overhead and in the presented use case (see Sec. IV) we

only need a binary signal in the end, but swinBERT supports

the generalization to other features of traffic. For example, it

may easily be extended to cover traffic in residential areas.

Furthermore, a video description model may be more robust

regarding noise and it is more expressive than a binary

classifier. It could cover different types of accidents and

express uncertainty. While we use a textual description and

post-process it into a binary collision/no-collision signal, the

output could also be an alarm signal, a numeric danger

estimator or spoken descriptions. Furthermore, the semantic

information of the model could also be used for other ADAS

use cases, such as a parking assitant or blind spot detection.

We used swinBERT trained it on our dataset Φdesc. This

dataset was collected in a similar way to Φp and Φc. It

consists of 100 semantic segmentation frame sequences of the

traffic light episodes and 200 semantic segmentation frame

sequences of the roundabout episodes. Most of the sequences

show normal and safe traffic situations similar to Φp and Φc,

but 37 pedestrian episodes and 64 cyclist episodes consist of

dangerous situations between cars and pedestrians or cyclists.

These situations are forced by making the AI-controlled cars

ignore VRUs. For the traffic light episodes, the dangerous

situations consist of cars making a right turn and thus ap-

proaching the traffic light and ego-pedestrian from the left. In

the roundabout episodes, cars exiting the roundabout cut off

the cyclist or collide with them. Using these episodes, we aim

to teach swinBERT how to identify if an accident occurs. We

retrain swinBERT by generating videos out of these episodes.

To generate ground truth captions we evaluated the action

vector a and manually classified the episode as ”accident”

or not. Furthermore, we manually classified the environment

of each episode according to the presence of other traffic

participants. We only use one third of an episode per video,

equaling 13 s of footage. By using shorter videos, we increase

the probability that the captions describe a collision event

present in the video, as the event is always relatively short (1

to 3 seconds). After removing anomalous videos, this results

in 847 captioned videos.

The captions for the pedestrian episodes are generated in

the format shown in Table I. The alternative and optional

modes in the sentence structure provide a rich semantic

context to the classification and enable an easy extension into

other ADAS applications, such as movement prediction for

other cars. We used the split for training (86%), validation

(10%) and test data (4%) we also used for our prediction

model. After training, we chose the network with minimum

validation loss to prevent overfitting.

IV. RESULTS AND DISCUSSION

We evaluate our ADAS in four experiments. The first two

experiments aim at evaluating the text description model’s

capabilities when using synthetic data taken directly from

CARLA. We conduct one experiment based on our traffic

light episodes and one experiment based on the roundabout

episodes. The second set of experiments uses the same

episodes as the first two experiments, but the input data is

generated by our VAE-LSTM prediction model instead of

CARLA. The experiments can be found in our video.1

A. Evaluating our traffic description model on CARLA data

In the first two experiments, we evaluate the performance

of our text description model trained on our dataset Φdesc

collected in CARLA, while focusing specifically on the

accident detection rate. After training, our model has reached

88% accuracy according to the BLEU-4 metric.

For the traffic light episodes with the pedestrian, we

collected a total of 37 accident episodes. These episodes

were split into training set (20 accidents), evaluation set (8

accidents) and test set (9 accidents). As the first two sets were

used in training, we examine our model’s performance using

only the test set. To evaluate the accident detection perfor-

mance of our description model, we count an episode as a

detected accident if the description contains the word “dan-

gerously”. Our model captioned no scenario with the word

“dangerously” that did not contain an accident. Therefore,

the model’s false positive rate is 0. Out of the 9 accidents

in the test set, our model detected 3. These accidents are

1https://vimeo.com/854150737
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separable into three categories: accidents involving the ego-

pedestrian, “close calls” that caused the pathing of another

pedestrian to react to the presence of a car, and collisions

between other pedestrians and a car. The model detects all

3 accidents that involve explicit collisions between other

pedestrians and vehicles, but it does not comment on the

direction from which the vehicle is approaching. However,

the model does not detect 3 close calls, in which a pedestrian

stops in their tracks right before the collision and attempts

to reroute around the car. Moreover, the description model

also does not detect any accidents or close calls involving

the ego-pedestrian. We conclude that our description model is

sensitive to visible contact between a car and a pedestrian, but

is not able to interpret the movement changes of a pedestrian

as an accident. Ego-pedestrian collisions are challenging for

the description model, because they are often hardly visible

on the video input data.

We collected 64 accidents in the roundabout episodes with

the cyclist. 55 accident episodes were used in the training

set, 4 in the validation set and 5 accidents were evaluated in

the test set. Since we used CARLA’s vehicle motion system

for the ego-cyclist, all accidents in the roundabout set are

close calls. This means that the ego-cyclist braked and no

collision occurred. The video description model detected all

5 accidents in the test set and had no false positives. Hence,

we assume that our video description model is more sensitive

to camera movement in the roundabout episodes than in the

traffic light episodes. For 3 out of 5 accidents, the description

model was also able to detect if the car approached from the

left or from the right.

B. Evaluating our traffic description model on predicted data

In the second set of experiments, we applied the method-

ology described in IV-A to outputs of our prediction models.

We took the set of evaluation data already used in IV-A

and iteratively applied our prediction models, generating

predictions with a lookahead of 1 s. We then generated textual

descriptions for the predictions.

The video description model shows comparable performance

on recorded and predicted pedestrian data. The model de-

tected 3 out of 9 pedestrian accidents. It recognized explicit

collisions, but could not identify ”close calls” or collisions

with the ego-pedestrian. The evaluation also yielded one

false positive out of 24 non-accident videos. We assume

that this false positive occurred due to a prediction artifact

that caused a sudden shift in camera perspective. Matching

the accuracy on collected cyclist data, our video description

model detected all accidents in the predicted cyclist videos.

There were no false positives. We believe that the cyclist

data is not as susceptible to false positives as the pedestrian

data, because the camera movement through the roundabout

is smoother than the abrupt movement of the pedestrian at

the traffic light.

V. CONCLUSION AND FUTURE WORK

We have extended our ADAS toolchain from Petzold et

al. [6] to not only incorporate more diverse traffic situations,

(a) ”a pedestrian walks on the
sidewalk and then waits at traffic
light as a car gets dangerously
close.”

(b) ”a cyclist rides around the
roundabout with other cars
around”

Fig. 5: Two example captions. We generated caption (a) from

a recorded traffic light video and caption (b) from a video

generated by our roundabout prediction model.

but also extended its functionality to provide an interface

between prediction and driver. We have trained a world

model that models a pedestrian navigating through a signaled

intersection and we have a trained a world model representing

a cyclist traversing a roundabout. While we require multiple

world models for different traffic situations, selecting the

correct model requires only a classification of the observed

traffic environment. We have shown that our world models do

not only predict regular traffic situations, but are also capable

of representing dangerous situations, such as near-misses or

collisions. We have introduced a unified transformer-based

traffic description model that is capable of differentiating

between accidents and safe traffic scenarios in both environ-

ments. The semantically rich output of the traffic description

model could be used as a base in a wide range of different

ADAS systems. In future work, we intend to extend this

model to express the degree of uncertainty regarding the

prediction and description accuracy. Furthermore, we would

like to develop the missing components in our toolchain and

close the loop between car and driver. At this time we are

able to display warnings about an upcoming traffic situation

to a driver, but the input data for our world models is not

obtainable yet outside of a simulation. To remedy this, we

have to transform the perspective of a car-mounted camera to

a VRU’s perspective and we have to generate the VRU’s most

probable actions based on information about the environment.
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