
Quantitative Quality Assessment for EEG Data: A Mini Review

Chun-Shu Wei, Member, IEEE

Abstract—Electroencephalography (EEG) is an essential neu-
romonitoring modality, deeply integrated across scientific dis-
ciplines such as psychology, cognitive science, computational
neuroscience, neurology, and psychiatry. Its relevance has surged
with the rise of brain-computer interfaces. However, the potential
of non-invasive EEG is hindered by compromised signal quality
compared to invasive methods. The distinction between the mod-
est EEG source amplitudes and the pronounced magnitudes of
non-EEG physiological signals and environmental interferences
complicates the analysis. The coexistence of subtle neural signals
and prominent artifacts, both intrinsic and acquired, character-
izes EEG signal processing. Various artifact management tech-
niques have been proposed, yet the pursuit of EEG signal quality
assessment remains underexplored. This mini-review addresses
this gap by emphasizing the vital role of quality assessment
in EEG recordings. The article highlights the significance of
rigorous signal evaluation, emphasizing reliable EEG data. It
also encapsulates evolving quantitative methodologies that bolster
signal fidelity assessment. By delving into these aspects, the
article presents a compact overview of ongoing advancements in
quantitative EEG quality assessment techniques in the research
field of EEG analysis and applications.

Index Terms—EEG, Artifact, Quality assessment

I. INTRODUCTION

Electroencephalography (EEG), often simply referred to as
EEG, plays a crucial role in the realm of neuromonitoring. It
functions by capturing the fluctuations in the electrical field
on the scalp, providing a means to observe brain activity in
action. The unique characteristics of EEG include its high
temporal resolution, capable of tracking events on the order
of milliseconds, and its modest spatial resolution, enabling
the study of macroscopic cortical brain activities and neural
oscillations. These neural oscillations reflect the synchronized
firing of a multitude of neurons, offering insights into the
brain’s functional dynamics [1].

Spanning the domains of physiology, psychology, cognitive
science, neurology, psychiatry, etc, EEG has emerged as a ver-
satile tool with applications that touch upon a wide spectrum
of scientific disciplines [2]. Of particular note are its clinical
applications, where EEG serves as a cost-effective diagnostic
support mechanism compared to more intricate techniques
like Magnetoencephalography (MEG) or functional Magnetic
Resonance Imaging (fMRI) [3]. Within this context of diverse
applications, the proliferation of brain-computer interfaces has
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positioned EEG at the forefront of contemporary investigation.
The ability to interface with computers through brain activity
has ushered in a new era of research and practical applications,
further amplifying the relevance of EEG in modern scientific
exploration.

Nonetheless, a critical challenge looms in the domain of
non-invasive EEG. This approach grapples with inherent limi-
tations that result in diminished signal quality when contrasted
with invasive alternatives. Notably, the amplitude of EEG
signals falls short when compared to the potency exhibited
by non-EEG physiological signals, such as those generated by
eye movements and muscle activity, which could dominate
the recorded data. The presence of environmental interfer-
ences further compounds this challenge, forging a landscape
characterized by the juxtaposition of feeble neural signals and
conspicuous artifacts [4].

In response, researchers have devised various strategies to
mitigate these artifacts and enhance data quality. Nevertheless,
the aspect of EEG quality assessment remains relatively under-
developed in comparison. While methods for artifact removal
abound, the rigorous evaluation of data integrity remains a
crucial, yet often overlooked, aspect of the EEG analysis
process [5]. This is the focal point of the present article, which
seeks to illuminate the paramount significance of thorough
quality assessment in the context of EEG recordings. By
advocating for a comprehensive evaluation of data quality,
the article endeavors to encapsulate the evolving landscape
of quantitative methodologies designed to ensure the fidelity
and reliability of EEG data.

II. TIME-LOCKED EEG RESPONSES

Event-related potentials (ERPs), a fundamental aspect of
EEG applications, play a pivotal role in diverse research
domains. ERPs manifest as subtle voltage changes or electro-
physiological responses triggered by specific events or stimuli,
reflecting the collective activity of postsynaptic potentials
resulting from the firing of numerous similarly oriented cor-
tical pyramidal neurons [6]. Their distinctive characteristics,
marked by latency and amplitude, are closely tied to the
experimental design [7].

ERPs encompass a range of specific waveforms, each
associated with a distinct experimental context. They are
categorized into exogenous or sensory ERPs and endogenous
or cognitive ERPs. Exogenous ERPs primarily depend on
the physical attributes of events, typically peaking within
approximately 100 milliseconds post-event onset. In contrast,
endogenous ERPs surface later, often shedding light on how
subjects process and assess events [7].

Notable among these components is the P50 component,
characterized by a prominent positive peak occurring between
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40 and 75 milliseconds after the onset of conditioning events.
It is commonly evoked through the ”steady-state” paradigm.
The N100 component emerges in response to unexpected
stimuli, appearing as a negative deflection between 90 and 200
milliseconds post-event onset. The P300 component, a positive
deflection emerging between 300 and 400 milliseconds fol-
lowing stimulus onset, holds significance dating back to 1965.
Its latency is indicative of mental performance, with shorter
latencies associated with superior cognitive processing. No-
tably, higher attention levels result in larger P300 amplitudes.
Paradigms such as the ”oddball” paradigm, where infrequent
stimuli appear within a series, are commonly employed to
elicit the P300 component.

ERPs play a pivotal role in understanding cognitive pro-
cesses, neural responses, and mental states. Extracting ERPs
from EEG recordings necessitates techniques to enhance the
signal-to-noise ratio (SNR). The average method is widely
utilized, leveraging the assumption of a fixed time delay
between events and evoked activities. This approach enhances
the discernibility of ERP signals from background noise,
facilitating accurate analysis.

III. RHYTHMIC EEG ACTIVITIES

In contrast to the time-locked EEG activity discussed pre-
viously, rhythmic EEG activity, such as motor imagery (MI)
EEG, offers an exploration into endogenous evoked responses,
specifically elicited through subjective consciousness [8]. Mo-
tor imagery is a cognitive process wherein individuals envision
movement without physically executing it, or flexing their
muscles. The elusive nature of motor imagery lies in its
occurrence and onset time, which are intricate to detect. In
the realm of MI EEG research, event-related synchronization
(ERS) and event-related desynchronization (ERD) [9] are cen-
tral phenomena that highlight frequency-specific alterations.
These phenomena are prominently discussed when exploring
MI EEG.

The act of imagining movement, whether of the left or
right hand, prompts the emergence of ERD in the subject-
specific band power within contralateral sensorimotor areas,
concomitant with ERS on the ipsilateral side [10]. This dis-
tinctive manifestation of EEG activity during motor imagery
underscores the intricate interplay between cognitive processes
and neural oscillations.

Motor imagery has garnered significant attention in the
context of sports rehabilitation and cognitive neuroscience.
It serves as a powerful tool to study cognitive mechanisms
associated with movement planning, execution, and motor
learning. The identification and decoding of motor imagery-
related EEG patterns have applications in brain-computer
interfaces (BCIs) for assistive technology, where individuals
can control external devices using their neural signals [11].

IV. TASK-IRRELEVANT EEG SIGNALS

In addition to above-mentioned task-relevant EEG, task-
irrelevant EEG activity finds utility in clinical applications. An
example of task-irrelevant EEG is resting state EEG, which has

garnered attention due to its link to various cognitive functions,
as substantiated by substantial evidence [12]. Resting state
EEG studies play a pivotal role in assessing intrinsic neural
activity that emerges in the absence of specific tasks or stimuli.
This facet of EEG investigation is particularly significant in
unraveling the brain’s inherent dynamics.

Resting-state EEG often finds synergy with resting-state
functional magnetic resonance imaging (rs-fMRI) in connec-
tivity studies conducted during rest. This symbiotic relation-
ship between EEG and fMRI enables comprehensive insights
into resting-state neural connectivity, particularly in contexts
like epilepsy and sleep disorders [13]. The advantages and
limitations of each method complement each other, enhancing
the comprehensiveness of the observations made.

Resting state EEG has applications beyond clinical realms.
It serves as a valuable tool for probing the functional organiza-
tion of the brain, highlighting patterns of neural synchroniza-
tion that persist even in the absence of explicit tasks or stimuli.
This provides a window into the brain’s intrinsic network
architecture and can uncover alterations in neural connectivity
associated with various neurological and psychiatric conditions
[14].

V. ARTIFACTS IN EEG RECORDINGS

EEG recordings can be tainted by artifacts, extraneous ele-
ments that distort or obscure the genuine EEG patterns. These
artifacts emanate from diverse sources and are broadly classi-
fied into two categories: Physiological and Non-Physiological
[1].

A. Physiological Artifacts

Physiological artifacts stem from electric-dipole-like
sources within the body or the inherent biological properties
of the subject. Consequently, EEG recordings invariably
include these artifacts, making their distinction and removal
a significant challenge. A prevalent physiological artifact
arises from ocular activities, including vertical eye blinks
and the electroretinogram. Other physiological artifacts,
such as glossokinestic (oropharynx), cardiogenic (heart), and
myogenic (muscle), exhibit distinct waveforms that experts
can discern [15].

B. Non-Physiological Artifacts

Non-physiological artifacts emerge from various sources
and locations within the EEG recording system, encompassing
environmental influences and electrical devices in proximity to
the subject [16]. These artifacts exhibit diverse morphologies,
which can distort or obscure genuine EEG patterns, potentially
rendering recordings incomprehensible.

1) Electrode and Connections: Among the commonly en-
countered non-physiological artifacts, electrode-related issues
stand out. Mismatched or high-impedance electrodes, salt
bridges, and electrode-related anomalies like ”pops” or lead
wire sways can compromise data integrity [17]. Such artifacts
may result from broken lead wires, inadequate electrode gel
contact, or faulty electrode pin connections.
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2) Instrumental Artifact: Malfunctioning recording instru-
ments contribute significantly to artifact generation. Amplifier
circuit thermal noise can introduce amplifier noise, intensify-
ing with the amplifier’s bandwidth. Additionally, inadequate
sampling rates of EEG machines can yield artifacts. Exces-
sive 50/60-Hz powerline noise can arise from power supply
defects or poor connections. Digital recording might lead to
inaccuracies during analog-to-digital conversion, resulting in
data loss or ”sticky” bits. The proximity of digital instruments
can trigger instrumental artifacts, mimicking high-frequency
oscillations during power cycling.

3) Main Power Supply: Alternating interference from the
main power supply constitutes a prevalent source of instrumen-
tal artifacts. The frequency of these artifacts differs between
the United States (60 Hz) and Europe (50 Hz). While notched
filters can mitigate excessive 50/60-Hz noise, widespread
occurrence across recording channels might signal issues with
ground electrodes or EEG machine grounding.

4) Electromagnetic Artifacts: Electromagnetic Artifacts:
Even when inactive, portable and cellular telephones can intro-
duce artifacts into EEG recordings [18]. Noise stemming from
non-cerebral activities during recording significantly impacts
EEG signal quality.

VI. EEG PREPROCESSING AND ARTIFACT REMOVAL

The enhancement of electroencephalography (EEG) data
quality rests upon the precision of preprocessing and the
efficacy of artifact removal methods. Unlike a rigid ”standard”
approach, designing an EEG preprocessing pipeline is contin-
gent on the specific research objectives at hand. Nevertheless,
dedicated automatic preprocessing pipelines have emerged,
tailored to address the unique demands of distinct EEG
contexts. Noteworthy among these are the PREP framework
[19] and HAPPE [20], developed with a focus on enhancing
EEG data quality for resting-state EEG and event-related
potentials (ERP) studies. The common preprocessing methods
that underpin EEG data quality enhancement include but are
not limited to the following techniques:

A. Centering

Channel-wise de-meaning, referred to as centering, is a
pivotal step in EEG preprocessing, particularly for recordings
exhibiting a significant direct current (DC) offset effect. This
technique effectively eliminates baseline shifts, priming the
data for subsequent analyses.

B. Average Re-Reference

The average re-reference method, a form of offline referenc-
ing, involves transforming data to a common reference point,
often an earlobe. This approach gains traction, especially when
the electrode montage comprehensively covers the entire scalp.
It aids in reducing the influence of non-neural artifacts.

C. Filtering

A cornerstone of EEG preprocessing, filtering tailors the
EEG data to align with the study’s research objectives. Finite

Impulse Response (FIR) filters provide diverse designs, en-
compassing low-pass, high-pass, and band-pass configurations.
A distinctive characteristic of FIR filters is their consistent
group delay across frequency ranges. In contrast, Infinite Im-
pulse Response (IIR) filters introduce non-linear phase shifts,
yielding variable group delays with frequency.

D. Artifact Subspace Reconstruction (ASR)

ASR is an automatic and non-stationary method for artifact
removal. It excels in eliminating transient or high-amplitude
artifacts by harnessing Infinite Impulse Response (IIR) filters
and Cholesky vectorization. ASR constructively eradicates
artifacts that may otherwise distort EEG data [21].

E. Independent Component Analysis (ICA)

ICA stands as a stationary artifact removal technique,
operating under the assumption that brain source signals
are statistically independent. ICA’s versatility is exemplified
through multiple model formalizations, each governed by dis-
tinct constraints [22]. This method is particularly proficient in
discerning complex mixtures of neural and non-neural signals.

The choice and implementation of these techniques hinge
upon the precise research context and the inherent nature of
the EEG data. Specific research contexts, such as resting-state
EEG or event-related potentials, warrant tailored preprocessing
strategies. While these techniques substantially elevate data
quality, their utilization demands expertise in interpretation
and validation to ensure genuine neural signals remain intact
while artifacts are successfully eliminated.

VII. QUALITY ASSESSMENT FOR EEG DATA

The assessment of EEG signal quality represents a nascent
but pivotal dimension in the realm of brain-computer inter-
faces. As highlighted earlier, EEG data inherently encom-
passes artifacts that hold the potential to confound the interpre-
tation of genuine brain activities, particularly when analyzed
by non-experts. Traditionally, EEG data acquired under the
aegis of qualified professionals has been perceived as artifact-
reduced, mitigating the risk of noise contamination. However,
a paradigm shift has emerged, with researchers increasingly
attuning to the existence of anomalous EEG waveforms during
experiments, which underscores the fundamental role of EEG
signal quality assessment.

Concurrently, many researchers engage in post-experiment
offline quality assessment, involving the examination of raw
EEG data waveforms through EEG-analysis software. While
these methods serve as initial and intuitive benchmarks, they
may introduce subjectivity in both resting and task-related
EEG recordings. The evaluation of signal quality within this
context hinges on the expertise of the evaluator.

This section embarks on a multifaceted exploration, com-
mencing with an examination of the literature pertaining
to EEG signal quality assessment—a thematic continuation
from the preceding sections. Subsequently, we delve into an
appraisal of inter-subject and intra-subject variabilities, foun-
dational components underpinning our research assumptions.
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The final phase of this discourse encapsulates the impetus
propelling our study.

A. Impedance Assessment

In addition to the aforementioned subjective methodologies,
the impedance-based assessment is a common EEG signal
quality evaluation technique. This method gauges the qual-
ity of EEG signal acquisition by measuring the impedance
between the electrodes and the skin tissue. An optimal signal
acquisition process necessitates low impedance between the
electrodes and the tissue, ensuring that the input impedance
of the amplifier significantly surpasses the input impedance
between the electrodes and the skin. For conventional scalp
electrodes facilitated by electrolytic paste, it is recommended
that impedance remains below 10kΩ to ensure effective elec-
trode connectivity. Notably, researchers have examined the im-
pact of impedance on EEG signal quality, positing that higher
impedance might compromise signal fidelity relative to lower
impedance settings. Consequently, numerous studies focusing
on the impedance method as a measure of EEG signal quality
assessment have surfaced. For instance, Kappenman and Luck
[23] observed that high-impedance sites exhibit increased low-
frequency noise compared to low-impedance sites during an
oddball task. Traditionally, researchers have sought to miti-
gate noise and artifacts by minimizing impedance between
electrodes and the skin tissue [24], [25].

B. Signal-to-Noise Ratio (SNR) Assessment

The SNR has served as a prevalent index for EEG sig-
nal quality assessment across various applications. In ERP
waveform analysis, SNR assumes diverse forms, such as peak
amplitude [26]. Particularly in ERP-related investigations,
the accurate identification of ERPs hinges on SNR-enhanced
methods due to the relatively lower magnitude of ERPs in
contrast to the background ongoing EEG activity [27]. These
methods necessitate the repetition of the event of interest in
a sufficient quantity. The time domain average is one of the
widely employed techniques, as previously introduced: EEG
recordings are segmented into epochs according to defined
time intervals encompassing the onset of the event of interest.
Subsequently, all epochs are averaged to generate a consoli-
dated waveform.

C. Statistical Methodology

Fickling et al. [28] have proposed a statistical method
consisting of six metrics collectively termed the EEG Quality
Index, devised for quality assessment and artifact detection.
The EEG recording is divided into segments through a sliding
window approach with a 1-second duration and half-second
overlap. The metrics encompass various aspects of the EEG
signal. The first metric quantifies the average single-sided
amplitude spectrum by computing the mean absolute value
of the Fast Fourier Transform (FFT) in the 1 to 50 Hz
frequency band, encapsulating delta, theta, alpha, beta, and low
gamma waves. Similarly, the Line noise average single-sided
amplitude spectrum, the second metric, is computed in the

frequency band of 59 to 61 Hz. Other metrics include the RMS
Amplitude, which gauges signal magnitude across the window,
the Maximum Gradient denoting the maximum difference
between adjacent time points, Zero-Crossing Rate quantifying
the average difference of sgn function values of adjacent time
points, and Kurtosis, a standard statistical measure reflecting
the tails’ distribution heaviness.

D. Variability Assessment

The assessment of variability assumes significance in both
intra-subject and inter-subject contexts. Intra-subject variabil-
ity denotes the variations in sample points within the same sub-
ject, while inter-subject variability pertains to variations across
different subjects. Inter-subject variability has notably surfaced
as a challenge in ERP experiments, with the P300 component
being a prominent point of discussion. This component has
demonstrated substantial variability among subjects [29], [30].
Recent research by Li et al. [31] endeavors to uncover neural
substrates that underpin the inter-subject variability of the
P300 component. Their study explores the brain’s transition
from the resting state to the P300 component during visual
oddball tasks, elucidating mechanisms facilitating efficient
information processing. Furthermore, the researchers sought to
predict individual performance through brain reconfiguration,
highlighting how inter-subject variability in both resting and
task-related stages effectively directs individual behaviors.
This research provides insights into BCI performance vari-
ations and uncovers potential biomarkers for personalized
control within brain-computer interfaces.

VIII. CHALLENGES AND FUTURE DIRECTIONS

The journey through EEG signal quality assessment reveals
several challenges that warrant attention. The dichotomy be-
tween physiological and non-physiological artifacts presents
a complex landscape where different artifact types interact,
potentially complicating the removal process. While automated
preprocessing pipelines like PREP and HAPPE streamline the
initial stages of quality assessment, they might not compre-
hensively address all artifact types [32]. Therefore, further
research is required to develop hybrid approaches that combine
various methods to achieve optimal artifact removal.

Moreover, the subjectivity inherent in some quality assess-
ment methods, such as visual inspection, demands solutions
that enhance objectivity. The application of machine learning
algorithms, pattern recognition techniques, and data-driven
analyses could contribute to more quantifiable and repro-
ducible quality assessment measures [33]. Integrating these
advances into the existing methodologies could usher in a new
era of objective quality assessment.

IX. CONCLUSION

EEG data quality augmentation pivots on judicious prepro-
cessing and adept artifact removal. Techniques such as center-
ing, average re-reference, and an array of filtering method-
ologies refine the raw EEG data, while advanced methods
such as ASR autonomously combat artifacts, thus elevating the
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neural data’s integrity. The development of quantitative quality
assessment methods for EEG data is a dynamic and evolving
field, driven by the imperative to extract meaningful neural
information from complex and artifact-laden signals. These
methodologies not only enhance the interpretation of EEG
recordings but also facilitate advancements in brain-computer
interfaces, cognitive neuroscience, and clinical research.
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[15] J. A. Urigüen and B. Garcia-Zapirain, “Eeg artifact removal—state-of-
the-art and guidelines,” Journal of neural engineering, vol. 12, no. 3, p.
031001, 2015.

[16] I. Kaya, “A brief summary of eeg artifact handling,” Brain-computer
interface, no. 9, 2019.

[17] T. C. Ferree, P. Luu, G. S. Russell, and D. M. Tucker, “Scalp electrode
impedance, infection risk, and eeg data quality,” Clinical neurophysiol-
ogy, vol. 112, no. 3, pp. 536–544, 2001.

[18] J. Minguillon, M. A. Lopez-Gordo, and F. Pelayo, “Trends in eeg-bci
for daily-life: Requirements for artifact removal,” Biomedical Signal
Processing and Control, vol. 31, pp. 407–418, 2017.

[19] N. Bigdely-Shamlo, T. Mullen, C. Kothe, K.-M. Su, and K. A. Robbins,
“The prep pipeline: standardized preprocessing for large-scale eeg
analysis,” Frontiers in neuroinformatics, vol. 9, p. 16, 2015.

[20] L. J. Gabard-Durnam, A. S. Mendez Leal, C. L. Wilkinson, and
A. R. Levin, “The harvard automated processing pipeline for electroen-
cephalography (happe): standardized processing software for develop-
mental and high-artifact data,” Frontiers in neuroscience, vol. 12, p. 97,
2018.

[21] C. Kothe, “The artifact subspace reconstruction method,” Accessed: Jul,
vol. 17, p. 2017, 2013.

[22] S. Makeig, A. Bell, T.-P. Jung, and T. J. Sejnowski, “Independent com-
ponent analysis of electroencephalographic data,” Advances in neural
information processing systems, vol. 8, 1995.

[23] E. S. Kappenman and S. J. Luck, “The effects of electrode impedance on
data quality and statistical significance in erp recordings,” Psychophys-
iology, vol. 47, no. 5, pp. 888–904, 2010.

[24] T. W. Picton, S. Bentin, P. Berg, E. Donchin, S. Hillyard, R. Johnson,
G. Miller, W. Ritter, D. Ruchkin, M. Rugg et al., “Guidelines for using
human event-related potentials to study cognition: recording standards
and publication criteria,” Psychophysiology, vol. 37, no. 2, pp. 127–152,
2000.

[25] S. J. Luck, An introduction to the event-related potential technique. MIT
press, 2014.

[26] M. Fatourechi, A. Bashashati, R. K. Ward, and G. E. Birch, “Emg and
eog artifacts in brain computer interface systems: A survey,” Clinical
neurophysiology, vol. 118, no. 3, pp. 480–494, 2007.

[27] A. Mouraux and G. D. Iannetti, “Across-trial averaging of event-related
eeg responses and beyond,” Magnetic resonance imaging, vol. 26, no. 7,
pp. 1041–1054, 2008.

[28] S. D. Fickling, C. C. Liu, R. C. D’Arcy, S. G. Hajra, and X. Song,
“Good data? the eeg quality index for automated assessment of signal
quality,” in 2019 IEEE 10th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON). IEEE, 2019, pp.
0219–0229.

[29] C. Guger, S. Daban, E. Sellers, C. Holzner, G. Krausz, R. Carabalona,
F. Gramatica, and G. Edlinger, “How many people are able to control a
p300-based brain–computer interface (bci)?” Neuroscience letters, vol.
462, no. 1, pp. 94–98, 2009.

[30] R. M. Reinhart, D. H. Mathalon, B. J. Roach, and J. M. Ford, “Re-
lationships between pre-stimulus gamma power and subsequent p300
and reaction time breakdown in schizophrenia,” International Journal
of Psychophysiology, vol. 79, no. 1, pp. 16–24, 2011.

[31] F. Li, Q. Tao, W. Peng, T. Zhang, Y. Si, Y. Zhang, C. Yi, B. Biswal,
D. Yao, and P. Xu, “Inter-subject p300 variability relates to the efficiency
of brain networks reconfigured from resting-to task-state: evidence from
a simultaneous event-related eeg-fmri study,” NeuroImage, vol. 205, p.
116285, 2020.

[32] M. A. Boudewyn, M. A. Erickson, K. Winsler, J. D. Ragland, A. Yoneli-
nas, M. Frank, S. M. Silverstein, J. Gold, A. W. MacDonald III, C. S.
Carter et al., “Managing eeg studies: How to prepare and what to do
once data collection has begun,” Psychophysiology, p. e14365, 2023.

[33] M. Ravan, “A machine learning approach using eeg signals to measure
sleep quality,” AIMS Electron. Electr. Eng, vol. 3, no. 4, p. 347, 2019.

68


