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Abstract—In an increasingly digitalized commerce landscape,
the proliferation of credit card fraud and the evolution of sophis-
ticated fraudulent techniques have led to substantial financial
losses. Automating credit card fraud detection is a viable way
to accelerate detection, reducing response times and minimizing
potential financial losses. However, addressing this challenge is
complicated by the highly imbalanced nature of the datasets,
where genuine transactions vastly outnumber fraudulent ones.
Furthermore, the high number of dimensions within the feature
set gives rise to the “curse of dimensionality”. In this paper,
we investigate subspace learning-based approaches centered on
One-Class Classification (OCC) algorithms, which excel in han-
dling imbalanced data distributions and possess the capability
to anticipate and counter the transactions carried out by yet-to-
be-invented fraud techniques. The study highlights the potential
of subspace learning-based OCC algorithms by investigating the
limitations of current fraud detection strategies and the specific
challenges of credit card fraud detection. These algorithms
integrate subspace learning into the data description; hence, the
models transform the data into a lower-dimensional subspace
optimized for OCC. Through rigorous experimentation and
analysis, the study validated that the proposed approach helps
tackle the curse of dimensionality and the imbalanced nature
of credit card data for automatic fraud detection to mitigate
financial losses caused by fraudulent activities.

Index Terms—Credit card fraud detection, financial data
processing, one-class classification, subspace learning.

I. INTRODUCTION

The Federal Trade Commission has recently reported an
alarming increase in credit card fraud reports and the revenue
lost due to such frauds in the past few years [1]. One of
the key factors of such an increase in credit card fraud
is the digitalization of commerce because of the COVID-
19 outbreak and the shutdown of the whole world [2], [3].
Credit card fraud has existed since the invention of payment
cards, and different policies were formulated and brought
into practice from time to time to reduce the losses incurred
by such frauds. The address verification system, keeping
a scoring record of positive and negative lists to identify
and prevent high-risk transactions [4], and the use of Card
Verification Value (CVV) by Visa and Card Verification Code
(CVC) by MasterCard [5] are a few of the examples of
the preventive policies. As for the detective approach, many
Machine Learning (ML) models, such as Support Vector
Machines (SVM), logistic regression, random forest [6],
artificial neural networks, k-nearest neighbors (kNN) [7] and
Self-Organizing Maps (SOM) [8], have been implemented
for this cause. The uptrend in fraud cases and lost revenue,

despite these policies, clearly shows that the previous set of
measures, both preventive and detective, is not enough.

In order to have a better solution that can effectively and
efficiently mitigate the losses due to these frauds, we have
to understand the shortcomings of the previous approaches
as well as the challenges in the credit card fraud detection
problem in general. Credit card fraud detection is a binary
classification problem having two classes: normal (or positive
class) and fraudulent (or negative class). A very basic prop-
erty and one of the main issues in these problems is that the
data is highly imbalanced [9], owing to the fact that billions
of card transactions take place every month worldwide, and
a significantly smaller amount of transactions are fraudulent.
To deal with the data imbalance issue, the ML models that are
in practice have used sampling techniques; that is, a sample
from the majority class, based on some sampling criterion, is
taken [10] or instances for the minority class are synthetically
generated based on some criterion [11] so that the number
of instances in both classes is made equal. In some cases, an
approach based on both of the sampling techniques is used
to have a balanced dataset [12].

Another property of fraud detection problems is that the
fraudulent activities and techniques evolve with time [13].
Any method used by the fraudsters is identified by the anti-
fraud team of the respective organization, and efforts are
made to stop further losses through the same fraudulent
technique. Consequently, personnel with the aim of gaining
unlawful advantage of people or systems (or both) try to
come up with new ideas and techniques. The ML algorithms
that have been implemented for this purpose can only model
the fraudulent techniques that are already in practice; that is,
they cannot model, and hence, detect, the fraud that will be
carried out by methods that are not existent and are yet to be
invented. Therefore, we need a model that can also detect,
predict, and stop fraud by the methods that will be invented
in the future.

One-Class Classification (OCC) algorithms, on the other
hand, take data from only a single (positive or the normal)
class for training, which is usually available in abundance,
and form a boundary around the positive class (or between
the two classes). These algorithms classify everything that
lies outside the inferred boundary as a negative class object.
These algorithms have been implemented in many different
domains and have proved to be a good solution with good
performance for the respective problem. The examples of
such domains include but are not limited to bot detection on
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Twitter [14], spoofing detection [15], [16], video surveillance
[17], machine fault detection for predictive maintenance [18],
hyper-spectral image analysis and classification [19], and
Myocardial Infarction (MI) detection [20].

To address the above-mentioned challenges in fraud detec-
tion problems and to resolve the curse of dimensionality by
embedding the feature extraction into the training phase of
the algorithm and letting the model extract a discriminative
set of features, we propose to use a set of OCC algo-
rithms that are ideal for the highly imbalanced dataset and
can effectively model and detect the fraudulent transactions
carried out by to-be-invented techniques. For this purpose,
we experimented with several OCC models to find a more
efficient way to reduce the losses by such frauds.

II. METHODOLOGY

In the OCC setting, data from the target (positive) class
is used to develop an optimal boundary between the target
data and outliers. Depending on the model, the structure of
the decision boundary varies. For instance, the One-Class
Support Vector Machine (OCSVM) has a hyperplane [21],
the Support Vector Data Description (SVDD) has a hyper-
sphere [22], and the Ellipsoidal Subspace Support Vector
Data Description (ESSVDD) has an ellipsoidal boundary
[23] differentiating the two class (fraudulent and normal
transaction) data from each other. A general overview of the
credit card fraud detection system with an OCC algorithm
is depicted in Figure 1. The Subspace Support Vector Data
Description (SSVDD), is the SVDD-based model where the
data is projected, using a projection matrix Q, from the
original D dimensions to the lower d-dimensional subspace
iteratively during the training [24]. Q, incorporated with the
matrix SQ, representing the geometric information of the
data in the subspace, is employed to find the optimized set
of features in the Graph-embedded Subspace Support Vector
Data Description (GESSVDD) [25]. For data vectors repre-
sented by xi ∈ RD, where i = 1, 2, ..., N , the mathematical
formulation of the GESSVDD problem is as follows:

min R2 + C

N∑
i=1

ξi

s.t. :
∥∥∥SQ

− 1
2Qxi − u

∥∥∥2
2
≤ R2 + ξi,

ξi ≥ 0 i = 1, 2, ..., N,

(1)

where N is the number of data points, R is the radius, and
u = SQ

− 1
2 a is the center of the hyper-sphere in the subspace

(a is the center in the original feature space). The variable
ξi represents the slack variables, and C denotes the trade-
off between maximizing the margin (enclosing more data
points in the boundary) and minimizing the radius. To solve
the optimization problem in (1), it is reformulated into a
Lagrangian function using the Lagrange multipliers αi and
γi.

L = R2 + C

N∑
i=1

ξi −
N∑
i=1

αi ( R
2 + ξi

− (SQ
− 1

2Qxi)
TSQ

− 1
2Qxi + 2uTSQ

− 1
2Qxi − uTu )

−
N∑
i=1

γiξi. (2)

The solution of (2) provides us with the αi values for
each instance in the dataset. These αi values, representing
the position of a data point in the projected subspace, are
important for determining u and R of the hyper-sphere. If
an α value is zero, the data point lies inside the boundary
of the hyper-sphere. If an α value falls between 0 and the
regularization parameter C, such data point, denoted by s,
lies on the boundary of the hyper-sphere and is known as a
support vector. On the other hand, if an α value exceeds C,
the data point lies outside the boundary of the hyper-sphere.
The radius of the optimal hyper-sphere can be calculated
using

R =

√
(SQ

− 1
2Qs)TSQ

− 1
2Qs− 2(SQ

− 1
2Qs)Tu+ uTu.

(3)
To classify any test data vector x∗ into its respective

class, it must first be transformed to the lower d-dimensional
subspace using the same Q and SQ and the distance of x∗

from u in transformed feature subspace is calculated and
checked if it is greater or smaller than the R given in (3). It
is classified as a non-fraudulent transaction if it satisfies the
following decision rule:∥∥∥SQ

− 1
2Qx∗ − u

∥∥∥2
2
≤ R2. (4)

The matrix SQ, having geometric information in the
data in the transformed feature subspace, is mathematically
represented as:

SQ = QXLxX
TQT = QSxQ

T , (5)

where X ∈ RN×D is the data matrix and L is the matrix
representation of the graph. Based on the choice of the L in
(5), there can be many variants of the model. In this study, we
have implemented three GESSVDD variants by considering
different options for L. These are:

• The first variant, denoted as GESSVDD-I, replaces Lx

with the identity matrix, I.
• The second variant, referred to as GESSVDD-PCA,

utilizes the Principal Component Analysis (PCA) graph
where Sx is replaced with 1

N St. The Scatter matrix, St

is derived as

St = XLtX
T = X(I− 1

N
11T )XT , (6)

where 1 is a vector of ones.
• In third variant, denoted by GESSVDD-kNN, the Lx is

replaced with the kNN graph LkNN , where LkNN

= DkNN −AkNN . In this variant, we use the diagonal
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Fig. 1. The flowchart depicting the credit card detection system.

and adjacency matrices, denoted by DkNN and AkNN ,
respectively. The elements of the AkNN matrix are set
to 1 if data points xi or xj are in each other’s neigh-
borhood, and 0 otherwise, mathematically expressed as

[Aij ] =

{
1, if xi ∈ Nj or xj ∈ Ni

0, otherwise

}
, (7)

where Ni represents the neighborhood of the ith data
point.

Furthermore, all these variants have been solved using
three different techniques: gradient-based, spectral, and spec-
tral regression technique. In a gradient-based solution, given
by Q ← Q − η∆L, the gradient of (2) is used to update
the Q. The variable η is a hyper-parameter defining the step
of the gradient. In contrast, the other two use eigenvalue
and eigenvectors to find the optimized set of features [25].
The variants based on the solution technique are referred
to by ‘G’ for gradient-based, ‘E’ for spectral, and ‘S’ for
spectral regression. Since there exists no rule of thumb to
either maximize or minimize each solution, we experimented
with both strategies (denoted by max and min, respectively)
for SSVDD and GESSVDD models. In the gradient-based
method, the ascending and descending steps in the update
rule are used for maximizing and minimizing, respectively.
In contrast, for the other two methods, the highest and lowest
set of positive eigenvalues and corresponding eigenvectors
are chosen for maximization and minimization, respectively.
Moreover, different variants of the SSVDD model are im-
plemented based on the regularization term Ψ [24]. A hyper-
parameter β, which gives weight to the regularization term Ψ
in SSVDD, is tuned during cross-validation. Also, the non-
linear version of all these models and variants is implemented
using the non-linear projection trick (NPT) [26]. The kernel
function utilized in the NPT is the Radial Basis Function
(RBF), given by

Kij = exp

(
−
∥xi − xj∥22

2σ2

)
, (8)

where σ is a hyper-parameter that defines the width of the
kernel.

III. EXPERIMENTS AND DISCUSSION

A. Datasets

In this paper, four datasets, all sourced from Kaggle1 open
source dataset repository, are employed for evaluating the

1https://www.kaggle.com/datasets

OCC models for detecting fraudulent credit card transactions.
The first dataset, denoted by Dataset-1, originates from the
Worldline and Machine Learning Group at Université Libre
de Bruxelles (ULB). It includes credit card transactions made
by European cardholders over two days in September 2013.
It consists of 29 features and 284,807 transactions with
only 492 fraudulent ones (which makes up 0.172% of the
dataset). The Dataset-2 contains digital payment transactions
with 7 features and 1 × 106 instances, of which 87,403 are
fraudulent. The imbalance ratio for this dataset is 0.087.
The Dataset-3 is synthetically generated using the Paysim
simulator based on a sample of real mobile transactions for
one month. It comprises 5 features and 1,048,575 transac-
tions, among which only 1142 are fraudulent, resulting in
an imbalance ratio of 0.001. Lastly, a dataset from a bank,
available at Kaggle, is utilized, which is denoted by Dataset-
4. It includes 112 features and 20,467 transactions, with 5437
being fraudulent, representing 26.6% of the dataset.

B. Experimental Setup

All datasets used in this study are split into 70-30 train-test
sets. To handle the high number of instances in the training
data, random resampling is performed while maintaining the
skewed nature of the data. The resampled training Dataset-
1 consists of 344 fraudulent and 2800 normal transactions,
leading to a fraudulent-to-normal ratio of 0.12, whereas
Dataset-2 to -4 consists of 500 fraudulent and 2500 normal
transactions, giving a fraudulent-to-normal ratio of 0.2. Mean
and standard deviation are calculated from target class data
of the respective original (before resampling) dataset, which
is used to normalize the reduced training dataset.

Model training involves tuning hyperparameters using 5-
fold cross-validation over the training set. Performance met-
rics calculated and observed for this study are precision, F1-
measure, and geometric mean of sensitivity and specificity
(denoted by G-mean), but because of its balanced assessment
of positive and negative instances, G-mean is used as an
assessment metric during the cross-validation and for model
evaluation. The iterative methods’ number of iterations and
the number of neighbors for the kNN graph are both set to 5.
The hyperparameters tuned during cross-validation are given
below:

• C → [0.1 0.2 0.3 0.4 0.5]
• d → [1 2 3 4 5 10 20]
• β → [0.01, 0.1, 1, 10, 100]
• η → [0.1, 1, 10, 100, 1000]
• σ → [0.1, 1, 10, 100, 1000]
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TABLE I
RESULTS FOR THE LINEAR VERSIONS OF ALL MODELS FOR ALL DATASETS. PRE STANDS FOR PRECISION, F1 DENOTES F1-MEASURE, G-M

REPRESENTS G-MEAN, AND AVG OF G-MEANS IS THE AVERAGE OF G-MEANS ACROSS THE DATASETS. THE HIGHEST PERFORMER IN TERMS OF
G-MEAN FOR EACH DATASET IS MARKED IN BOLD. THE MODEL NAMES FOLLOW THE FOLLOWING RULE: FOR GRAPH-BASED:

[MODEL]-[GRAPH]-[SOLUTION METHOD]-[MIN/MAX] AND FOR SSVDD: [MODEL]-[REGULARIZATION TERM]-[MIN/MAX].

Model Dataset-1 Dataset-2 Dataset-3 Dataset-4 Avg of
G-meansPre F1 G-m Pre F1 G-m Pre F1 G-m Pre F1 G-m

GESSVDD-kNN-G-min 1.000 0.922 0.906 0.961 0.523 0.551 0.999 0.998 0.603 0.866 0.664 0.644 0.676
GESSVDD-kNN-G-max 1.000 0.994 0.849 0.925 0.766 0.541 0.999 0.998 0.603 0.850 0.803 0.691 0.671
GESSVDD-kNN-E-min 0.999 0.996 0.640 0.819 0.373 0.326 1.000 0.838 0.697 0.798 0.743 0.598 0.565
GESSVDD-kNN-E-max 0.999 0.997 0.686 0.953 0.896 0.692 0.999 0.998 0.603 0.744 0.687 0.501 0.620
GESSVDD-kNN-S-min 0.998 0.999 0.296 0.906 0.675 0.472 1.000 0.707 0.728 0.690 0.623 0.410 0.477
GESSVDD-kNN-S-max 0.998 0.999 0.296 0.949 0.089 0.214 1.000 0.591 0.638 0.752 0.769 0.472 0.405
GESSVDD-PCA-G-min 1.000 0.326 0.432 0.919 0.955 0.282 0.999 0.998 0.595 0.734 0.844 0.074 0.346
GESSVDD-PCA-G-max 1.000 0.619 0.644 0.915 0.953 0.192 0.999 0.998 0.605 0.734 0.844 0.070 0.378
GESSVDD-PCA-E-min 0.999 0.996 0.777 0.915 0.953 0.177 0.999 0.998 0.624 0.734 0.845 0.055 0.408
GESSVDD-PCA-E-max 0.999 0.998 0.720 0.915 0.954 0.186 0.999 0.998 0.595 0.735 0.845 0.082 0.396
GESSVDD-PCA-S-min 0.998 0.999 0.164 0.915 0.954 0.178 0.999 0.998 0.595 0.745 0.852 0.241 0.294
GESSVDD-PCA-S-max 0.998 0.999 0.082 0.915 0.954 0.193 0.999 0.998 0.595 0.744 0.848 0.243 0.279
GESSVDD-I-G-min 0.998 0.998 0.116 0.901 0.861 0.209 0.999 0.998 0.595 0.718 0.716 0.401 0.330
GESSVDD-I-G-max 0.998 0.999 0.000 0.914 0.953 0.123 0.999 0.998 0.595 0.765 0.748 0.527 0.311
GESSVDD-I-E-min 0.999 0.998 0.725 0.914 0.953 0.170 0.999 0.998 0.624 0.748 0.787 0.434 0.488
GESSVDD-I-E-max 0.999 0.999 0.493 0.915 0.954 0.186 0.999 0.998 0.595 0.711 0.668 0.429 0.426
GESSVDD-I-S-min 0.998 0.999 0.164 0.913 0.951 0.086 0.999 0.998 0.595 0.734 0.844 0.085 0.233
GESSVDD-I-S-max 0.998 0.999 0.082 0.916 0.954 0.205 0.999 0.998 0.610 0.735 0.843 0.113 0.252
SSVDD-Ψ0-min 0.999 0.354 0.438 0.916 0.954 0.204 0.999 0.998 0.407 0.738 0.847 0.150 0.300
SSVDD-Ψ0-max 0.999 0.291 0.391 0.914 0.954 0.162 0.999 0.998 0.404 0.736 0.846 0.123 0.270
SSVDD-Ψ1-min 0.998 0.999 0.000 0.916 0.954 0.204 0.999 0.998 0.407 0.738 0.847 0.150 0.190
SSVDD-Ψ1-max 0.998 0.999 0.000 0.914 0.954 0.162 0.999 0.998 0.404 0.736 0.846 0.123 0.172
SSVDD-Ψ2-min 0.989 0.092 0.183 0.916 0.954 0.204 0.999 0.998 0.407 0.738 0.847 0.150 0.236
SSVDD-Ψ2-max 0.989 0.092 0.183 0.914 0.954 0.162 0.999 0.998 0.404 0.736 0.846 0.123 0.218
SSVDD-Ψ3-min 0.989 0.092 0.182 0.916 0.954 0.204 0.999 0.998 0.407 0.738 0.847 0.150 0.236
SSVDD-Ψ3-max 0.989 0.092 0.182 0.914 0.954 0.162 0.999 0.998 0.404 0.736 0.846 0.123 0.218
OCSVM 0.999 0.958 0.446 0.941 0.599 0.559 1.000 0.098 0.227 0.582 0.356 0.355 0.397
SVDD 0.993 0.092 0.198 0.915 0.954 0.185 0.999 0.998 0.404 0.742 0.848 0.216 0.251
ESVDD 0.000 0.000 0.000 0.915 0.954 0.187 0.999 0.998 0.595 0.734 0.847 0.035 0.204

C. Results and Discussion

The results for the linear and non-linear versions of the
models for all datasets are given in Tables I and II, re-
spectively. From the analysis of these results, it is evident
that, for Dataset-1, the approach GESSVDD stands out.
Particularly, its linear version and the utilization of the
minimization-update rule exhibit notably better performance.
The kNN graph and the gradient-based solution technique
also outperform their counterparts for this specific dataset.
For the other datasets, a non-linear model Graph-embedded
One-Class Support Vector Machine GEOCSVM [27] displays
better performance compared to other models. However,
some models in each dataset exhibit a significantly high or
low precision value. These models are either biased towards
the positive class (in case of high values), or the boundary
formed by these models is very small, and consequently,
the normal transactions are forced out of the boundary and
classified as fraudulent (in case of low values).

The analysis of the variants of SSVDD with regard to
the regularization term, Ψ shows that Ψ0 produces more
favorable results for Dataset-1. For the remaining datasets, all
variants yield similar performance. Additionally, an overall
assessment based on the average G-mean highlights the
supremacy of Ψ0, which indicates that, for the given datasets,
incorporating the regularization term does not provide sig-

nificant additional insights, and solving the conventional
Lagrange equation suffices for optimization.

The analysis of graph-based vs. non-graph-based models
shows that the integration of geometric information from the
data yields enhanced performance. Consequently, models that
leverage graph embeddings outperform those without such
added information. Particularly, the kNN graph consistently
outperforms other graph options considered for this study.
Both eigenvalue decomposition and gradient-based solutions
exhibit consistent performance across all datasets.

An investigation based on the average of G-means across
datasets is performed to find the best-performing model
and other strategies for all four datasets. It is found that
GESSVDD with kNN graph, gradient-based solution, and
minimization strategy in linear case works well on average
for all datasets. It is also found that, on average, the linear
version of the models outperforms the counter (non-linear)
version. In contrast, the minimization or maximization update
rule does not have a significant effect on the performance of
the model. Moreover, it is also established that, in general,
the kNN graph works better than the other graphs considered
in the study.

IV. CONCLUSION

Detecting credit card fraud remains a challenge despite the
advances in technology. The imbalanced data and evolving
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TABLE II
RESULTS FOR THE NON-LINEAR VERSIONS OF ALL MODELS FOR ALL DATASETS. PRE STANDS FOR PRECISION, F1 DENOTES F1-MEASURE, G-M
REPRESENTS G-MEAN, AND AVG OF G-MEANS IS THE AVERAGE OF G-MEANS ACROSS THE DATASETS. THE HIGHEST PERFORMER IN TERMS OF

G-MEAN FOR EACH DATASET IS MARKED IN BOLD. THE MODEL NAMES FOLLOW THE FOLLOWING RULE: FOR GRAPH-BASED:
[MODEL]-[GRAPH]-[SOLUTION METHOD]-[MIN/MAX] AND FOR SSVDD: [MODEL]-[REGULARIZATION TERM]-[MIN/MAX].

Model Dataset-1 Dataset-2 Dataset-3 Dataset-4 Avg of
G-meansPre F1 G-m Pre F1 G-m Pre F1 G-m Pre F1 G-m

GESSVDD-kNN-G-min 0.998 0.999 0.329 0.918 0.955 0.264 0.999 0.705 0.570 0.478 0.278 0.283 0.362
GESSVDD-kNN-G-max 0.970 0.011 0.070 0.910 0.199 0.314 0.999 0.767 0.559 0.592 0.435 0.345 0.322
GESSVDD-kNN-E-min 0.294 0.000 0.007 0.846 0.304 0.346 0.999 0.919 0.576 0.555 0.381 0.321 0.313
GESSVDD-kNN-E-max 0.000 0.000 0.000 0.846 0.304 0.346 0.999 0.919 0.576 0.555 0.381 0.321 0.311
GESSVDD-kNN-S-min 0.999 0.992 0.522 0.849 0.441 0.365 0.999 0.913 0.580 0.800 0.005 0.052 0.380
GESSVDD-kNN-S-max 0.999 0.975 0.550 0.849 0.441 0.365 0.999 0.913 0.580 0.571 0.009 0.066 0.390
GESSVDD-PCA-G-min 1.000 0.000 0.003 0.913 0.954 0.110 0.999 0.945 0.592 0.726 0.770 0.347 0.263
GESSVDD-PCA-G-max 0.999 0.975 0.446 0.542 0.001 0.019 0.999 0.945 0.592 0.575 0.407 0.335 0.348
GESSVDD-PCA-E-min 0.988 0.092 0.181 0.978 0.552 0.591 0.999 0.970 0.547 0.632 0.026 0.114 0.358
GESSVDD-PCA-E-max 0.998 0.999 0.000 0.795 0.338 0.301 0.999 0.972 0.533 0.634 0.026 0.113 0.237
GESSVDD-PCA-S-min 0.999 0.975 0.417 0.966 0.640 0.627 0.996 0.129 0.227 0.332 0.031 0.121 0.348
GESSVDD-PCA-S-max 0.998 0.976 0.341 0.966 0.640 0.627 0.999 0.958 0.579 0.332 0.031 0.121 0.417
GESSVDD-I-G-min 0.250 0.000 0.003 0.474 0.008 0.060 0.999 0.953 0.555 0.803 0.072 0.192 0.203
GESSVDD-I-G-max 0.999 0.975 0.494 0.538 0.004 0.043 0.999 0.980 0.601 0.547 0.356 0.323 0.365
GESSVDD-I-E-min 0.222 0.000 0.007 0.849 0.346 0.360 0.999 0.969 0.557 0.553 0.009 0.068 0.248
GESSVDD-I-E-max 0.998 0.999 0.000 0.849 0.346 0.360 0.999 0.975 0.497 0.447 0.036 0.133 0.247
GESSVDD-I-S-min 0.998 0.046 0.151 0.879 0.149 0.268 0.999 0.969 0.557 0.713 0.599 0.469 0.361
GESSVDD-I-S-max 0.998 0.999 0.000 0.879 0.149 0.268 0.999 0.969 0.557 0.358 0.035 0.129 0.238
SSVDD-Ψ0-min 0.999 0.091 0.215 0.951 0.277 0.384 1.000 0.016 0.089 0.723 0.733 0.398 0.272
SSVDD-Ψ0-max 0.996 0.092 0.208 0.890 0.315 0.380 0.996 0.171 0.244 0.723 0.733 0.398 0.308
SSVDD-Ψ1-min 0.992 0.092 0.194 0.951 0.277 0.384 1.000 0.016 0.089 0.723 0.733 0.398 0.266
SSVDD-Ψ1-max 0.999 0.059 0.173 0.890 0.315 0.380 0.996 0.171 0.244 0.723 0.733 0.398 0.299
SSVDD-Ψ2-min 0.992 0.092 0.193 0.951 0.277 0.384 1.000 0.016 0.089 0.723 0.733 0.398 0.266
SSVDD-Ψ2-max 0.999 0.999 0.386 0.890 0.315 0.380 0.996 0.171 0.244 0.723 0.733 0.398 0.352
SSVDD-Ψ3-min 0.993 0.092 0.197 0.951 0.277 0.384 1.000 0.016 0.089 0.723 0.733 0.398 0.267
SSVDD-Ψ3-max 0.996 0.092 0.208 0.890 0.315 0.380 0.996 0.171 0.244 0.723 0.733 0.398 0.308
OCSVM 1.000 0.034 0.131 0.955 0.577 0.574 1.000 0.021 0.102 0.830 0.822 0.662 0.367
SVDD 0.993 0.092 0.198 0.214 0.014 0.073 0.934 0.003 0.039 0.284 0.083 0.179 0.122
ESVDD 0.999 0.089 0.214 0.348 0.005 0.048 0.999 0.945 0.592 0.185 0.026 0.108 0.241
GEOCSVM 0.999 0.066 0.183 1.000 0.936 0.937 1.000 0.926 0.791 0.859 0.828 0.714 0.656
GESVDD 1.000 0.089 0.215 0.997 0.923 0.913 0.999 0.882 0.593 0.849 0.817 0.694 0.604

fraud techniques contribute to this difficulty. Additionally, the
curse of dimensionality is a challenge that poses problems for
feature extraction. To address these issues without altering
data proportions synthetically, we employed OCC algorithms,
particularly subspace learning-based models. These models
efficiently learn patterns in the data and predict fraudulent
transactions, reducing losses caused by fraud.

In this research, we used four imbalanced datasets from
Kaggle, resampled while retaining the data’s imbalanced
nature. We trained 60 model variants, including OCSVM,
GEOCSVM, SVDD, GESVDD [27], ESVDD, SSVDD,
and GESSVDD. Results show that, on average, the linear
GESSVDD with kNN graph, gradient-based solution, and
minimization-update rule outperforms other models for all
datasets. The G-mean metric is used for model evaluation
based on its balanced assessment of both positive and nega-
tive instances.

Due to the high complexity of the models, high com-
putational power is required to train the models, calling
for improved complexity and efficiency. Additionally, the
lack of real-world datasets due to data privacy rules hinders
the interpretability and extraction of meaningful features
by handcrafted methods. Future work involves investigating
other kernel types and graphs for existing methods for

improved results. In the future, we plan to adapt Multi-modal
Subspace Support Vector Data Description (MSSVDD) [28]
for credit card fraud detection.
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