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Abstract—The field of neuromorphic vision systems aims to
replicate the functionality of biological visual systems by mim-
icking their physical structure and electrical behaviour. Unlike
traditional full-frame sensors, neuromorphic systems process
data asynchronously and at the pixel level, modelling biological
signalling processes. This allows for high-speed operations with
lower energy consumption, making them suitable for applica-
tions like autonomous vehicles and embedded robotics. This
work introduces the Neuromorphic Event Alarm Time-Series
Suppression (NEATS) framework, designed to filter noise and
detect outlier behaviours in event data without the need for 2-D
transformations. NEATS employs rolling statistics and advanced
neuromorphic data structures to minimise noise while identifying
changes in scene dynamics. This framework injects attention
into scene processing, similar to summarisation frameworks in
traditional image processing. A novel event-vision alarm change
collection (EACC) database is presented, containing controlled
stimuli pattern changes captured using leading neuromorphic
imaging devices. This database facilitates future benchmarking of
neuromorphic attention frameworks, advancing the development
of efficient and accurate artificial vision systems.

Index Terms—Bio-inspired, Signal Processing, Pattern Recog-
nition

I. INTRODUCTION

Biologically-inspired artificial vision systems, or neuromor-

phic vision systems [3], [6], [12], are designed to emulate the

function of modelled biological visual systems by mimicking

the their physical structure and electrical behaviour. Classic

full-frame sensors, or active-pixel sensors (APS), work by

polling a 2-D array of pixels at a certain time interval (static

or dynamic) and digitising the data values of all pixels during

the polling to produce a numerical representation of the light

levels detected at the polling moment. When displayed on a

2-D surface, these data values will contain spatial information

at the moment of capture which can be processed further by
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classical image processing techniques. Taking a series of 2-

D matrices formed from the integration of events time (with

events behaving as a Dirac delta singleton), and represented

as a sequence from oldest captured to newest, we can develop

a representation of change (motion image) within an observed

scene.

The classical full-frame approach is well understood and

is the foundation of most imaging research to date but it has

disadvantages in terms of time and energy since its formal-

isation. The power-to-speed ratio is directly linear such that

in order to poll and digitise scene information at high-speeds,

we always need to increase the power consumption in the

vision system; conversely to decrease the power consumption

we need to decrease the polling and digitisation slowing

the capturing process. This ratio is acceptable in a number

of existing areas but some key areas of research, such as

autonomous vehicles and general embedded robotics, require

more responsible energy usage while maintaining high-speeds.

Consider a time-series E of N event data such that Ei =
ïti, ïxi, yið, pið where i = [0, N), t represents relative time,

ïx, yð is a spatial identifier, and p = ±1 is a polarity

value indicating the luminance directional change. Unlike

classical full-frames which are depending on an integration or

synchronisation time, neuromorphic data are asynchronous as

all pixels are independent of each other and model biological

signalling processes. This architecture allows neuromorphic

sensors to operate at microsecond domains for each individual

pixel with the speed impeded by the data transmission bus. It is

popular at present within neuromorphic research to translate

the time-series E onto a 2-D surface to allow for classical

image processing techniques to be utilised [2], [8], [9], [12].

This is achieved by reintroducing integration over time; given

enough time a similar 2-D matrix like a full-frame can be

produced. Integrating neuromorphic signals overtime can still

be faster than the full-frame methods but they often consist

of higher levels of noise (blurring, system level etc.) and
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an obvious decrease in speed. Some research [14], [15] has

shown that it is possible to evaluate spatial information as it

is initially processed rather than transforming all event data

simultaneously, and other methods [13] have been introduced

which do not rely on transformation for rich feature extraction.

Event data are known to be advantageously sparse when

compared with frame-based representations but being sparse

also leads to higher susceptibility to noise, radiating from

the sensing array, for event data leveraging pipelines. In this

paper we introduce the neuromorphic event alarm time-series

suppression (NEATS) framework. NEATS is designed to act

both as a noise filtering process and as a neuromorphic data

alarm system for identifying outlier behaviours in event data

without the requirement of 2-D transformations. The NEATS

framework is designed to minimise system and environmental

noise, using a rolling statistics model and a state-of-the-art

neuromorphic data structure [14], while acting as a pattern

alarm system which can be used to indicate when the under-

lying scene dynamics change. In essence the NEATS frame-

work is designed to inject attention as a quantitative element

of scene processing. Attention frameworks in neuromorphic

vision are closely related to summarisation frameworks in

frame-based approaches [10] with a commonality being the

use of 3-D structures [7], [11], [17] to process 2-D (spatial)

information over time sequences; sequencing naturally leads

to integration-over-time slowing the speed of neuromorphic

systems down.

Since NEATS is the first framework of its kind, we present

an event vision database called the event-vision alarm change

collection (EACC) database which is a novel collection of

controlled stimuli pattern change captured using leading neu-

romorphic imaging devices. The database is designed to allow

for future benchmarking of neuromorphic attention frame-

works and will be open source.

II. METHODOLOGY

In this section we outline the NEATS algorithm in terms of

theory and pseudo-implementation (Section II-A). Addition-

ally we elaborate on the framework for using NEATS (Section

II-B) as utilised during the experiments outlined in Section IV.

A. NEATS Algorithm

The neuromorphic event alarm time-series suppression is

designed to minimise, or filter, the noise within a scene while

allowing actual scene activity (called actions) to be retained

and key pattern changing events to be flagged for evaluation.

The NEATS filter works by first expressing event data as a

series of energy È such that

È = ∥E∥ (1)

for E ¢ E such that 0 f t f T where T represents a specific

point in time. The energy È is also expressible at pixel level

È(x̂, ŷ, T ) such that

È(x̂, ŷ, T ) = ∥E∥ | ∀E where x̂ = x, ŷ = y (2)

It is common practice to convert E into a frame with inte-

gration-over-time, which is a popular technique, such that an

event-frame eF ≡ R
3 is expressible as

eF (x̂, ŷ, T ) =

∫ T

a

È(x̂, ŷ, t) dt (3)

where each pixel eF (x̂, ŷ) is equal to the behaviour of

È(x̂, ŷ, T ) at pixel level for all events not exceeding T and

a = 0. For NEATS we are interested in the delta energy ∆F

of a scene, that is the difference between the current energy

and the previously observed energy, expressed as

∆Fi(È) =

∫ i

i−1

È(x̂, ŷ, a) dt (4)

or more succinctly as

∆Fi(È) = eF (x̂, ŷ, i)− eF (x̂, ŷ, i− 1) (5)

Within this manuscript, we are interested in the delta values

of our scene energy and use these to form a rolling time-series

D such that

D = ï∆F1(È),∆F2(È), . . . ,∆F∥F∥(È)ð (6)

where F is the number of samples possible within our rolling

window. The produced D time-series is an unlabelled data

series containing sequential representative energy values of a

scene.

In NEATS, the time-series D is operated over by a cal-

culated p-value to produce a power-Martingale value (an

assumption-based betting strategy) [4] and defined as

M (e)
n =

n∏
i=1

(ϵpϵ−1
i ) (7)

where pi is computed as

pi =
#{j : Dj > Di + ¹i#{j : Dj = Di}

i
(8)

with ¹i = [0, 1], j = [1, 2, 3, . . . , i] and # represents the

cardinality of the data set. In [4] the current power-Martingale

can be expressed as the current operating p-value factored by

the previous power-Martingale value of the last p-value such

that

M (e)
n = ϵpϵ−1

i M
(e)
n−1 (9)

and we establish a special rule where M1 = 1 as a cost

of preventing time-series vanishing propagation. Taking our

new time-series as M we compute the z-score equivalent over

M , resulting in a normalised M such that ∥M∥ = M in z-

space. The advantage of using z-space is that a value compared

within a z distribution of data can be considered to be normal

provided −3 f z f 3; in NEATS the compliment M̂ of normal

(−3 > zandz > 3) can be used to identify M values that are

candidates for abnormal behaviour, and thus candidates for

actions within a scene.

To summarise, the NEATS algorithm accepts a collection of

event data E and computes time regions within the collection

in which the form of highlighted abnormal data M̂ > 3 or
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Fig. 1: An illustration of the NEATS framework showing the

usage of an ROT tree as the rolling engine of the framework.

An example of how the oldest (red) and newest (blue) event

data is treated by the algorithm is also shown.

M̂ < −3. In practice we compute |M̂| such that thresholding

follows |M̂| > 3. However, we could extrapolate the z-space

polarity of energy over time, for use in more advanced photo-

event algorithms.

B. NEATS Framework

The NEATS framework is based on a linearly devolved

Reducing-Over-Time (ROT) tree [15] (similar to a ring buffer)

R. A ROT tree is a data structure engineered for event-data

and has been shown to represent event data in a rapidly

accessible and processor-friendly manner. ROT trees operate

by automatically keeping event data balanced within a binary

search tree structure while automatically identifying, selecting

and pruning nodes which fall outside of “best by” timestamp

threshold Ä range which can be static or dynamic in nature. In

the case of NEATS, if an event Ei is added to R such that it

causes |Mi| > 3 we consider this event to be abnormal from

the background data and therefore meets our definition of an

action event. As NEATS evolves R can be thought of as a

revolving attention window which retains recent past events.

As R fills, the oldest events are overwritten with newer events.

Algorithm 1 outlines the NEATS framework procedurally.

III. DATABASE

In this section we discuss the novel event-vision alarm

change collection (EACC) database capture and utilisied in

this paper. The EACC (version 1) database is a collection

of over 10000 recordings of various stimuli captured using a

Algorithm 1 NEATS Algorithm

Require: R, E ̸= ∅

Ensure: M1 = 1
1: i← 1
2: while i < some condition do

3: add Ei to R {overwrite oldest}
4: compute M̂i using Eq. (9) over R

5: j ← |M̂i|
6: if j > 3 then

7: release Ei

8: end if

9: i← i+ 1
10: end while=0

(a) Example of an undisturbed pattern path in EACC.

(b) Example of an disturbed pattern path in EACC.

Fig. 2: (2a) shows the pattern path of an undisturbed scenario.

(2b) shows the pattern path of a disturbed scenario. Pattern

paths are denoted as a yellow line.

DAVIS346 housed in a darkroom with true-colour calibration

on an LCD monitor. Each recording contains a controlled

stimuli projected onto the screen with a predetermined motion

pattern. At documented intervals of time the pattern is tem-

porarily randomised to induce Brownian behaviours within the

event data. The database can be split into two groups based on

motion pattern drawing: the first half consists of EACC record-

ings where stimuli motion was projected at the full screen-rate

capacity of the LCD display. The second half of the EACC

recordings are captured using the popular strobing method-

ology in which the projected motion pattern is refreshed at
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Fig. 3: The setup used to collect EACC data (this does not

reflect the true capture conditions which were automated, in a

darkroom with no human attendance).

a lower pace causing a strobing effect to appear stimulating

the camera sensor. The stimuli itself involves a collection

of basic shapes (rectangles, triangles, circles etc.) which are

given the appearance of motion using the psychtoolbox [1]

which is a reliable stimuli generation tool used across multiple

fields. Each recording is accompanied with metadata including

extracted frames, events, and timestamp files reflecting when

pattern was disturbed relative to the camera timestamps. Figure

2 shows two example scenarios recorded in EACC, Figure 2a

shows an example of an undisturbed pattern path in EACC.

Figure 2b shows an example of a disturbed pattern path in

EACC. In both figures the pathing is denoted as a yellow line.

Figure 3 shows the capturing setup used to build EACC using

a DAVIS346; it should be noted that actual recording sessions

were automated and took place in a darkroom. Utilising EACC

will enable alarm frameworks based on event data to be

benchmarked; by noting the time of pattern disturbance and the

resumption of normal patterns we are able to designed specific

temporal segments in which an alarm framework needs to

trigger. Figure 4 shows a sample from the NEATS framework

over a splice of EACC data. The M value is represented by the

blue line, pattern disturbances are marked with dashed vertical

black lines, and alarms generated by NEATS are shown as red

’x’ symbols.

IV. EXPERIMENT AND RESULTS

The NEATS framework is a first-of-its-kind event-based

alarm framework which leverages the neuromorphic ROT

data structure for data handling and operates over the EACC

database. As both NEATS and EACC are new and state-of-

the-art, it is difficult to evaluate the NEATS framework; in

this paper we offer the first usage of the EACC database

as a benchmarking tool of neuromorphic alarm frameworks

by reporting the following statistics gained from NEATS

operating over EACC:

1) Percentage of events removed in total as noise/old in-

formation.

2) Percentage of true alarms triggered.

3) Percentage of false no-alarms.

4) Average time to process a single unit of data.

We are particularly interested in statistic measures 2 and

3 which report the percentage of true and false no-alarms

generated by the NEATS framework as a true positive rate

(tPR) and a false negative rate (fNR). A tPR is when the

NEATS framework positively signals an alarm during a pat-

tern disturbance period; an fNR is a failure of the NEATS

framework to successfully signal an alarm during a pattern

disturbance period. Given the documented disturbance times,

which record both commencement and cessation of abnormal

pattern behaviour, we can treat the start and end of the

disturbance times as a indicator of when an alarm should

be raised; we classify tPR as any alarm which is reported

between the start and end of a disturbance. The fNR reports

the number of disturbance areas which saw no alarm reported

by the framework (the framework was unable to recognise the

need for an alarm to be triggered).

TABLE I: Evaluation Results for NEATS Framework

Statistic (Average) Value

1) Events Removed (Noise/Old Info) 73.82%
2) True Alarms (tPR) 83.11%
3) False No-Alarms (fNR) 16.89%
4) Time per Data Unit (nSec) 247nS

Table I reports the results of the NEATS framework col-

lected while operating over the EACC database. The events

removed metric indicates that the NEATS framework filtered

out approximately 74% of event data (which is a large

percentage of a “sparse” dataset) while operating over data

recordings, this is inline with pairing filtering capabilities

of the ROT tree [14], which is the core data structure of

the framework, with the selective properties that the NEATS

probabilistic evaluation of neuromorphic data provides; despite

removing 3
4 of the neuromorphic data the NEATS framework

was capable of an approximately 83% positive identification

of pattern change while operating over the database. Inversely

the NEATS algorithm produces 17% false no-alarm (tied to

the tPR) and took only 247 nanoseconds to achieve decision

from data input to labelling. These results indicate that the

NEATS framework, while filtering over 70% of the database

on average, is capable of correctly identifying when the motion

pattern of a scene changes by approximately 4
5 of the time

while still operating in the nanosecond domain.

V. CONCLUSION

We present the NEATS, or neuromorphic event alarm time-

series suppression, algorithm and accompanying framework.

NEATS is a filtering algorithm and accompanying pattern

observation framework for determining if neuromorphic data

belong to an action/pattern or system level noise without

transformation to 2-D. Unlike other popular neuromorphic data
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Fig. 4: A sample output of the NEATS framework operating over EACC data in nanosecond time showing triggered alarms

(red ’x’), disturbed pattern occurrences (black dashed lines) and the output M values (blue line). The green line indicates the

3 standard deviation z-space threshold.

focussed algorithms and models, which handle noise filtering

over a 2-D visual surface, NEAT is capable of working in 1-D

requiring no spatial transformation as is common in leading

techniques. It achieves this by introducing the concept of

attention into the data stream. The NEATS algorithm is also

sensor invariant; the scope of this paper is vision sensors

but all neuromorphic data streams (for example the popular

silicon cochlea [5]) produce data which NEAT can operate

over allowing for a wide range of applications.

Furthermore we hypothesis that the NEATS algorithm and

framework can be summarised using machine learning prac-

tices reducing the stages into a 1 : 1 relationship between

input and output. In future works we will explore this neural-

version of NEATS (styled as N-NEATS), it is likely that N-

NEATS will result in a speed-up of the NEATS framework

filtering capabilities. Additionally we hypothesis that the ROT-

Harris algorithm [14] can be modified to leverage the high

filtering capabilities of NEATS to compute corner points. An

interesting topic of further research is the time-to-first-label

(similar to the time-to-first-spike [16] of neuroscience), as

observable in Figure 4 where pattern changes are detected

at varying times and with distinctive patterning, it maybe be

possible to further explore these discrepancies in the future to

extract richer features from NEATS operated data sets.
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