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Abstract—This study offers a causal probabilistic modeling
for inferring the relationship between humans’ cognitive load,
the physiological signal predictors of such load, and personality
traits. We selected a subset of such signals (heart rate, intervals
between successive heartbeats, galvanic skin response, and
temperature) from the CogLoad dataset using wearable devices.
Structural Equation Modeling techniques were employed to
select the predictors to identify the level of cognitive load,
for which the ground truth was assessed using subjective tests
such as HEXACO that determine the personality traits of the
human subjects. Bayesian networks were deployed to investigate
the causal relationship and model the inference scenarios.
The proposed model is intended to contribute to developing
a Computational Intelligence tool for monitoring social health
in scenarios of future potential crises such as pandemics and
mass migration.

Index Terms—cognitive load, physiological response, person-
ality traits, emotions, machine reasoning, mental workload,
probabilistic inference, Bayesian network, structural equation
modelling

I. INTRODUCTION

Assessing a human’s cognitive load holds significant im-
portance in detecting overload and stress that have physical
and mental health implications [1]. Prolonged or chronic
stress has been associated with adverse outcomes, including
cardiovascular diseases, immune disorders, and mental health
disorders [2]. Early identification of stress allows to imple-
ment appropriate strategies to manage and alleviate stress,
promoting overall well-being. In professions characterized
by high-pressure environments, such as first responders,
monitoring stress levels can help prevent accidents, optimize
performance, and ensure the safety of individuals and those
around them [3], [4]. Stress detection also proves valuable
in healthcare settings by identifying patients who may be
susceptible to stress-related complications, facilitating timely
intervention and tailored support.

Investigating the impact of emotional and cognitive load,
including stress and burnout, poses challenges due to the
subjective nature of these phenomena and the lack of a
universally defined “ground truth”. Stress, in particular, varies
among individuals, with different stimuli triggering stress
responses in some individuals but not others. Therefore, when
assessing cognitive and emotional load that can lead to stress,
it is crucial to consider individual personality traits and other
characteristics.

This paper is structured as follows: In Section II, we
present a survey of the most important related works. Section

III outlines the approach and methodology adopted for this
study. In Section IV, we describe the experimental settings
and present the results obtained. Finally, Section V concludes
the paper.

II. RELATED WORKS

In [5], an AI-driven Driver Assistance System for stress
detection in car drivers was introduced, using wearable
sensors to capture physiological signals like ECG, EMG,
Galvanic Skin Responds, and beat-to-beat intervals. However,
there was no indication of the system’s adaptability to a range
of driving conditions, including frequency of real-life driving,
and years of vehicle usage. Paper [6] employed EEG sig-
nals for remote mental workload identification. It integrated
spatial and time–frequency features through a hybrid deep
learning model, enhancing classification accuracy. However,
these approaches solely rely on biological signals to assess
workload, disregarding individual characteristics such as age,
gender, occupation type, and other relevant factors.

The issue of mental fatigue and its connection to cognitive
performance is addressed [7], using Heart Rate Variability
data and machine learning to detect and predict fatigue.
However, the study’s participants consisted solely of univer-
sity students, with an average age of 22, which limits the
applicability of these results to the broader population.

In [8], an intelligent stress monitoring tool was proposed
that combines deep learning to detect physiological stress
(one of three states) and then uses the Bayesian network (BN)
to explore the causal relationship between the physiological
indicators. The study was limited to the data from WESAD
set [9], which did not include the assessment of personal-
ity traits using psychological or other subjective tests. The
ground truth was defined using the setup conditions such as
running, relaxing or watching horror movies.

In [10], the authors used BNs to analyze the influence of
working conditions on occupational accidents, focusing on
the interconnectedness between physical and psychological
symptoms and their association with occupational accidents.
BNs and their extensions were applied for risk assessment in
biometric-enabled systems [11] and analysis of physiological
signals [12].

The work [13] using CogLoad dataset suggested applying
machine learning approaches to assess cognitive load using
physiological measurements. The research explored the po-
tential of physiological ”biomarkers” recorded by wearable
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Fig. 1. Causal Modeling Workflow that involves expert consultation, correlation analysis, SEM validation, and Bayesian network construction.

devices for assessing high cognitive load in real-time scenar-
ios, using probabilistic causal graphs.

Several studies conducted an ensemble-type analysis, com-
bining outcomes from various models such as Structural
Equation Modeling (SEM) and BN. For example, daily health
indicators were modeled in [14] using the scheme:

Data −→ BN −→ SEM

In this approach, an initial exploratory BN is performed on
the data, followed by the identification of the most significant
nodes in the BN, which are then incorporated into an SEM.
A ”what-if scenario” of interest was subsequently built.

The same scheme was used in [16]. The model was ex-
ploited to study factors contributing to low back pain-related
disability. Specifically, the structural paths from the BN were
employed in SEM analysis to estimate the parameters of
interest. A similar approach was employed in [17] for risk
analysis in project management.

A hybrid model of SEM and BN, was utilized in [15] to
study the social problem of career satisfaction, represented
by the linkage:

Data −→ SEM←→ BN←− Data

In our approach, we use SEM to comprehensively capture
the complex links between physiological signals, cognitive
load, and individual personality traits. This SEM framework
forms the basis for constructing a BN that integrates these
variables, going beyond superficial connections to unveil
deeper interdependencies.

Data −→ SEM −→ BN

Unlike previous studies, we focus on creating a causal
framework that uncovers the profound relationships among
cognitive load, physiological indicators, and unique per-
sonality traits. The Cogload dataset was chosen due to
its diverse cohort, characterized by variations in age and
gender. The dataset offers an extensive array of personal-
ity trait information, facilitating an in-depth exploration of
the nexus between physiological reactions to workload and
the influencing personality attributes. The participants’ also
completed the post-task surveys, wherein they articulate their
experiential load across diverse dimensions. However, the
dataset predominantly comprises tasks of a similar nature,
which has guided the study’s focus exclusively toward cog-
nitive load considerations.

III. APPROACH AND METHODOLOGY

In this study, we aim to model a causal relationship
between the physiological indicators of cognitive workload,
such as performing complex mental tasks, and the partici-
pants’ personality traits. To achieve this objective, we lever-
age SEM to capture the relationship between physiological
signals, level of cognitive load, and personality traits. We
then use the SEM to construct a BN that integrates these
variables. The BN allows us to capture the dependencies and
conditional probabilities between variables, to examine how
the physiological indicators and personality traits contribute
to the prediction of cognitive load levels, and to perform in-
ference of potential extreme-case scenarios such as overload.
This methodological paradigm offers an avenue for advancing
the understanding of the underlying mechanisms impacting
cognitive and phisiological processes.

Our approach is illustrated in Figure 1. The experimental
design includes data selection and preparation, choosing the
methodology to create and verify the graph models, and
utilizing the graph models to perform inference. We built
the general structure of the network, including demographics
(age and sex) and a comprehensive set of personality traits,
including honesty, extraversion, experience, emotionality,
agreeableness, and conscientiousness. These personality traits
were derived from a psychological assessment tool called the
HEXACO personality inventory [18]. Physiological signals
obtained from wearable wristbands are also incorporated into
the network’s structure.

We built an entire BN capturing multiple vari-
ables, which can be accessed GitHub repository link:
https://github.com/ExcellentDarkTea/BN-SEM-article. For il-
lustration purposes and due to space constraints, we provide
a sub-network that captures the causal relationship between
personality traits and demographics.

A. Data selection

In this investigation, we used the CogLoad dataset
[20], which includes physiological signals and personality
traits data. Participants completed a HEXACO Personality
questionnaire [18], measuring six personality dimensions:
Honesty-Humility, Emotionality, Extraversion, Agreeable-
ness, Conscientiousness, and Openness to Experience. This
dataset provided a comprehensive view of participants’ per-
sonality traits with 30 variables derived from the assessment.

Physiological data from the signal measured by the wear-
able sensor Microsoft Band 2 were recorded: Galvanic Skin
Response (GSR), Temperature (Temp), Intervals Between
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Successive Heartbeats (RR) and Heart rate (HR). Demo-
graphic information such as age, gender, and education level
have been included in the dataset as well.

We perform the data processing as follows. First, we
removed outliers and invalid data points, including segments
affected by sensor breakdowns. To further enhance data
accuracy, we applied a Savitzky-Golay filter [19] to smoothen
the data and eliminate noise. Next, we performed data
normalization and standardization to bring the data into a
consistent format and scale. Features were then extracted
using an 11-second rolling window with a 1-second offset.
For each of the four physiological measures (HR, RR, GSR,
and temperature), statistical characteristics such as Mean,
Min, Max, Range, 1st Quantile (Q25), 2nd Quantile (Q50),
and 3rd Quantile (Q75) were computed.

B. Probabilistic graph models

In this work, we will deploy probabilistic graph models
that include SEM [21] and BNs [22].

SEM is a statistical technique used to examine causal
relationships among variables. Using statistical software and
goodness-of-fit measures, SEM provides a quantitative frame-
work for understanding the complex interconnections within
a system.

BNs allow to represent a set of variables and their con-
ditional dependencies via a directed acyclic graph, thus
capturing the joint distribution between the variables. It is
used to answer probabilistic queries about variables, that
is, to perform inference. For instance, it allows to update
knowledge of the state of a subset of variables when other
variables are observed by computing the posterior distri-
bution of variables given evidence. This is implemented
by applying Bayes’ theorem. Thus, BNs allow reason and
support decision-making under uncertainty. They can handle
both discrete and continuous variables represented via their
distributions.

To establish the structure of our causal network, we
undertook several steps:

- Expert Consultation: We consulted experts in the field to
gather their insights and opinions regarding the proposed
network configuration.

- Correlation Analysis: We thoroughly analyzed the cor-
relation matrix to identify and examine the relationships
between physiological signals and personality traits.
This allowed us to identify significant associations and
discern patterns within the dataset.

- SEM Validation: We employed SEM to validate the
proposed structure of the causal network, to test the fit
of our model to the data.

- Expert Review and Refinement: To ensure the accuracy
and reliability of our results, we sought further input
from domain experts to refine the structure of the causal
network accordingly.

- BN Construction: Finally, we constructed the causal net-
work, BN, a probabilistic graphical model that incorpo-
rates both observed data and prior knowledge, enabling

us to represent and analyze the complex relationships
between physiological features and personality traits.

Correlation quantifies the relationship between two vari-
ables, indicating how changes in one relate to changes in
another. Correlation coefficients between 0.3 and 0.5 (or
−0.3 to −0.5) signify moderate correlations, suggesting
a noticeable but not excessively strong linear connection.
Coefficients exceeding 0.5 (or falling below −0.5) indicate
strong correlations, implying a robust linear relationship
where changes in one closely match changes in the other.

There is a growing body of evidence supporting the
assumption that psychological traits have a significant im-
pact on cognitive workload and stress levels [23]. These
findings suggest that understanding the relationship between
psychological traits and workload is crucial for designing an
effective decision-support system for first respondents.

To analyze this relationship, the dataset was divided into
two subsets: one for cognitive load and another for rest data.
Our analysis observed correlations between specific person-
ality traits and indicators of stress signals or rest. Specifically,
we found that traits such as fairness, dependence, sociability,
liveliness, gentleness, prudence, and honesty exhibited corre-
lations with stress signals. On the other hand, traits like sin-
cerity, fairness, dependence, liveliness, flexibility, patience,
diligence, and openness showed correlations with the rest
data.

Note that while these correlations do not mean causation,
they provide foundational information about potential rela-
tionships between variables.

Generally, the correlation values ranged between 0.3 and
0.5 ( −0.5 and −0.3). These moderate correlation strengths
suggest that changes in one variable are moderately associ-
ated with changes in the other.

Table I presents the part of the correlation analysis results
showcasing the relationships between the variables under
investigation. It highlights the pairwise correlations between
personality traits, demographic factors, and physiological
markers such as RR. We have highlighted values that show
these moderate correlation strengths. We will use the person-
ality traits that are significantly correlated with physiological
signals as inputs for building SEM and BN.

TABLE I
CORRELATION ANALYSIS BETWEEN PERSONALITY TRAITS AND RR

VALUE

Personality Mean Min Max Q25 Q50 Q75
traits
fairness 0.464 0.439 0.478 0.449 0.459 0.469
dependence 0.313 0.293 0.327 0.301 0.309 0.318
gentleness 0.320 0.298 0.334 0.307 0.317 0.326
patience 0.131 0.127 0.132 0.129 0.130 0.131
prudence -0.284 -0.260 -0.301 -0.270 -0.281 -0.292

Note that the modest strength of these correlations and the
sample size limitations should be considered when interpret-
ing the results.
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Fig. 2. SEM model depicts the causal relationship between personality traits: the upper number is a Regression Coefficient between variables, and the
lower number p-val is the Chi-Square test significance (p-value needs to be below 0.05)

C. Building SEM

To build the SEM model, we define the latent variables, ob-
served variables, and the hypothesized relationships between
them.

SEM analysis includes computing standardized coefficients
representing the strength and direction of the relationship
between variables. Positive coefficients indicate a positive
relationship, while negative coefficients indicate a negative
relationship. The magnitude of the coefficient indicates the
strength of the relationship. P -values associated with the
coefficients help determine the statistical significance of the
relationships. Generally, p-values below a certain threshold
(e.g., 0.05) are considered statistically significant, indicating
that the relationship is unlikely to have occurred by chance.

In cases where standard errors and p-values are absent for
latent variables, an estimated relationship of 1.00 between
those variables is indicated.

Multiple versions of the SEM were constructed in this
study. All variables observed in the graph prototype were
included in the initial iteration. Subsequently, the SEM
results were analyzed to identify nodes with non-significant
connections (p-value greater than 0.05), which were removed,
and the graph was reorganized to optimize its structure.

Our final SEM was divided into three parts to capture the
relationships within our research domain comprehensively.
In the first part (Figure 2), we examined the interconnections
between personality traits, as determined by the HEXACO
survey, and demographic factors. This portion of the model
illustrates how an individual’s personality, age, and sex can
influence their response to workload demands.

We also created SEM for the relationships between various
bio-signals, such as GSR, temperature, RR, and HR, in

detecting and quantifying workload levels. Those results are
presented on GitHub and not illustrated here due to space
constraints.

Fig. 3. Macro-level of final SEM mode: above value is Regression Coef-
ficients between variables, below p-val is the Chi-Square test significance
(p-value needs to be below 0.05)

The macro-level of our SEM (Figure 3) combines the
personality traits and bio-signal data, showcasing the inter-
connectedness between individual characteristics and physio-
logical responses to workload. By considering both personal
attributes and physiological responses, we obtain a compre-
hensive understanding of how individual traits and bio-signals
collectively influence the experience and manifestation of
workload.

D. Designing BN

To construct a BN based on the causal network, it is
necessary to assign conditional probability tables (CPTs) to
each variable. These CPTs capture data distributions and
provide valuable information for the BN. We employed the
PyAgrum library in Python to create the BN.

Our complete BN consists of a total of 46 nodes, repre-
senting various variables of interest.
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Fig. 4. Part of the BN, which models the interplay between Personality traits and Demographics created using PyAgrum.

Below, we illustrate a fragment of the BN that accounts for
personality traits and demographics. To create the CPTs, we
categorized age into three distinct groups: 18-24 representing
early adulthood, 25-34 representing middle adulthood; and
35-64, representing old adulthood. To assign CPTs to the
Demographic and Age nodes, we utilized open data pertain-
ing to a country’s population [24].

Subsequently, we calculated statistics for each node about
the personality traits derived from the HEXACO model. This
involved analyzing the distribution of scores ranging from
1 to 5 for each personality trait facet. By examining these
distributions, we gained insights into the frequency with
which individuals exhibited specific scores for each facet.

Building upon the correlation matrix obtained in step
two, we populated the dimensions of the BN. This process
involved assessing the impact of each facet on the cognitive
load or rest state. For instance, consider the dimension
”Agreeableness” with its three facets: ”flexibility,” ”gentle-
ness,” and ”patience.” Upon analyzing the correlations, we
found that ”flexibility” and ”gentleness” were associated with
Rest, while ”patience” showed a correlation with stress. Con-
sequently, we inferred that two of the three facets influenced
the rest state, while only one impacted the workload (stress)
state. This indicates that individuals with these specific facets
were likely to be affected by Rest at a rate of 67% and by
the cognitive load at a rate of 33%.

As a result, three distinct classes of person traits were iden-
tified based on demographic and psychological information:
Stressed, which means a state under a workload (S), a state
of Rest, or no-load (R), and Neutral (N).

In the context of our study, reminiscent of the scenario
involving a converging connection [22], we opted to combine
physiological workload markers and personal traits during

the final analysis phase. For the purpose of this integration,
we utilize the OR and NOR operators as follows: when
the physiological workload markers indicate a state of rest,
we activate the OR operator to amalgamate this data with
personal traits; we used the NOR operator when the markers
indicate the absence of rest.

The final graph for the assessment of workload proba-
bilities predicated on an individual’s distinct assemblage of
physiological markers and personality attributes is displayed
in Figure 4.

IV. EXAMPLES OF INFERENCE ON THE BN

In this section, we provide three examples of such infer-
ences on the BN as follows:

Example 1. Consider an individual with a Personality trait
being Neutral (N), and the data is available from wearable
sensors on that subject. The Bayesian inference estimates
the likelihood of the person performing cognitive tasks as
89.63%, as shown in Table II, line 1.

Example 2. Suppose we have a 20-years old male fire-
fighter, and we have access to data from two sensors:
temperature and GSR. By employing Bayesian inference, we
can estimate the likelihood of the individual experiencing a
cognitive workload. Based on the analysis conducted on the
BN, the estimated likelihood of such workload is 70.04%, as
shown in Table II, line 2.

Example 3.Consider a 40-year-old woman with extensive
work experience. According to the psychological test, she
falls under the R category. While the HR sensor detects
a workload, the other sensors indicate a state of rest. We
can estimate the likelihood of the subject performing a
cognitive task. Based on the analysis conducted on the BN,
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the estimated likelihood of the state of such workload is
determined to be 36.16%, as shown in Table II, line 3.

TABLE II
PROBABILITY OF A COGNITIVE WORKLOAD GIVEN DEMOGRAPHIC DATA

Workload Yes, % No, %
1. Neutral type subject 89.63 10.63
2. A 20-year old man under load 70.04 29.96
3. A 40-years woman at rest 36.16 63.84

V. CONCLUSION

The reported results suggest the following conclusions:
• The causal models capture the relationship between the

level of cognitive load, the physiological signal that act
as a predictor of such load, and the personality traits of
the human subjects.

• The developed reasoning model acts as a decision sup-
port component, integrating real-time physiological data,
personality traits, and demographic information.

• The created models allow for probabilistic inference and
assessing the posterior probability of certain risks and
events.

This work contributes to the ultimate goal of creating a
Computational Intelligence (CI) tool for assessing a human’s
affective state under a cognitive load. Such CI tool’s function
is to detect abnormal levels of stress, such as burnout, and
to alert the system that monitors the state of human subjects,
such as first responders, firefighters, rescue operators and
combatants. This information can further guide the rescue
task assignment, considering responders’ current cognitive
capacity, thereby maximizing their effectiveness while mini-
mizing the risk of errors caused by cognitive overload.

The research makes a significant contribution by inte-
grating personality traits with physiological data to assess
cognitive load accurately. It employs probabilistic graphical
models (SEM and BNs) and emphasizes data quality through
detailed preprocessing. This holistic approach finds practical
application in high-stress environments like first responders,
backed by expert involvement and transparency in model
development, enhancing its real-world relevance.
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