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Abstract—Exploration and analysis of changes in human bio-
metrics, such as heart rate and blood pressure associated with
exposure to traumatic events is the primary goal of this article.
We aimed at answering the questions on whether there is a
significant difference in biometrics observed in the peaceful and
disaster times. Overall, we developed and tested a new technique
to measure the difference in the indicators of stress during
relatively peaceful times, and during natural and human-made
disasters and crises. The proposed approach holds significant
potential in the context of e-health and mass migration, offering
a valuable tool to recognize and address stress in traumatic
events resulting from, for example, forced displacement, armed
conflicts, and the impacts of climate change.

Index Terms—heart rate variability, blood pressure, pulse,
stress detection, wearable devices, linear regression, statistics.

I. INTRODUCTION

The phenomenon of global climate change, coupled with
its consequential effects such as epidemics, war conflicts,
and substantial population migrations, engenders a marked
escalation in the incidence of stress-inducing circumstances.
The physiological impact of stress on the human body can
lead to pathological alterations, unless proactive measures are
implemented to mitigate these consequences. As such, there
emerges a compelling imperative to promptly undertake the
diagnosis of stress-related conditions.

Stress has become increasingly pervasive in modern so-
ciety. It has been linked to numerous physical and mental
health problems. Understanding and effectively monitoring of
stress levels is crucial for timely intervention and support. In
recent years, the usage of body biometrics, or vitals, as stress
indicators, was considered instrumental for unraveling the
complex relationship between physiological responses and
mental well-being [1].

Measuring the body vitals are performed using wearable
devices such as smartwatches and fitness trackers. They can
continuously monitor heart rate (HR) and blood pressure
(BP), providing real-time data for individuals and healthcare
professionals.

This study is motivated by the urgent need to assess
individuals’ stress using body biometrics as indicators. We
aim to develop an approach to link environmental stressors
such as traumatic events to the changes in the body vitals

captured using wearable devices. It is well-known that even
seemingly minor stressors can adversely affect HR and
BP, potentially contributing to burnout, anxiety, and other
negative psychological consequences. Note that there is a
difference between stress and physiological workload. If both
HR and BP are elevated, it may be indicative of stress.
In contrast, if only one type of measurement is high (e.g.,
elevated HR without a corresponding increase in BP), it may
suggest a response to physiological workload, like exercise
or physical exertion.

While previous studies have explored the relationship
between cognitive workload (such as solving mathematical
problems) or physical workload (such as running exercise)
and physiological responses [2], [3], this research focuses
on the impact of traumatic events such as wartime events,
on stress levels. To capture the causal relationships between
psychological and physiological well-being during times of
significant stress, we analyze the vital data using machine
learning.

II. PROBLEM FORMULATION AND RELATED WORKS

The relationship between HR and BP during stressful situ-
ations is multi-factorial and is subject to variability depending
on the stressors and individual characteristics. It is known that
human sympathetic nervous system is activated in response
to a stressor, increasing HR and BP. This increase in HR
is mediated by the release of adrenaline and noradrenaline,
which stimulate the heart to contract more forcefully and
rapidly. The increase in BP is due to the constriction of blood
vessels, leading to increased vascular resistance [4].

The relationship between HR and BP can vary depending
on the stressor’s type, intensity, and duration, the individual’s
age, fitness level, and underlying health conditions. For in-
stance, HR and BP can increase in response to acute stressors
like exercise or a sudden threat. In contrast, in response to
chronic stressors like job stress or financial worries [5], HR
may increase while BP remains elevated for longer.

The authors of [6] studied bidirectional interactions be-
tween BP and HR. Traditional methods neglect HR’s effect
on BP. Sixteen volunteers underwent noninvasive methods to
record signals. The authors analyzed causality using time-
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domain, frequency-domain, and information-domain analy-
sis. Results showed changes in causal coupling from SBP to
RR across conditions, indicating that nonlinear interaction
mechanisms play a role in cardiovascular control during
mental stress.

The effect of stress on heart function is primarily observed
in the HR [7]. Depending on the direction of the sympa-
thovagal response shift, the HR may increase or decrease
[8]. Another significant effect of stress on cardiovascular
function is BP [9]. Stress triggers the autonomic sympathetic
nervous system, leading to increased vasoconstriction. It,
in turn, can result in elevated BP, increased blood lipids,
disorders in blood clotting, vascular changes, atherogenesis,
and ultimately cardiac arrhythmias and myocardial infarction
[10]. These stress-induced effects are clinically observed
in cases of atherosclerosis and can lead to an increase in
coronary vasoconstriction.

III. METHODS

The study focuses on unraveling the relationship between
the stress caused by the traumatic events of wartime and the
human body vitals measured on subjects before and after the
onset of war in Ukraine in February 2022. The body vitals,
or biometrics, included HR, systolic and diastolic pressure
(SBP and DBP), and their derivative such as pulse pressure
(PP) which is mathematically defined as the subtraction of
the DBP from SBP. These measurements were acquired
through a wearable device known as a Holter placed on
the subject’s chest, allowing for continuous cardiovascular
parameter monitoring during both the daytime and nighttime.

The study hypothesis was formulated as follows: “Is there a
significant difference in human vitals such as HR, SBP, DBP
and PP observed in peace time (pre-war) and war times? ”
The wartime events, being overall traumatic and negatively
affecting mental health, were considered an external stressor.

The methodology to test this hypothesis includes:
1) Data gathering from wearable devices.
2) Evaluation of main statistics for subjects’ group com-

parison.
3) Detection of outliers and their deletion from the dataset.
4) Construction of linear regression models to establish

interrelationships among various cardiovascular indica-
tors.

5) Classification using the average-minimum and average-
maximum method.

6) Assessment of statistical significance using the Mann-
Whitney test to corroborate the proposed hypothesis.

We distinguish the mental, or emotional stress caused
by external stressors and the stress caused by physical or
cognitive (like solving problems) activities. These stressors
cause the cardiovascular system reaction. The logic under-
lying the formulated hypothesis, in terms of those changes
that are indicated by changes in vitals, is shown in Figure 1.
When a person is prone to stress, not accompanied by high
physical activity, the body’s global oxygen debt increases
sightly or practically does not change. At the same time,
blood flow through arteriovenous shunts increases, causing a

notable elevation in BP. With concomitant physical activity,
an increase in nutritious blood flow through the capillary
exchange system, while the detected increase in BP may be
less pronounced.

Fig. 1. The diagram that represents the algorithm and approach to unravel-
ling body vitals

A. Data

This study employed a data collection methodology in-
volving the participation of individuals who were invited to
“Dobre Sertse” Medical Center, located in Kyiv, Ukraine. The
research involved daily monitoring of a cohort comprising
33 individuals. The apparatus utilized for this process was
the ABpro Holter system, which adheres to the standards
of the European Society of Hypertension [11]. This system
continuously recorded SBP, DBP, and HR over 24 hours. In
addition, PP was calculated, mathematically expressed as the
difference between SBP and DBP. It takes measurements at
15-minute intervals during the day and extends to 30-minute
intervals at night, explicitly targeting sleeping hours.

The gathered data were processed to create a comprehen-
sive database, containing 2391 instances, averaging around
73 per participant. This approach enabled the exploration of
stress-related physiological changes in individuals, providing
insights into the potential impact of stressors on cardiovas-
cular health.

Before the outbreak of the full-scale war in Ukraine on
February 24, 2022, Holter monitoring was executed on a
sample of 17 patients during the period extending from
December 15, 2017, to February 22, 2022. Following the
inception of military conflicts, 16 patients were monitored
between April 29, 2022, and May 25, 2023. Of the 33
patients, 19 were identified as male and 14 as female. Among
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the aggregate of 2391 recorded observations, only nine were
conducted unscheduled, with 8 of these coinciding with the
period after the commencement of the war. Moreover, of the
1109 observations registered post-war initiation, 52 occurred
during airstrike alert instances.

In the context of wartime-related stress, emotional stress
can manifest spontaneously at daytime, irrespective of an in-
dividual’s prevailing emotional disposition. During nighttime
hours, it may be precipitated by factors such as air raid alerts,
missile attacks, aerial defense engagements, and other related
events.

B. Statistical observation of data

This analytical component aimed to compare physiolog-
ical variables, specifically SBP, DBP, PP, and HR, across
distinct population cohorts, emphasizing pre-war and post-
war observations. The statistical hypotheses were formulated
as follows:

• H0 (null hypothesis): the difference in physiological
variables between pre-war and post-war observations is
insignificant (p ≥ 0.05).

• H1 (alternative hypothesis): the difference in physiologi-
cal variables between pre-war and post-war observations
is significant (p < 0.05).

First, the normality of the distribution for SBP, DBP, PP,
and HR was appraised using the Shapiro-Wilk test [12],
[13]. The results revealed a deviation from the Gaussian
distribution, indicating non-normality (p < 0.05). As a
result of this finding, non-parametric statistical methods were
adopted for subsequent analysis.

The daytime data analysis used instances harvested at
15-minute increments during daylight hours. The statistical
characteristics of this dataset, comprising the mean (µ), the
minimum (Min), first quartile (Q1), median (Q2), third
quartile (Q3), and maximum (Max) values [14], are sys-
tematically cataloged in Table I. These statistical measures
are presented for two distinct observational cohorts: before
(993 observations) and after (858 observations) the invasion
periods.

TABLE I
STATISTICAL SUMMARY OF DAYTIME OBSERVATIONAL COHORTS

BEFORE (B) AND DURING (D) THE WAR TIME

Index µ Min Q1 Q2 Q3 Max

SBP B 126.39 70.00 116.00 125.00 138.00 185.00
D 126.53 59.00 115.75 124.00 136.00 194.00

DBP B 75.42 26.00 65.00 75.00 85.00 145.00
D 78.57 22.00 69.00 78.00 88.00 133.00

PP B 50.97 15.00 39.00 50.00 61.00 107.00
D 47.96 15.00 38.00 47.00 57.00 116.00

HR B 80.59 44.00 68.00 77.00 91.00 185.00
D 84.16 47.00 70.00 81.00 95.00 240.00

The nonparametric Mann-Whitney U test [15], deemed
suitable given the comparison of two distinct groups and the
non-normal distribution of data, was employed in congruence
with the given hypotheses. Upon application of this test, it
was found that the null hypothesis was validated in the case
involving SBP (p = 0.465), implying that the before and after

the outbreak of war cohorts exhibit no significant differential
in this specific measure.

Conversely, concerning DBP (p < 0.05), PP (p < 0.05),
and HR (p < 0.05), the alternative hypothesis was upheld.
This validation is corroborated by the data presented in
Table I, which indicates a significant discrepancy among all
statistical measures for described indexes. We highlight in
bold type the main characteristics of the groups which are
the median and the mean. This approach was also applied
to other results in Tables II and V. In the nighttime, the
data is exclusively collected during nocturnal hours at half-
hour intervals. The same statistical measures applied to the
daytime data were computed for the before (consisting of
289 observations) and after (comprising 251 observations) the
outbreak of war cohorts. Table II compiles the corresponding
statistical outcomes.

TABLE II
STATISTICAL SUMMARY OF NIGHTTIME OBSERVATIONAL COHORTS

BEFORE (B) AND DURING (D) THE WAR TIME

Index µ Min Q1 Q2 Q3 Max

SBP B 112.17 74.00 102.50 111.00 121.00 160.00
D 115.41 43.00 100.00 115.00 129.00 181.00

DBP B 60.45 36.00 53.00 60.00 67.00 109.00
D 67.00 22.00 56.00 66.00 75.00 118.00

PP B 51.72 25.00 43.00 50.00 60.00 91.00
D 48.41 15.00 40.00 48.00 57.00 89.00

HR B 65.40 39.00 57.00 66.00 74.00 120.00
D 71.22 46.00 56.00 69.00 82.00 208.00

Concurrent with the findings from the daily data, the
Mann-Whitney U test revealed a significant difference be-
tween the two cohorts in terms of DBP (p < 0.05), PP
(p < 0.05), and HR (p < 0.05). These disparities are further
substantiated by the statistical insights elucidated in Table
II. In addition, no statistically significant differences were
observed in the measures of SBP (p = 0.053) between the
two cohorts.

C. Regression Analysis and Unsupervised Learning

To evaluate the performance of the linear regression
algorithms, we utilized a dataset containing HR and BP
measurements from a diverse group of individuals exposed
to varying environmental conditions. First, we employed
OLS [16], a linear regression algorithm that assumes a
linear relationship between the independent and dependent
variables. Subsequently, we explored two robust algorithms,
RANSAC [17] and Theil-Sen [18], which are less sensitive
to outliers and can accurately estimate the underlying trends
in the presence of noise or extreme observations.

We compared the R-squared values [19] obtained from
analyzing a specific patient’s data. R-squared is a statistical
measure that quantifies the proportion of the variance in the
dependent variable explained by the independent variables. It
helps identify the algorithm that offers the highest predictive
power and accurately captures the underlying relationships
between HR, BP, and stressors. The analysis of R-squared
values revealed valuable insights regarding the performance
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of the linear regression algorithms. OLS [16] and Theil-
Sen [18] showed excellent performance. However, RANSAC
[17] provided greater accuracy, thus, a decision was made to
use it for further calculations. Graphically in Figure 2, the
comparison results are shown.

Fig. 2. Comparison of Linear Regression methods: Theil-Sen (black),
RANSAC (blue), OLS (red) on the example of HR vs. SBP.

We evaluated linear regression in two distinct groups:
the pre-war group and the during-war group, subsequently
stratifying them based on gender.

Initially, we normalized our dataset and applied the algo-
rithm to analyze two groups, further stratified by gender. The
outcomes of this analysis did not yield statistically significant
results. Therefore, we applied the algorithm individually for
each patient, followed by a comparison within the previously
described division into two distinct groups. Figure 3 shows
an example of the constructed regression for HR vs SBP
(Figure 3a) and HR vs DBP (Figure 3b). In the graphs for the
pre-war period, we observed a moderate positive correlation
between HR and SBP as well as HR and DBP, indicating
that as HR increased, SBP and DBP tended to increase as
well. Interestingly, there are distinct changes in the HR-
vascular parameter relationships. The correlation between
HR and SBP appeared stronger, suggesting an intensified
cardiovascular stress response. Additionally, the correlation
between HR and DBP seemed relatively similar compared to
the pre-war period.

Note that the dataset encompasses observations from both
daytime and nighttime, thus, we analyze these observations
collectively without considering them as a time series. The
significance lies in the availability of the data rather than the
specific intervals or time points. After constructing regression
lines for each patient, we computed various metrics of
linear regression, including root mean squared error (RMSE),
coefficient of determination r2 score, and mean absolute
percentage error (MAPE). The results are shown in Table
III.

The normality of the data distribution within these patient
model metrics was assessed using the Shapiro-Wilk criterion.
The resulting data demonstrated that, with a significance level
of p ≥ 0.05, the RMSE associated with the SBP, DBP, and
PP models conformed to a Gaussian distribution. Conversely,
in all other instances, the alternative hypothesis was validated

(a) SBP vs HR before and during the war

(b) DBP vs HR before and during the war

Fig. 3. Illustration of the Linear Regression analysis for one subject before
and during the war for (a) SBP vs HR and (b) DBP vs HR.

TABLE III
LINEAR REGRESSION METRICS BASED ON DEPENDENCY BUILDING

RESULT BETWEEN HR AND SBP, DBP, PP

Index Gender RMSE r2 MAPE

SBP
Women Before 4.84 0.28 0.03

During 4.41 0.19 0.03

Men Before 4.81 0.16 0.03
During 4.37 0.25 0.03

DBP
Women Before 4.41 0.31 0.05

During 4.19 0.42 0.05

Men Before 4.79 0.22 0.06
During 3.64 0.27 0.04

PP
Women Before 3.74 0.15 0.07

During 3.48 0.15 0.07

Men Before 3.76 0.01 0.06
During 3.94 0.13 0.07

(p < 0.05), thus indicating a non-normal distribution of the
data.

Considering the normal distribution observed in the RM-
SEs of the SBP, DBP, and PP models, we employed para-
metric criteria to test statistical hypotheses. In this study, the
null hypothesis was formulated as follows: ”The RMSEs of
SBP, DBP, and PP models for the groups before and after
the outbreak of the war exhibit gender-based differences.” To
assess this hypothesis, the statistical analysis employed Stu-
dent’s t-test [20]. However, for all other instances, the Mann-
Whitney test was utilized to evaluate the null hypothesis
regarding potential disparities between groups, considering
gender. Table IV displays the corresponding p-values for each
scenario. It is evident that statistical significance in the DBP
model is exclusively observed among males, as evidenced by
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the regression metrics such as RMSE and MAPE.

TABLE IV
STATISTICAL SIGNIFICANCE OF LINEAR REGRESSION MEASUREMENTS

Index Gender
Statistical measures

RMSE r2 MAPE
p-value p-value p-value

SBP Men 0.47 0.90 0.40
Women 0.49 0.80 0.53

DBP Men 0.01 0.78 0.01
Women 0.77 0.90 1.00

PP Men 0.74 0.05 0.45
Women 0.69 0.90 0.80

To assess the presence of stress, we propose a new ap-
proach involving the calculation of average-maximum and
average-minimum values. It utilizes the intercept and slope
parameters from each model, as well as the corresponding
HR values and the variable (DBP, SBP, PP) upon which
the regression was based. From the formulated hypothesis
and represented algorithm of unraveling body vitals, we
undertake a comparison between the average slopes in the
groups before and after the onset of the war. If the steepness
of these relationships diverge before and after the invasion,
it would lead us to infer dissimilarity in the intensity of the
BP response and the alterations in HR. These quantities were
then incorporated into the following formulae:

SBP(HR) =
SBP

HR × slope + intercept

DBP(HR) =
DBP

HR × slope + intercept

PP(HR) =
PP

HR × slope + intercept

Using the average-minimum and average-maximum obser-
vations, we established a definitive criterion: if an observation
is determined to possess the average-minimum value across
most models, it is assigned a class label of ”0”, indicating the
absence of stress. Conversely, if an observation exhibits the
average-maximum value across most instances, it is assigned
a class label of ”1”, signifying the presence of stress.

For example, we analyzed the first patient’s data, consider-
ing HR, SBP, DBP and PP. Linear regression was performed
on each variable to obtain the slope and intercept values.
For SBP, the slope was 0.22; the intercept was 98.75; for
DBP: 0.52 and 26.78; for PP: −0.16 and 48.20, respectively.
Using the values above, we calculated that SPB(HR) = 1.10,
DBP(HR) = 1.14, PP(HR) = 1.26.

By applying these values to the respective formula, we de-
termined the class of distribution for each variable. Notably,
all values obtained were greater than 1, indicating that they
fall into the average-maximum class, signifying the presence
of stress.

For the research hypothesis validation, a comparative anal-
ysis was conducted between the observation groups’ four
primary indicators (SBP, DBP, PP, HR), classified based
on hypothetical class labels. The statistical technique em-
ployed for this purpose was the Mann-Whitney test. The
test results revealed a significant difference (p < 0.05)

between the groups across all four indicators in all statistical
measures, thus leading to the acceptance of the alternative
hypothesis. These findings are further supported by Table V,
which clearly illustrates substantial BP variation among the
observation groups while displaying relatively insignificant
discrepancies in HR values.

TABLE V
COMPARISON OF STATISTICAL MEASUREMENTS FOR “STRESS (S)” AND

“NO STRESS (N)” CLASSES (CL)

Index CL Statistical measures
µ Min Q1 Q2 Q3 Max

SBP N 118.23 74.00 109.25 118.50 126.00 159.00
S 129.37 94.00 121.00 128.00 138.00 185.00

DBP N 70.76 41.00 62.00 70.00 78.00 104.00
S 77.08 45.00 68.00 77.00 84.00 121.00

PP N 47.47 16.00 38.25 46.00 56.00 84.00
S 52.29 21.00 42.00 51.00 64.00 99.00

HR N 75.11 39.00 63.00 74.00 84.00 191.00
S 77.07 44.00 65.00 74.00 88.00 196.00

Henceforth, the approach used to ascertain the average-
maximum and average-minimum values of the regression
model provides a means to classify the data, even without
prior knowledge regarding stress at any given time. This
proposition finds additional reinforcement in the observation
that, on average, the ”stress” group exhibits significantly
elevated BP levels compared to the ”no stress” group, ac-
companied by marginally higher HR values.

In order to visually trace the statistically significant differ-
ence between the groups, the distribution for ”Stress”/”No
stress” classes before the war is shown in the Fig. 4a and
distribution for ”Stress”/”No stress” classes during the war
is shown in the Fig. 4b.

IV. CONCLUSION AND FUTURE WORK

The study offered an in-depth analysis of cardiovascular
measurements obtained from patients in the presence of
the external stressor such as a full-scale war. We aimed at
answering the questions on whether there is a significant
difference in physiological indicators such as HR and BP
observed in pre-war and war times. This hypothesis provided
a guiding framework, statistical analysis, constructing regres-
sion models to establish interrelationships among various
cardiovascular indicators, and adopting a novel approach that
employed average-maximum and average minimum values to
classify observations effectively.

Emotional stress in wartime is a complex phenomenon
that can manifest spontaneously during air raid alerts, aerial
defense engagements and other wartime events at any time
of day or night.

The results unveiled noteworthy differences in the values
of DBP, PP, and HR between the two groups of subjects (pre-
war and war time). Furthermore, the statistical significance
to corroborate the proposed hypothesis was assessed. After
comparing three different approaches, it was observed that
the RANSAC method yielded superior results, as indicated
by a higher R-squared value. Consequently, this method
was employed for each patient, subsequently facilitating the
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(a) ”Stress”/”No stress” classes before the war

(b) ”Stress”/”No stress” classes during the war

Fig. 4. Illustration of the data distribution among Stress/No stress classes
before and during the war.

calculation of linear regression metrics. Nevertheless, the
results obtained from their analysis failed to exhibit statistical
significance for the two groups. It prompted us to adopt
an alternative method using average-maximum and average
minimum values.

The results of the testing the hypothesis using Mann-
Whitney test yield the p-value of less than 0.05, thereby
providing compelling evidence to confirm the statistical
significance and validate the acceptance of the hypothesis
regarding the disparity between the study groups during both
the pre-war and war periods. Overall, we developed and
tested a new technique to measure the difference in indicators
of stress during relatively peaceful times, as opposed to
natural and human-made disasters and crises.

In future investigations, we will utilize the advanced ma-
chine reasoning that enable predictions of the health status
using prior data and additional variables such as demo-
graphics and underlying health conditions if such data is
available. The new causal models shall enhance the accuracy
and efficiency of stress detection in individuals, thereby
contributing to developing more effective stress management
strategies. The practical value of this study include techniques
to improve preparedness of e-health technology to similar
disasters, health and migration crises [21].
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