
Quantifying Temporal Entropy in Neuromorphic
Memory Forgetting: Exploring Advanced Forgetting
Models for Robust Long-term Information Storage

Shane Harrigan
SCEIS-CRL

Ulster University
Derry, UK

sp.harrigan@ulster.ac.uk

Sonya Coleman
SCEIS-CRL

Ulster University
Derry, UK

sa.coleman@ulster.ac.uk

Dermot Kerr
SCEIS-CRL

Ulster University
Derry, UK

d.kerr@ulster.ac.uk

Justin Quinn
SCEIS-CRL

Ulster University
Derry, UK

jp.quinn@ulster.ac.uk

Kyle Madden
SCEIS-CRL

Ulster University
Derry, UK

k.madden@ulster.ac.uk

Shuo Liu
SCEIS-CRL

Ulster University
Derry, UK

s.liu@ulster.ac.uk

Leeanne Lindsay
SCEIS-CRL

Ulster University
Derry, UK

l.lindsay@ulster.ac.uk

Abstract—This paper presents a progression of a popular
neuromorphic memory structure by exploring advanced forget-
ting models for robust long-term information storage. Inspired
by biological neuronal systems, neuromorphic sensors efficiently
capture and transmit sensory information using event-based
communication. Managing the decay of information over time
is a critical aspect, and forgetting models play a vital role
in this process. Building upon the foundation of an existing
popular neuromorphic memory structure, this study introduces
and evaluates four advanced forgetting models: ROT, adaptive,
emotional memory enhancement, and context-dependent memory
forgetting models. Each model incorporates different factors to
modulate the rate of decay or forgetting. Through rigorous
experimentation and analysis, these models are compared with
the original ROT forgetting model to assess their effectiveness
in retaining relevant information while discarding irrelevant or
outdated data. The results provide insights into the strengths, lim-
itations, and potential applications of these advanced forgetting
models in the context of neuromorphic memory systems, thereby
contributing to the progression of this popular neuromorphic
memory structure.

Index Terms—Bio-inspired, Model-based, Pattern Recognition

I. INTRODUCTION

Neuromorphic sensors aim to replicate the spike-based
communication paradigm found in biological systems [4],
[8]. By emulating the spiking behaviour of neurons, these
sensors capture and transmit sensory information more effi-
ciently and selectively. Instead of continuously sampling and
transmitting data, they generate spikes only when significant
changes or events occur in the input signals. This event-
driven approach reduces data redundancy and enables real-
time processing [5], [10], [12], [16]. Mathematics plays a
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crucial role in understanding and modelling the behaviour of
neuromorphic sensors. Spiking neural network models, based
on mathematical equations, simulate the dynamics of artificial
neurons and their interactions. These models represent the
generation, propagation, and integration of spikes, allowing
analysis and prediction of sensor responses to different stimuli.
Neuromorphic sensors have a wide range of applications. In
computer vision, they excel at detecting and tracking moving
objects with high precision and low latency. In robotics, these
sensors enable biologically-inspired and efficient perception
and interaction with the environment. They also contribute
to advancements in artificial intelligence, bio-informatics, and
neuromorphic engineering, driving innovation and discovery.
A core component of a neuromorphic sensor is the event
datatype, represented as e = ⟨t, c⟩ [15], [16]. The timestamp
t indicates the event’s detection or generation time, providing
temporal context for precise timing-based computations. The
event content c varies based on the sensor type and captured
information. It can be a scalar value like intensity or a
multidimensional vector representing features or attributes of
the input. In event-based vision data, such as dynamic vision
neuromorphic sensors (DVS), the content c is represented
as c = ⟨x, y, p⟩ [4], [8], [20]. Here, x and y denote the
spatial coordinates of the event, and p represents its polarity.
Consider all events collected to be E , we consider our working
collection of events E = {e ∈ E|0 ≤ t ≤ end}. By efficiently
encoding and transmitting visual information in a sparse
and asynchronous manner, event-based neuromorphic vision
sensors reduce data redundancy and processing overhead. This
approach is particularly suitable for real-time object recogni-
tion and visual navigation. Neuromorphic data processing has
also led to the development of specialised data structures, such
as the neuromorphic ring buffer, time-surface [10], [13], [14],
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and the Reduction-Over-Time (ROT) tree [18]. The ROT tree,
inspired by the brain’s structure and functioning, efficiently
processes large-scale spatial-temporal data. It combines a
hierarchical organisation with forgetting models to determine
which information to retain or discard over time. By focusing
on relevant data and capturing temporal and spatial patterns,
the ROT tree optimises processing capabilities. The ROT tree,
and other data structures, can be considered as a novel class of
data structures called neuromorphic memory structures, which
are designed to retain and manage decay of information over
time in neuromorphic event state. In summary, neuromorphic
sensors replicate the spike-based communication paradigm of
biological systems, enabling efficient and selective sensory
information processing. Mathematical models, such as spiking
neural networks, play a crucial role in understanding and
simulating their behaviour. These sensors find applications
in computer vision, robotics, artificial intelligence, and other
fields. The event datatype, consisting of both a timestamp
and content, captures essential information, and the ROT tree
provides an effective computational structure for processing
large-scale spatial-temporal data.

II. FORGETTING MODELS

The forgetting models in the following subsections share
some similarities in their underlying principles:
Initial Strength: Each model includes an initial strength pa-
rameter, representing the strength or clarity of the memory at
its inception. This initial strength determines the starting point
of the memory’s decay or forgetting process. Initial strength
is always denoted with χ.
Exponential Decay: All these models are based on exponential
decay functions, where the memory strength decreases over
time in an exponential manner. The exponential decay reflects
the general pattern observed in memory forgetting, where
memories tend to fade more rapidly initially and then stabilise
at a slower rate over time. Exponential is denoted as exp.
Time Factor: Time plays a crucial role in all these models.
The decay or forgetting of memory strength is influenced
by the passage of time, represented by the variable t in
the equations. As time increases from encoding or retrieval,
the more the memory strength diminishes. In this paper we
quantify temporal entropy energy as follows:

ψ(x̂, ŷ, T ) =

∫ T

0

∥E∥ | ∀E where x̂ = x, ŷ = y, t ∈ [0, T ]

(1)
where ψ is the energy function of a pixel x, y located at time
T such that the energy is equal to the cumulative number of
events in time [0, T ]. Using the ROT tree this equals, with
decay, the number of nodes currently balanced. Furthermore,
to compute the difference in time we treat the difference in
time as:

∆ψ = ψ(x̂, ŷ, T )− ψ(x̂, ŷ, T − 1) (2)

Factors Modulating Decay: While the core decay function is
exponential, each model incorporates additional factors that

modulate the rate of decay or forgetting. These factors differ
between models and include interference factors, difficulty of
information, emotional valence, context influence, relevance,
significance, and spatial cues. These additional factors intro-
duce variations in the decay rates, reflecting different aspects
of memory forgetting influenced by specific conditions or
contexts.

A. ROT Forgetting Model

The theory behind the ROT forgetting model is the em-
ulation decay properties exhibited in thermodynamics and
reinforced by the forgetting curve [9]. Imagine a hot cup
of coffee cooling down over time; the temperature decreases
exponentially, starting from its initial high temperature at a
rate determined by the rate of cooling. Similarly, in this model,
the memory strength decreases exponentially over time, with
the initial strength and forgetting rate influencing the decay
pattern. The model is described by:

Si = χ× exp(−Rf×ti) (3)

The model has three parameters: t which denotes timestamp
values, χ which is an initial strength value, and Rf which
denotes the forgetting rate within the model. The original
rot-Harris [18], on which this work is based, made use of
the ROT forgetting model to drive forgetting within the ROT
tree structure; we provide this definition here for context and
this method is used to evaluate the methods that follow by
comparing metrics produced from the new methods and this
method.

B. Adaptive Forgetting Forgetting Model

An analogy for adaptive forgetting [17] can be found in
the process of learning new skills or acquiring knowledge.
Imagine you are learning to play a musical instrument, such as
a guitar. Initially, as a beginner, you may find it challenging to
remember and execute the correct finger placements and chord
progressions. However, as you practice and gain experience,
your ability to retain and recall this information improves. The
model is described by:

Si = χ× exp−(0.1+0.5×D)×ti (4)

The model has three parameters: t which denotes thetimestamp
values, χ which is an initial strength value, and D which
denotes the difficulty factor. The core difference of this model
compared to the ROT forgetting model is the introduction of
additional constants as well as the difficulty scoring.

C. Emotional Memory Enhancement Forgetting Model

Imagine attending a thrilling roller coaster ride. The intense
emotions felt during the ride, such as excitement or fear,
can have a profound impact on memory forgetting. In this
analogy, emotional memory enhancement [6] suggests that
the emotional valence associated with an event, like the roller
coaster ride, can enhance the strength of memory formation.
The initial strength of the memory is multiplied by an emotion
factor, which amplifies the memory’s intensity. Consequently,

295



these emotionally charged memories may be more vivid and
have a lasting impact compared to neutral or less emotionally
significant memories. The model is described by:

Si = χ× E× exp−0.1×ti (5)

The model has three parameters: t denotes the timestamp
values, χ is an initial strength value, and E -is the emotional
valence model based on random probability. The emotional
memory enhancement forgetting model introduces an emo-
tional valence factor which will cause large variations in the
memory forgetting over time.

D. Context-Dependent Memory Forgetting Model

As an analogy for Context-Dependent Memory [1], it can
be compared to a key and lock system. Imagine you have a set
of keys, each representing a specific memory. The lock rep-
resents the context or environment in which the memory was
initially encoded. When you try to recall a particular memory,
the effectiveness of your memory retrieval is influenced by
whether the context or environment matches the one in which
the memory was encoded. The model is described by:

Si = χ× (1− P)× exp−0.1×ti (6)

The model has three parameters: t denotes thetimestamp
values, χ is an initial strength value, and P is a value from a
random normalised distribution representing context over time
based on area activity. By mixing probabilistic entropy into the
equation as P, we introduce a measure of variability into the
models forgetting over time supplementing harsher pruning
activities within the ROT tree structure.

E. Multi-dimensional Memory Forgetting Model

The multidimensional memory [2] forgetting can be com-
pared to a complex web of interconnected memories, where
multiple factors contribute to the strength of forgetting. Imag-
ine exploring a vibrant city for the first time. As you encounter
various landmarks, events, and experiences, each memory
is influenced by different factors. In this analogy, multi-
dimensional memory forgetting suggests that the relevance,
significance, and spatial cues associated with each memory
contribute to its overall forgetting strength. The initial strength
of the memory is multiplied by a forgetting factor that in-
corporates these multidimensional factors. This implies that
memories with high relevance, significance, and spatial cues
are more likely to be retained strongly over time. The expo-
nential decay factor further accounts for the gradual forgetting
of these multidimensional memories as time progresses. The
model is described by:

Si = χ× (ri × si × ci)× exp−0.1×ti (7)

The model has five parameters: t denotes the timestamp values,
χ is an initial strength value, ri is the relevance factor for the
memory at time i (based on recent activity), si denotes the
significance factor for the memory at time i (based on recent
activity), and ci denotes the spatial cue factor for the memory
at time i (based on recent activity).

III. EXPERIMENTS

In this section, we describe the experiments conducted to
evaluate the forgetting models introduced in Section II. Our
evaluation aims to assess the effectiveness of these models
by comparing them to the original forgetting curve models.
To ensure a fair and consistent assessment, we followed the
experimental setting used in the original ROT-Harris paper
[18]. The ROT-Harris paper introduces a variant of the original
Harris corner detection [3] which is designed to operate
over the neuromorphic ROT tree data structure; the ROT
forgetting model is used to drive forgetting of data over time by
maintaining information whose difference in time has not yet
approached a zero value in the forgetting model response. The
ROT-Harris is built on the original ROT [19] which compared
corner detection methods using rich neuromorphic datasets
with corner detection being the key metric of concern, and
it is determined that the ROT tree achieves a good balance
between accuracy and time when processing the neuromorphic
image data.
By adopting the same experimental setting, we aim to establish
a direct comparison between the new forgetting models and
the original forgetting model in terms of accuracy, F1 score,
and the time required to make decisions compared to the
original forgetting model. Through rigorous experimentation,
we gathered empirical evidence on the performance of each
forgetting model. The evaluation process involved running the
models on a carefully selected dataset, designed to encompass
a wide range of scenarios and challenges.
By conducting experiments under the same conditions as
with the original ROT-Harris, we maintain consistency and
comparability between the new models and the established
baseline. This methodology ensures that our evaluation pro-
vides valuable insights into the advancements offered by the
new forgetting models in terms of accuracy, F1 score, and
the efficiency of decision-making. The comparison of these
metrics served as a reliable basis for assessing the performance
of the new proposed forgetting models.
To evaluate the forgetting models, we utilised a widely used
and publicly available neuromorphic image database [11],
which was also employed with the original ROT-Harris.
Specifically, we focus on the shapes datasets within this
database. The datasets were captured using a DAVIS240-C
camera [7], which is a hybrid camera capable of both event-
based and frame-based imaging. The captured data have a
resolution of 240×180 pixels. The database reports the ground
truth per frame for each of the datasets for analysis. By using
this established database and camera, we ensured consistency
with the original ROT-Harris and allow for a meaningful
comparison of the forgetting models’ performance.
From the original ROT-Harris work we inherit an experiment
which involves loading neuromorphic vision data into a spatial
ROT tree which, using a selected forgetting model, will
automatically remove nodes (the neuromorphic data) from
the forgetting model as they approach a zero response value;
the model is provided with the difference in time between

296



the last time the node was active (last insertion) and the
current running time. This difference value is provided to the
forgetting model as the tree is searched in time on-demand.
Table ?? provides a comprehensive overview of the individual
metric scores for each of the forgetting models evaluated. The
reported metrics include F1 score, normalised accuracy and
time-to-decision for each forgetting model. Figure 1 shows
the corner outputs mapped to a 2D image (frame 107 of the
dataset) with corners computer from ROT tree whose pruning
behaviour is dictated by the models set out in this paper.
The time-to-decision metric measures the time taken by each

forgetting model to make a decision or prediction. A lower
time-to-decision indicates a faster and more efficient decision-
making process. The accuracy metric reflects the overall
correctness of the model’s predictions, considering both true
positive and true negative instances. A higher accuracy score
indicates a more accurate and reliable forgetting model.
In Table ??, the data show the performance metrics for the
different memory forgetting models. The Multi-dimensional
Memory Forgetting model stands out as the top performer,
achieving the highest F1 score of 94.8% and the highest accu-
racy of 90.1%. It also exhibits a relatively low false negative
rate of 9.9%, indicating its proficiency in correctly identi-
fying positive cases. This model strikes a balance between
high performance and a reasonable time-to-decision of 102
nanoseconds. The Emotional Memory Enhancement model
performs reasonably well with a balanced true positive rate
and false negative rate, resulting in an F1 score of 66.6% and
an accuracy of 50%. It shows potential in enhancing emotional
memory retention. On the other hand, the Adaptive Forgetting
model demonstrates a relatively low true positive rate and
a high false negative rate, resulting in a lower F1 score of
45.8% and an accuracy of 29.8%. Although it has the shortest
time-to-decision of 35 nanoseconds, its performance metrics
suffer as a trade-off. The Context-Dependent Memory model
performs the least effectively among the models. It exhibits a
low true positive rate, high false negative rate, and the lowest
F1 score of 33.1% and accuracy of 19.9%. Additionally, it has
the longest time-to-decision of 139 nanoseconds, making it
less desirable in terms of both accuracy and processing speed.
The adaptive forgetting model is the most similar to the
original ROT forgetting model so it is surprising to note
the contrast in the performance between the two approaches.
While adaptive forgetting aims to remove irrelevant or less
important information, there is a possibility of discarding
valuable information as well. The fine balance between forget-
ting irrelevant details and preserving essential knowledge can
be challenging to achieve, potentially leading to the loss of
important memories. By introducing the constants alongside a
difficulty factor it is possible that a softer or harder forgetting
model is produced causing data retention/forgetting behaviour.
Additionally the poor results observed in the context-depen-
dent memory model can be attributed to the challenges asso-
ciated with accurately identifying and representing contextual
information. In experimental settings, it can be difficult to
precisely define and capture the relevant contextual cues for

memory retrieval. This ambiguity in context representation
can lead to inconsistencies and inaccuracies in the association
between memory items and their respective contexts, resulting
in reduced performance.
Furthermore, the context-dependent memory model requires
significant computational resources due to the complexities of
the underlying algorithm. The process of storing and retrieving
contextual information for each memory item adds to the com-
putational burden, impacting the overall efficiency and scala-
bility of the system. The higher computation time required by
the context-dependent memory model may have contributed to
its poorer performance compared to other models. In summary,
based on the updated data, the Multi-dimensional Memory
Forgetting model remains the best overall performer when
compared against the original ROT-Harris forgetting model,
providing a balance between high F1 score, accuracy, and
a reasonable time-to-decision. The Emotional Memory En-
hancement model demonstrates good performance, while the
Adaptive Forgetting and Context-Dependent Memory model
exhibits comparatively lower accuracy in detecting relevant
information.
In Table II we report the optimised values discovered during
the experiment for each of the forgetting models, it must
also be noted that the initial strength factor for each of the
models was always set to 1. The experimental hardware used
in the study consisted of a system equipped with a 12th
Gen Intel(R) Core(TM) i7-1265U processor running at a base
frequency of 1.80 GHz. The system was configured with
16.0 GB of installed RAM. In the experiment, all algorithms
were developed using the Java programming language. The
implementation of the memory forgetting models, as well as
the data processing and analysis, were completed in Java.
Additionally, the statistical computations for evaluating the
performance metrics were conducted offline using Python.

max width=
Model F1 Score Accuracy Time-to-

Decision [nS]
ROT

Forgetting
Model

0.82 0.719 68

Adaptive
Forgetting

0.458 0.298 35

Emotional
Memory

Enhancement

0.666 0.500 87

Context-
Dependent
Memory

0.331 0.199 139

Multi-
dimensional

Memory
Forgetting

0.948 0.901 102

TABLE I: Overall Metric Averages for Memory Forgetting
Models

IV. CONCLUSION

The forgetting models presented, including the ROT for-
getting model, adaptive forgetting model, emotional memory
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Fig. 1: An example output from each of the algorithms with corners formed over frame 107 of the dataset. ROT (green),
adaptive (blue), emotional (red), context (cyan), and multi-dimensional (yellow)

Function Variable Value
Adaptive Forgetting D 0.326
Emotional Memory Enhancement E 1.2
Context Dependent Memory P 0.379
Multi-dimensional Memory Forgetting r 0.830

s 0.120
c 0.285

TABLE II: Optimised values of the variables within each of
the forgetting models.

enhancement model, context-dependent memory model, and
multi-dimensional memory forgetting model, aim to capture
different aspects of memory forgetting influenced by specific
conditions or contexts. Through an evaluation comparing these
models to the original forgetting curve model within the ROT
tree framework, their effectiveness in driving forgetting was
assessed. The results of the experiment demonstrated that the
multi-dimensional memory forgetting model outperformed the
other forgetting models and the original model in terms of
accuracy and time efficiency. By incorporating factors such
as relevance, significance, and spatial cues, the multi-dimen-
sional model exhibited a more nuanced decay rate, capturing
the complexities of memory forgetting in a comprehensive
manner. This finding highlights the importance of considering
multiple dimensions when designing forgetting models for
neuromorphic memory data structures. The implications of this
study are significant for the field of neuromorphic memory
data structures and their applications. This can lead to more
efficient processing of large-scale spatial-temporal data and
improve the performance of tasks such as object recognition,
visual navigation, and robotics. Future research in this area
will further explore the combination of multiple forgetting
models or the development of hybrid models that integrate
different factors and principles. Investigating the impact of
varying parameters within the forgetting models and assess-
ing their adaptability to different application domains would
deepen our understanding of memory forgetting in neuromor-
phic systems and contribute to further advancements in this
field. In conclusion, the advanced multi-dimensional forgetting
model presented offers valuable insights into robust long-term
information storage in neuromorphic memory. By capturing
various aspects of memory forgetting influenced by specific

conditions or contexts, this model provides a promising avenue
for optimizing memory systems and advancing the field of
neuromorphic engineering.
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