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Abstract—Anomaly detection in video data plays a crucial
role in numerous applications, such as industrial monitoring and
automated surveillance. This paper presents a novel method for
video anomaly detection (VAD) using Generative Adversarial
Networks (GANs). The proposed method called VALT-GAN
combines two separate branches, one for spatial information and
the other for temporal information, to capture relevant features
from video data. The framework is utilized to learn the normal
features from the training video dataset, enabling the generator to
produce realistic samples. However, existing GAN-based methods
face challenges in detecting subtle or unseen anomalies. To
address this, we introduce latent mining for adversarial training
which allows us to train a robust GAN model with high anomaly
detection (AD) capability. We exploit the latent space following
the continuous nature of the generator using the Iterative Fast
Gradient Signed Method (IFGSM) which improves the quality
of the generated images. Experimental evaluations show the
effectiveness of VALT-GAN as compared to traditional methods
on UCSD (University of California, San Diego) Peds2, CUHK
(Chinese University of Hong Kong) Avenue, and ShanghaiTech
datasets.

Index Terms—Generative Adversarial Networks, Latent Space
Mining, Anomaly Detection

I. INTRODUCTION

Security cameras are extensively deployed in numerous
public locations and the need for automated anomaly detection
in surveillance videos has grown. Identifying unusual inci-
dents like accidents or crimes manually is difficult and time-
consuming, especially in long video sequences. Thus, there is
a demand for methods that can detect potential anomalies at
the frame level. Several approaches are proposed to address
the challenge of video anomaly detection (VAD). These in-
clude analyzing entire video frames [1]–[4] or smaller image
patches within frames [5]–[9]. Recent advancements in deep
learning and computer vision have revolutionized this field,
enabling more sophisticated and data-driven methods. VAD
can be categorized into unsupervised and weakly-supervised
techniques. Unsupervised VAD assumes only videos with
normal activities are available for training. One promising
approach is using Generative Adversarial Networks (GANs)
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Fig. 1. Selecting adversarial samples for robust training of the model.

for VAD, leveraging their ability to generate realistic data.
Another common approach is learning a latent representation
or code that captures the essence of normal behavior and
reconstructs input data, aiming to create a structured manifold
where normal events lie closely [10], [11].

Within the structured manifold representation, anomalies
are identified as deviations from the established structure.
This manifold is often visualized as an epsilon space or
circle, where normal events cluster tightly within a small
epsilon neighborhood or circle. Perturbed [12], [13] examples
generated through adversarial attacks are also considered, as
they challenge the model’s robustness as shown in Fig. 1.
Anomalies, including both naturally occurring anomalies and
perturbed instances, manifest as points or instances lying
outside this epsilon space, indicating a deviation from the
expected normal behavior. By training the model using latent
mining [10], we ensure that it accurately predicts both legiti-
mate and perturbed examples in the same direction, promoting
robustness against adversarial attacks.

Our proposed VALT-GAN framework improves VAD by
combining a unified two-stream model, which leverages both
spatial and temporal information, with a novel training strat-
egy. The networks are trained on regular samples to learn the
features of normal video frames and accurately predict the next
video frame. The unified model incorporates convolutional
layers for spatial features and temporal segment networks for
motion information. By iteratively updating latent variables
using z optimization, we enhance the quality of generated sam-
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ples. Our integration greatly enhances the ability of model to
differentiate between normal and anomalous events, improving
accuracy and robustness in VAD. The main contributions of
our work are summarized below:

1) We propose a VALT-GAN comprised of a dual-stream
generator model, considering both spatial and temporal
features simultaneously.

2) By utilizing latent representations and epsilon space,
our approach incorporates the intrinsic structure and
distribution of normal events enabling the improvement
of the mapping of latent variables to generate more
realistic and meaningful video frames.

3) The proposed VALT-GAN outperforms recent SOTA
models in terms of Area Under Curve (AUC) in UCSD
Peds2, CUHK Avenue, and ShanghaiTech datasets.

Through extensive experiments and evaluations, we demon-
strate and validate the efficacy and resilience of our proposed
method to detect anomalies in surveillance videos. The remain-
ing sections of this paper are structured as follows: Section
II delves into the relevant literature review, while Section
III elaborates on our proposed methodology. We present the
experimental results of our approach in Section IV, and finally,
Section V encapsulates the conclusion of our study.

II. RELATED WORK

In this section, we provide related work of anomaly de-
tection in video. The two main approaches to tackle video
anomaly detection is using reconstruction and prediction-based
methods.

Reconstruction-based methods. The reconstruction-based
method works on the principle of learning the features from
the video frame to use it for reconstruction. Nguyen et al.
[14] proposed a deep Convolutional Neural Network (CNN)
for anomaly detection by employing auto-encoder principles
and sparse combination learning. Abati et al. [15] utilize a deep
autoencoder combined with a parametric density estimator to
acquire the probability distribution of latent representations.
The utilization of clustering to determine the distance of
features extracted by the encoder enhance the quality of
features for reconstruction [16]. Park et al. [17] proposed a
memory module to learn the most common normal features
for reconstruction. Further, the memory module is utilized
to extract the most similar features of normal video frames
for the reconstruction [18]. Cho et al. [19] proposed the
use of two encoders one for learning the spatial features
and the other for learning the temporal features which are
then used by the decoder to reconstruct the video frame.
Further, the dual network is utilized to learn the spatial
and temporal features for reconstruction and image-to-image
translation [20]. In reconstruction-based methods, anomalies
are detected by comparing the reconstruction quality or error,
while prediction-based methods compare the predicted future
frame with the ground-truth frame to identify anomalies across
multiple frames. These deep learning-based approaches offer
the potential for video representation using unsupervised learn-
ing and have gained attention in the field of AD [21].

Prediction-based methods. The prediction-based method
works on the principle of learning the features from the video
frame to use it for producing the future video frame. Yu et
al. [22] proposed a method that takes a sequence of video
frames to predict the future video frame. Park et al. [17]
utilizes the memory module to construct the future video
frame from the sequence of video frames as input. Tang et al.
[23] proposed to utilize both reconstruction and future frame
prediction methods to enhance the quality of video frames
constructed and improve anomaly detection. The multi-path
anomaly detection framework is proposed by Wang et al. [24]
to capture both spatial and temporal dependencies. Cai et
al. [25] proposed to use the temporal constraints to enhance
anomaly detection in the video, while Cross U-net [21] is
another prediction-based method used for anomaly detection
in videos.

III. VALT-GAN

This section introduces the VALT-GAN method, designed
for future frame prediction using latent mining. The method
comprises a Generator (G) and Discriminator (D), as illustrated
in Figure 2.

A. Latent Adversarial Mining for Quality

Latent adversarial mining [10] plays a crucial role in im-
proving the quality of the generator in a GAN by:

1) Discovering informative latent codes: Latent adversarial
mining involves searching for latent codes that fool the
discriminator into classifying generated samples as real.
This process helps identify latent representations that
capture important features and characteristics, leading
to higher-quality generated samples.

2) Promoting diverse and realistic output: By encouraging
the generator to explore a broader range of latent codes
through adversarial mining, it helps prevent mode col-
lapse and promotes the generation of diverse and real-
istic samples. This diversity enhances the quality of the
generator’s output by capturing a more comprehensive
representation of the target distribution.

3) Enhancing training stability: Latent adversarial mining
can provide additional regularization during GAN train-
ing. By iteratively refining the latent codes through
the interplay between the generator and discriminator,
it helps stabilize the training process and improve the
overall quality and convergence of the generator.

The process of latent space mining requires the selection of
a latent sample in a small perturbation region that maximizes
the loss J as shown below:

min
θ

[
E(x,y)∈D

[
max
δ∈ψ

J (G2(G1(x) + δ); θ), ytrue )

]]
(1)

where θ represents the model parameter and ψ is the ϵ
perturbation circle. In order to find the optimized δ value, we
utilize IFGSM [10] technique shown below.
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Fig. 2. Overall architecture of proposed VALT-GAN consisting of encoder-decoder network with latent mining to generate future video frame from Generator.
The latent codes are iteratively updated (z, z1, z2) through IFGSM. This process improves the adversarial training by allowing the Generator to generate a
realistic frame resembling the Discriminator’s true distribution.

x(t+1) = clipx,ϵ

(
x(t) + α · sign (∇xJ (x, ytrue ))

)
(2)

where, x(t) represents the updated input at iteration t, α is
the step size of the learning rate set to ϵ/t, J(x, ytrue) is
the loss function with respect to input X and target ytarget.
∇xJ(x, ytrue) denotes the gradient of the loss function with
respect to the input x, sign(.) represents the sign function,
and clipx,ϵ(.) restricts the values of the input within the range
defined by x and ϵ. Here, J is selected as the adversarial loss
of generated image.

B. Model Architecture

The AE architecture used by VALT-GAN consists of a
decoder (G2) and an encoder (G1). G1 is a two-stream network
that captures both spatial and temporal aspects of the input
video frames, while G2 predicts the next frame using the
data retrieved from G1. The generator’s model architecture
is shown in Table I.

The proposed VALT GAN for VAD incorporates a Wide
Residual Network (WRN) [26], [27] architecture with a latent
sample mining method to enhance the model’s robustness.
The WRN, with a widening factor (k) of 4, serves as the
foundation for capturing spatial details and understanding the
visual structure of the input sequence. The network can learn
more complex and representative features because of its wider
structure, which enhances detection capabilities.

A temporal shift module [28] is also introduced as part
of the dual-branch approach. The last feature map obtained

from the WRN is passed through two streams to understand
spatial and motion information. Firstly, the temporal branch
applies a shift to a subset of features over multiple frames.
This technique enables the model to capture temporal features
and dependencies across multiple input frames, enhancing its
understanding of dynamic patterns and improving performance
in handling sequential data. To maintain spatial information,
features derived from each frame are concatenated in the
spatial branch.

After the encoder stage, a gradient-based perturbation tech-
nique is applied in the latent space using AdvLatGAN [13] to
enhance the quality of the generated samples. By leveraging
the gradients of the generator network, the latent representation
is iteratively updated to optimize the desired quality criteria
which depends on discriminator score threshold or fixed
number of iterations. This iterative process utilizes objective
functions related to quality improvements, such as adversarial
loss or pixel-wise difference. The generator produces improved
quality and fidelity samples by fine-tuning the latent represen-
tation using these gradients as shown in Equation 3.

z∗ = argmin
z

E|z−z0|≤ϵ [log (1− J(G2(z))] , z = G1(x)

(3)
Where z0 is the latent space generated by the encoder. The

optimal z∗ is then passed to the decoder which restores the
predicted frame’s spatial details and resolution. The decoder
consists of multiple layers, each comprising a sequence of
blocks. Each layer uses deconvolution to upsample the features
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Part Layer Output Shape Details

Encoder (G1)

Input Window of [H,W, 3] Input video frame
WRN Z =

[H/8,W/8, 4096]
Expansion factor(k)
= 4

Spatial (F) Temporal (F’)
Conv1 [H/8×W/8× 2048] Feature Shift [H/8×

W/8× 2048]

Bottleneck Sum [H/8×W/8×2048] F ⊕ F ′

Decoder (G2)

DeConv1 [H/4,W/4, 1024] 2× 2, strides 2, BN,
LeakyReLU

DeConv2 [H/2,W/2, 512] 2× 2, strides 2, BN,
LeakyReLU

DeConv3 [H,W, 256] 2× 2, strides 2, BN,
LeakyReLU

Conv2 [H,W, 3] 1× 1, strides 1, BN,
LeakyReLU

TABLE I
GENERATOR NETWORK ARCHITECTURE OF PROPOSED VALT-GAN. THE H DENOTES THE HEIGHT AND W DENOTES THE WIDTH OF THE VIDEO FRAME

WHILE WRN DENOTES THE WIDERRESNET BACKBONE

and recover fine-grained information lost during encoding.
Batch normalization is used to normalize intermediate features,
promoting training stability. The Rectified Linear Unit (ReLU)
activation function introduces non-linearity and enhances rep-
resentation capabilities. The methodology progressively re-
constructs the spatial details by combining deconvolution,
batch normalization, and ReLU activation in the decoder
layers, resulting in visually realistic and high-resolution out-
puts. By conducting the latent transform during training, the
methodology compensates for the challenge of aligning the
pace between generators and discriminators. This is crucial
because training the generator is inherently more difficult than
training the discriminator, as the generator struggles to map
a continuous distribution to a disconnected one with multiple
modes.

The discriminator uses a down-sampling convolution ar-
chitecture and penalizes structure at the patch level. Isola et
al. [29] demonstrates that each N × N patch is evaluated to
determine authenticity, assuming independence between pixel
blocks. The discriminator loss drives adversarial learning.

C. Loss function for VALT

The adversarial loss in a GAN can be expressed using the
latent space, which is the space where the encoder produces
a latent space that is used by the decoder to generate the
corresponding samples. Equation 4 shows the adversarial loss.

Ladv(D,G) = Epreal [log(D(x))] + Epfake [log(1−D(G(x)))]
(4)

Here, x represents real samples, G(x) represents generated
samples, D(x) represents the output of the discriminator
for real samples, and D(G(x)) represents the output of the
discriminator for generated samples. We also utilize the L1

loss, which measures the average absolute difference between

the generated samples and the actual samples. It encourages G
to produce frames that are close to the actual data distribution
in terms of pixel-wise similarity as shown in Equation 5.

L1 = ∥G(x)− x∥1 (5)

Here, G(x), x represents the generated frame and the real
inputs respectively. ||1 denotes the L1 norm. We also utilize
the L2 loss between predicted and real samples. This loss
emphasizes the larger dissimilarities. Equation 6 represents the
L2 loss.

L2 = ∥G(x)− x∥2 (6)

Thus, the overall loss function for VALT-GAN is the combi-
nation of L1, L2, and Ladv loss as shown in Equation 7.

Loverall = L2 + L1 + Ladv (7)

D. Anomaly Detection

To evaluate model prediction for normal occurrences, we
use metrics like Mean Squared Error (MSE) and Peak Signal
Noise Ratio (PSNR). PSNR calculates the generated frame’s
deviation from the actual frame. Normalized PSNR values
calculate the anomaly score P (t), as shown in Equation 8:

P (t) =
PSNRt −min(PSNR)

max(PSNR)−min(PSNR)
(8)

Frames are classified as normal or abnormal using a threshold
in the AD process, which compares computed anomaly scores
with τ .

IV. EXPERIMENTATION

Our proposed VALT-GAN efficiently detects anomalies in
the video in real time. We first describe our datasets with the
experimental setup and quantitative analysis.
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A. Dataset

We test VALT-GAN with three publicly available SOTA
datasets: UCSD Peds2, CUHK Avenue, and ShanghaiTech.
The description of the datasets are:
UCSD Peds2. This dataset [30] is focused on capturing
walkways that exclusively feature pedestrians. For the pur-
pose of evaluation, we specifically considered Peds2, which
contains 4,560 frames. In this dataset, the anomaly of interest
involves the presence of non-pedestrian objects. The training
set consists of 16 clips, while the test set contains 12 clips.
CUHK Avenue. This Dataset [31] was gathered within a cam-
pus avenue, containing 16 clips of 15,328 frames exclusively
focused on training the model to recognize normal events. The
evaluation set consists of 21 clips comprising 15,324 frames,
encompassing various anomalous events. These events include
uncommon behavior, diverse movements in terms of speed and
direction, as well as the occurrence of vehicles.
ShanghaiTech. This dataset [7] is specifically designed for
crowd counting and analysis. It comprises two subsets, Part A
and Part B, featuring highly congested areas. Part A focuses
on stationary crowds, while Part B includes stationary and
moving crowds. Part A consists of 482 images with 241,677
annotated individuals, while Part B comprises 716 images with
88,488 annotated individuals.

B. Evaluation Metric

To evaluate the performance of VALT GAN we utilized the
area under the receiver operating curve (AUC). For the purpose
of detecting anomalies, the ground truth labels and frame-level
scores acquired by the network were compared. The AUC
score is commonly utilized for anomaly detection studies and
quantifies the model’s ability to differentiate between normal
and anomalous events. It is based on the receiver operating
characteristics (ROC) curve of true positive rate (TPR) v.s.
false positive rate (FPR).

TPR = TP/(FN + TP ) (9)

FPR = FP/(FP + TN) (10)

Anomalies are determined by comparing frame scores with
a threshold (refer equation 8), creating a confusion matrix,
and the thresholds are modified repeatedly. TPR and FPR; see
equations 9 and 10 are calculated from the matrix to plot the
ROC curve.

C. Implementation details

In our experiments, we utilized Adam optimizer with a
learning rate of 0.0002 to train our model on Nvidia-tesla
V100 GPU. The IFGSM parameter thresh is taken as 0.9 (close
to 1), and the maximum iteration is set to 10. We reshape
the frames to 160 × 160 and set a window size of 4. Our
implementation is done on Pytorch (version 2.0).

Fig. 3. ROC curve of VALT-GAN on UCSDped2 and Avenue dataset.

D. Comparison Study

This section compares VALT GAN with related work in
AD, including traditional reconstruction and prediction-based
methods that have given benchmark results in recent years.
The AUC scores of different models are given in Tables II for
the benchmark datasets.

Method Peds2 (%) Avenue (%) Shanghai (%)
HybridAE [14] 92.2 81.7 68.0
Auto-reg [15] 95.4 - 72.5
CDD-AE [16] 96.5 86.0 73.3

Mem-guided [17] 88.3 83.1 70.5
MemAE [18] 94.1 83.3 71.2

AEP [22] 97.3 90.2 64.1
ITAE+NFs [19] 97.3 85.8 74.7

AMC [20] 96.2 86.9 -
Mem-guided [17] 97.0 88.5 70.5

UNet-inte [23] 96.3 85.1 73.0
ROADMAP [24] 96.3 88.3 76.6

Msm-net [25] 96.8 87.3 74.2
Cross U-net [21] 97.0 90.8 72.0

Ours 97.2 91.1 77.4

TABLE II
COMPARISON RESULTS OF AUC VALUES FOR UCSD PEDS2, CUHK

AVENUE AND SHANGHAITECH DATASETS WITH SOTA MODELS

To illustrate the effect of IFGSM on the AD model, we
perform the quantitative study on various ϵ perturbation radii.
Figure 3 displays the ROC curves generated using different
epsilon values of 0.8, 0.08, and 0.008 on UCSD Peds2 and
Avenue. The curves visualize the relationship between the TPR
and FPR at varying thresholds, allowing for a comprehensive
assessment of the performance of our VALT-GAN. In our
experiments, we observe that a larger radius leads to mode
collapse whereas a smaller radius does not provide sufficient
robustness, which is reflected in the ROC curves.

E. Ablation Study

1) Run time analysis: We compare the VALT-GAN execu-
tion time of the Peds2 Dataset on various SOTA methods. As
shown in Table III, The average computation time for the test
frame reported by our proposed method on the peds2 dataset
is 48ms.

2) Generator network: The AUC performance (%) of the
VALT-GAN using WiderResnet as the backbone across various
combinations of components as shown in Table IV on CUHK
Avenue, UCSD Ped2, and ShanghaiTech datasets.
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Methods Processor Peds2
FFP+MC [3] GPU 46
CDD-AE [16] GPU 60
MemAE [18] GPU 38
Msm-net [25] GPU 50

VALT-GAN (Ours) GPU 36

TABLE III
COMPARISONS BETWEEN VALT-GAN AND OTHER APPROACHES IN

TERMS OF TIME TAKEN TO COMPUTE EACH TESTING FRAME IN
MILLISECONDS (MS)

Methods Peds2 Avenue ShanghaiTech
ResNet-50 95.1 83.3 71.9

Se-ResNext-50 96.1 84.8 73.5
WiderResNet 97.2 91.1 77.4

TABLE IV
COMPARISON OF THE PROPOSED VALT-GAN WITH DIFFERENT DCNN AS
BACKBONE IN TERMS OF AUC (%). THE UTILIZATION OF WIDERRESNET

AS THE BACKBONE ARCHITECTURE IN THE PROPOSED FRAMEWORK
DEMONSTRATES BEST PERFORMANCE.

V. CONCLUSION

We proposed the VALT-GAN model to detect anomalies in
video datasets. It consists of a two-stream generator G and
a discriminator D. The prime contribution of our work is to
select adversarial samples in adversarial learning trained in
end-to-end procedure to achieve the modulation between the
generalization ability of G and the discriminating capability
of D. The experimental results show that our model performs
better in accuracy and stability than the majority of competing
models, proving the potential and dependability of the Latent
space mining approach in adversarial learning.
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