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Abstract — AI technologies have made significant 
advancements across various sectors, especially healthcare. 
Although AI algorithms in healthcare showcase remarkable 
predictive capabilities, apprehensions have emerged owing to 
errors, biases, and a lack of transparency. These concerns have 
led to a decline in trust among clinicians and patients, while also 
posing the risk of further accentuating pre-existing biases 
against marginalized groups and exacerbating inequities. This 
paper presents a scenario-based preferences risk register 1 
framework for identifying and accounting AI algorithm biases 
in diagnosing diseases. The framework is demonstrated with a 
realistic case study on cardiac sarcoidosis. The framework 
identifies success criteria, initiatives, emergent conditions and 
the most and least disruptive scenarios. The success criteria 
align with the National Institute of Standards and Technology 
AI Risk Management Framework (NIST AI RMF) trustworthy 
AI characteristics, and the scenarios are based on various 
statistical/computational bias that causes algorithmic bias. The 
framework provides valuable guidance for leveraging AI in 
healthcare, enhancing objective designs, and mitigating risks by 
adopting a figure of merit to score the initiatives and measuring 
the disruptive order. By prioritizing transparency, trustworthy 
AI, and identifying the most and least disruptive 
scenarios/biases, the framework promotes responsible and 
effective use of AI technologies in healthcare. 

Keywords — Algorithm ethics, computational intelligence, social 
impacts, legal implications, risk management, scenario-based 
preferences, cardiac sarcoidosis, disease progression.  

I. INTRODUCTION 
The rapid advancement of AI technologies has had a 

profound impact on numerous sectors, such as healthcare [1], 
[2]. Use of AI algorithms in healthcare system have 

 
1 Denotes a methodically arranged document or database detailing potential 
risks linked to particular scenarios or situations. 

demonstrated exceptional predictive performance, surpassing 
human expertise in many domains [3]–[6]. However, the 
emergence of concerns surrounding errors, biases [7], their 
unintended harms leading to exacerbations of inequities and 
a lack of transparency and interpretability in AI models [2] 
has hindered their widespread adoption and engendered a loss 
of trust [8]. The negative effects of AI go beyond individuals 
and organizations and can affect society as a whole. The 
extent and rapidity of harm caused by AI, whether through 
applications or the expansion of large machine learning 
models, demand collective action to address across various 
fields and sectors [9]. 

Ueda et al. defines AI algorithmic bias as when problems 
arising from the development, also implementation of AI, 
which can have negative effects on effectiveness and fairness 
[10]. Bias is the difference between the expected value of the 
estimator and the parameter or true model [11]. National 
Institute of Standards and Technology (NIST) identified three 
main AI bias categories: Systemic bias, human bias, and 
statistical/computational bias [9]. The presence of statistical 
and computational biases is a consequence of non-
representative samples, leading to errors. In AI systems, these 
biases manifest in datasets and algorithms during 
development, particularly when training occurs on specific 
data that lacks the ability to extend beyond its own scope [9]. 
Algorithmic bias, as one of the statistical and computational 
biases, such as under, over-fitting, and others [5], [9], [12] in 
machine learning, has emerged as a significant issue. The 
training process for these algorithms involves analyzing vast 
amounts of historical data to inform decision-making and 
optimization. Thus, it is vulnerable to harm by incorrect 
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predictions or withholding of resources [3]. Unfortunately, 
any biases present in the historical data can be absorbed and 
perpetuated by the AI systems, leading to systematically 
discriminatory [6] outcomes. Moreover, historical human 
biases, shaped by embedded prejudices against certain groups 
or even individuals, can be reproduced and amplified within 
computer models.  

Insufficient training data further contributes to 
algorithmic bias. When the data used to train the algorithms 
are more representative of some groups than others, the 
resulting predictions may be systematically less accurate for 
unrepresented or under-represented groups [6]. Additionally, 
missing or inaccessible data, as well as the inclusion of 
metadata that may not typically be used for clinical decision 
support, can lead to impaired clinical judgement, inaccurate 
analysis, bias conclusion and more. This limitation hampers 
the potential benefits of AI for individuals whose data are 
missing from the dataset. Inadequate training data and the 
absence of data not only diminish potential advantages, but 
also engender the potential for harm. The absence of proper 
representation can result in adverse consequences. For 
instance, this can manifest as recommendations that are ill-
suited for individuals not adequately accounted for in the 
dataset. Moreover, the algorithm might struggle to 
differentiate between individuals for whom there exists 
insufficient data, hampering its ability to comprehend and 
adapt to variations. For instance, in a widely used algorithm, 
a racial bias was detected so that the Black patients are 
predicted to be healthier than White patients using the same 
algorithm that cause less Black patients to get extra care. The 
bias in the algorithm reduces the number of Black patients 
identified for extra care by more than half [13]. Bias arises 
due to the algorithm’s reliance on health costs as a stand-in 
for health requirements. This results in reduced financial 
allocation for Black patients with equivalent health needs. 
Consequently, the algorithm incorrectly deduces that Black 
patients are in better health compared to White patients who 
are equally unwell. In essence, the algorithm’s flawed 
reliance on cost leads to misrepresentations of health statuses 
based on racial disparities. [13]. In another example, 
Papakyriakopoulos and Mboya performed a socio-
computational interrogation of the google search by image 
algorithm and discovered that the algorithm perpetuates 
structures characterized by white male dominance, frequently 
oversimplifying, stereotyping, and exhibiting bias against 
females and individuals from non-white backgrounds, all the 
while portraying white men in a more favorable light [14]. 

Furthermore, generalizing an algorithm that is trained at 
one institution to another institution can result in inaccurate 
predictions and  severely degraded performance due to 
distribution shift [15] for example, a trained model in 
diagnosing a disease in one hospital may not perform well in 
diagnosis of a disease in another hospital in another country 
and lead to misclassification of the disease.  

Measurement and misclassification error in the dataset 
are another source of bias in observational studies. 
Differential misclassification can occur due to errors by 
practitioners, with uninsured patients potentially receiving 
substandard care more frequently. Implicit biases related to 
patient [16] factors like sex, race [17], ethnicity, and 
practitioner-related factors, may also impact the quality of 
care provided [18]. Patients from disadvantaged 

socioeconomic backgrounds might tend to receive care in 
teaching clinics, where data entry and clinical reasoning 
could differ from those of higher socioeconomic patients, 
potentially resulting in inaccuracies [18]. Disparities in care 
can arise due to implicit biases among healthcare 
practitioners. Furthermore, algorithms might erroneously 
learn to provide suboptimal care or adhere to implicit biases 
when treating patients with lower socioeconomic status [18]. 

The paper describes a multi-layer scenario-based 
preferences risk register serves as the foundation for this 
framework. This effort is an extension to the two previous 
papers [1], [19] that were focused on using machine learning 
algorithms to diagnose cardiac sarcoidosis. The primary 
objective is to guide and shape the research and development 
(R&D) portfolio of AI by identifying the most and least 
disruptive scenarios for the enterprise [20]. The framework 
proposed in the paper goes beyond risk assessment and 
extends its focus to monitoring and evaluating the ethical and 
unbiased implementation of AI in the diagnosis of cardiac 
sarcoidosis. Ten scenarios were identified as causes of biased 
AI in cardiac sarcoidosis diagnosis. The scenarios were 
aligned with the findings from the literature review in the 
introduction section (See section III for demonstration). By 
using cardiac sarcoidosis as a case study, the paper aims to 
demonstrate how the framework can be applied in a real-
world healthcare context. The framework's application in this 
case study allows practitioners to gain insights into 
effectively implementing AI to enhance designs while 
identifying potential risks and uncertainties associated with 
AI applications. Moreover, The presence of bias underscores 
the absence of entirely objective designs. Instead, each design 
inherently carries within it a set of values, assumptions, and 
convictions, irrespective of whether these elements are 
overtly stated, in other word, with respect to bias, there are no 
purely objective design. 

Sarcoidosis is an inflammatory, granulomatous systemic 
disease of uncertain origin characterized by a diverse clinical 
course primarily affecting the lungs and lymph nodes [19], 
[21]–[24]. The disease may extend to the heart, causing injury 
and fibrosis and rarely progress into a chronic state, involving 
multiple organs and resulting in extensive scarring. The 
scaring includes the liver, skin, eyes, central nervous system, 
and heart. While most sarcoidosis patients experience a short, 
self-limiting disease course without lasting damage, it is 
important to be vigilant for multiorgan involvement. Cardiac 
involvement [25], although statistically rare [23], [26] can 
cause issues from arrhythmia to heart failure [19]. Eckstein et 
al. performed a study used cardiac magnetic resonance 
imaging (CMR) and machine learning to diagnose cardiac 
sarcoidosis (CS). By analyzing CMR data, the study 
accurately differentiated between healthy individuals and CS 
patients based on cardiac function and strain. These findings 
suggest a higher prevalence of cardiac involvement in 
sarcoidosis than previously believed, with potential 
implications for disease management. Timely diagnosis of 
cardiac sarcoidosis is vital to higher prognosis [27]. 
Moreover, early detection significantly improves the overall 
management and long-term prognosis of cardiac sarcoidosis. 
[1], [19]. 

Through the adoption of this framework, practitioners 
can improve their understanding of how to leverage AI in 
healthcare systems. The main contribution of the paper is to 
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highlight disruptive scenarios and monitoring ethical 
considerations [28] and provide valuable guidance for the 
deployment of AI, ultimately fostering more responsible and 
effective utilizing of AI technologies [10] by focusing on the 
measure of disruptive order. In other word, this paper is 
finding and adding bias scenarios as the main potential 
disruptive scenarios to the system.  

II. METHODS 
This section presents an approach to eliciting scenario-

based preferences that help identify system initiatives, 
success criteria, and scenarios based on emergent conditions.  

Fig 1 shows a risk assessment methodology conceptual 
diagram for identifying bias in AI algorithms of healthcare 
applications. The study identifies criteria, initiatives, 
emergent conditions, and scenarios. Then the Criteria-
Initiative, Criteria-Scenario Effects and Emergent 
Conditions-Scenarios were assessed. Finally, the most and 
least disruptive scenarios were identified. The framework 
includes success criteria as the primary element, which are 
developed to evaluate the performance of investment 
initiatives aligned with system objectives. Any modifications 
to the success criteria impact expectations of success and 
reflect the values of experts. The set of success criteria is 
{c.01, c.02, ..., c.m} [1], [29]–[31]. 

 

 
Fig. 1. Conceptual diagram of risk assessment methodology for identifying 
bias in AI algorithms in healthcare systems, adapted from [1]. 

National Institute of Standards and Technology AI Risk 
Management Framework (NIST AI RMF), published in 2023 
[8], adopts seven main characteristics of trustworthy AI 
systems. These characteristics were used as the success 
criteria for this scenario-based preference framework as 
shown in Table I. They consist of c.01 – Safe, c.02 – Secure 
& Resilient, c.03 – Explainable & Interpretable, c.04 – 
Privacy Enhanced, c.05 – Fair (With Harmful Bias 
Managed), c.06 – Accountable & Transparent, and c.07 – 
Valid & Reliable [8]. 

The relevance of each criterion is initially established by 
interviewing the experts in the field, who assign the relative 
score to each criterion using low, medium, and high scores. 
According to Hassler et al., The relevance options correspond 
to baseline weights decided upon by experts [29], [30], [32]. 
In this paper, baseline weights of 1, 2, and 4 are assigned 
respectively by the experts [33], [34].  

Initiatives, as the second element of the model, represent 
decision-making alternatives such as policies, assets, 
technologies, projects, or investments. The set of initiatives 
is denoted as {x.01, x.02, ..., x.n}. Experts are involved in the 
process of identifying initiatives by determining the 
necessary hardware components, actions, assets, 
organizational units, policies, locations, and resource 
allocations for the system [29]. 

To evaluate the alignment of each initiative with the 
criteria, experts are interviewed as part of the criteria-
initiative (C-I) assessment. They express their degree of 

agreement on how well initiative x.i addresses criterion c.j. In 
the C-I assessment, a dash (-) represents a neutral entry, an 
unfilled circle (○) indicates somewhat agree, a half-filled 
circle (◐) indicates agree, and a filled circle (●) indicates 
strongly agree within the matrix [29], [32], [35]. The 
associated weights assigned in the C-I assessment are 0 for 
neutral, 0.334 for somewhat agree, 0.667 for agree, and 1 for 
strongly agree.  

As Quenum et al. defined, emergent conditions 
encompass events, trends, or other factors that impact 
decision-makers priorities in future strategic planning 
contexts [36]. These uncertainties significantly influence the 
success or failure of projects. The set of emergent conditions 
is denoted as {e.01, e.02, ..., e.k}. In the model, emergent 
conditions influence the relevance weights assigned to 
individual prioritization criteria. They either increasing or 
decreasing their importance [1], [32], [35], [36]. 
Prioritization is of course dependent upon who is identified 
as an expert and how such experts are positioned. 

Scenarios [37] consist of one or more emergent 
conditions. The set of scenarios is defined as {s.01, s.02, ..., 
s.p}. As defined by Moghadasi et al., disruptive emergent 
conditions are operationalized by modifying the criteria 
weights. For each identified scenario, experts are interviewed 
to assess the extent to which the relative importance of each 
criterion changes within that scenario. Possible responses 
include decreased, decreased somewhat, no change, 
increased somewhat, and increased [29], [30]. These changes 
are recorded in the W matrix in Equation 1. The criteria are 
given a relevance measure in the baseline scenario and each 
criterion is reweighted based on the different scenarios [30], 
[32]. The initiatives are prioritized with a linear additive 
value function which defined in Equation 1. Xi is the partial 
value function of initiative x.i along with criterion c.j, which 
is defined through the C-I assessment. This is the assessment 
for each iteration. Using these weights [38], the framework 
generates the matrix V, the set of all importance scores across 
all scenarios. k is the number of scenario iterations. 

𝑉!(𝑥") = 	𝑊!𝑋"                   (1) 
The disruptiveness score is defined based on the sum of 

squared difference between the ranking of an initiative under 
a disruptive scenario and its ranking in the baseline. The 
effect of emergent conditions on the prioritization of 
initiatives is defined by this score. According to Moghadasi 
et al., Equation 2 shows the disruptiveness score for each 
scenario [29], [31]. 

𝐷! =	∑ (𝑟"# − 𝑟"!)$"                        (2) 
rik is the rank of initiative x.i under scenario s.k, and ri0 

is the rank of the initiative x.i under the baseline scenario. 
Next, the scores are normalized so that all scores are the in 
the scale of 0-100 for the purpose of comparison. The more 
disruption of priorities is relative to the baseline prioritization 
as the score is higher [29]–[31], [39]. 

III. DEMONSTRATION 
For the purpose of demonstration, experts from different 

medical specialties were engaged in the process and 
interviewed from the early stages of the study from 
identifying the initiatives, emergent conditions, scenarios to 
scoring/ranking assessments. The group of experts are 
included two radiologists, a cardiologist, and an 

Initiatives

Success Criteria

Emergent 
Conditions

Baseline Criteria Importance
Emergent Conditions-Scenarios Assessment
Criteria-Initiative Assessment
Criteria-Scenario Effect Assessment

Study the scenarios 
that are most 

disruptive to the 
priorities among 

initiatives
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electrophysiologist from the University of Bochum, Germany 
that are experts in cardiac sarcoidosis detection. While the 
cardiologist and electrophysiologist underwent single 
interview sessions, a minimum of five interviews were 
conducted with the radiologists. The interviews were carried 
out using the Zoom platform in an online setting to elicit 
relevant evidence. The experts were requested and 
interviewed to additionally pinpoint additional initiatives and 
emerging factors beyond literature reviews and evaluate and 
assess them. In other word, the paper has engaged numerous 
experts, gathered data from impartial sources, delineated 
conflicts of interest among stakeholders, compiled objective 
data, and explored alternative methods to extract pertinent 
evidence from both stakeholders and experts during the 
interviews [29].  

Tables II, III, IV, and V present information on baseline 
relevance, initiatives, emergent conditions, and scenarios 
respectively, concerning the risk management of ethical and 
unbiased AI algorithms in the diagnosis of cardiac sarcoidosis 
[1], [3], [8], [12], [13], [18], [19], [40]–[43], [43], [44]. 
Scenarios are listed as the main trends of bias in AI algorithm 
used for cardiac sarcoidosis detection. As mentioned in 
Method section, scenarios are made up of one or more 
emergent conditions. Scenarios are the most crucial and 
critical challenges or risks that face the system [30], [32]. Ten 
scenarios were identified by the experts as s.01 – Historical 
Human Biases, s.02 – Misclassification or Measurement 
Error, s.03 – Privacy Attacks, s.04 – Cyber Security Threats, 
s.05 – Conflict of Interests, s.06 – Lack of Ethical 
Considerations and Oversight Policies, s.07 – 
Socioeconomic Status, s.08 – Sample Size and Missing Data, 
s.09 – Global Crisis and Immigrations, and s.10 – Lack of 
Healthcare Resource Allocation and Access to Healthcare. 
Additionally, Table VI illustrates the impact of seven success 
criteria on the forty-three previously introduced initiatives. In 
cases where there is no impact, it indicates that not all criteria 
have been influenced by a particular initiative. Table VII 
shows the Criteria-Scenario (C-S) relevance that explains 
how well each scenario fits the success criterion for cardiac 
sarcoidosis diagnosis in the risk analysis of ethical AI in 
healthcare. 

In Fig. 2, each scenario is given a disruptiveness score, 
The higher the score, the more issue the system will have with 
that scenario [29]. This figure shows that s.01 - Historical 
Human Biases, s.02 - Misclassification or Measurement 
Error, s.04 - Cyber Security Threats, s.06 - Lack of Ethical 
Considerations and Oversight Policies, and s.08 - Sample 
Size and Missing Data predicted to have the highest 
disruption among other scenarios in the realistic case study of 
diagnosis of cardiac sarcoidosis. Features are drawn from the 
experience of the authors. 

In Fig. 3, the chart displays the fluctuation in the 
prioritization of initiatives across different scenarios. The 
ranking of initiatives offers a holistic view of their overall 
performance. Each initiative's median rank is displayed, with 
the blue bars depicting the highest rank attained in any 
scenario, the black bar representing the baseline rank, and the 
red bar indicating the lowest rank received [29], [32]. This 
bar signifies the range of rankings that each initiative may 
occupy when subjected to disruptions caused by scenarios. 
The black bar represents the baseline ranking of each 
initiative. Specifically, the red bar illustrates the potential 

decline in rank that an initiative may experience under 
various scenarios, while the blue bar represents the potential 
increase in rank under different scenarios. Most important 
initiatives are x.24 - Reducing the Hospitalization Time of the 
Patient by Correct Diagnostics, x.28 - Human-AI Teaming, 
x.32 - Responsible Design, Development, and Deployment 
Practices, x.29 - Demonstrate External Validity or 
Generalizable Beyond the Training Conditions, x.27 - 
Closeness of Results of Observations, Computations, or 
Estimates to the True Values or the Values Accepted as Being 
True, and x.20 - Gather, Validate, and Clean Data and 
Document the Metadata and Characteristics of the Dataset, 
in Light of Objectives, Legal and Ethical Considerations. 

TABLE I 
SUCCESS CRITERIA TO EVALUATE THE BIASED AI IN CARDIAC SARCOIDOSIS 

DIAGNOSIS. 
Index Criterion 
c.01 Safe 
c.02 Secure & Resilient 
c.03 Explainable & Interpretable  
c.04 Privacy Enhanced 

c.05 Fair – With Harmful Bias Managed 
c.06 Accountable & Transparent 
c.07 Valid & Reliable 
c.i Others 

TABLE II 
BASELINE RELEVANCE FOR CARDIAC SARCOIDOSIS DIAGNOSIS IN THE RISK 

ANALYSIS OF BIASED AI IN HEALTHCARE. 

The criterion c.xx has s.00 - 
Baseline 

relevance 
among the 

other 
criteria 

c.01 - Safe has high relevance 
c.02 - Secure & Resilient has medium relevance 

c.03 - Explainable & Interpretable has high relevance 
c.04 - Privacy Enhanced has medium relevance 

c.05 - Fair - With Harmful Bias Managed has medium relevance 
c.06 - Accountable & Transparent has high relevance 

c.07 - Valid & Reliable has high relevance 
TABLE III 

INITIATIVES ADDRESS ONE OR MORE OF THE SUCCESS CRITERIA FOR THE 
BIASED AI IN CARDIAC SARCOIDOSIS DIAGNOSIS, FROM VARIOUS SOURCES 

THAT ARE IDENTIFIED IN THE NARRATIVE [8], [41], [43], [44]. 
Index Initiative 
x.01 Identify at-risk components 
x.02 Understanding ML Tools to Uncover Subtle Patterns in Data 
x.03 Maintaining the Provenance of Training Data 
x.04 Safety/Verifiability of Automated Analyses (Cardiac region 

detection software) 
x.05 Reproducible Data and Method in Other Health Centers 
x.06 Correctly Labeling the Data 
x.07 Training Data to Follow Application Intellectual Property Rights 

Laws 
x.08 Informed Consent to Use Data 
x.09 Maintain Organizational Practices Like Implement Risk 

Management to Reduce Harm Reduction and More Accountable 
Systems 

x.10 Prioritization Policies and Resources Based on Assesses Risk 
Levels 

x.11 Safety of Personally Identifiable Information 
x.12 Appropriate Accountability Mechanism, Roles and 

Responsibilities, Culture, and Incentive Structures for Risk 
Management to be Effective 

x.13 Avoid Gender and Age Discriminations and Bias in Preparing 
Data 

x.14 Reducing Unnecessarily Procedures  
x.15 Reducing Costs and Time Consumption 
x.16 Able to Identify Healthy Volunteers Before Starting the 

Procedures 
x.17 Designate Boundaries for AI Operation (Technical, Societal, 

Legal, and Ethical) 
x.18 To Help Policymakers Ensure That the Moral Demanding 

Situations Raised by Enforcing AI in Healthcare Settings are 
Tackled Proactively 

x.19 Articulate and Document the System's Concept and Objectives, 
Underlying Assumptions, and Context in Light of Legal and 
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Regulatory Requirements and Ethical Considerations 
x.20 Gather, Validate, and Clean Data and Document the Metadata 

and Characteristics of the Dataset, in Light of Objectives, Legal 
and Ethical Considerations 

x.21 Pilot, Check Compatibility with Legacy Systems, Verify 
Regulatory Compliance, Manage Organizational Change, and 
Evaluate User Experience 

x.22 Operate the AI System and Continuously Assess its 
Recommendations and Impacts 

x.23 Balancing and Tradeoff Each of Trustworthy AI Systems 
Characteristics Based on the AI System's Context of Use 

x.24 Reducing the Hospitalization Time of the Patient by Correct 
Diagnostics 

x.25 Explain and Identify Most Important Features Using AI Models 
x.26 Measurements Outlier Findings 
x.27 Closeness of Results of Observations, Computations, or 

Estimates to the True Values or the Values Accepted as Being 
True 

x.28 Human-AI Teaming  
x.29 Demonstrate External Validity or Generalizable Beyond the 

Training Conditions 
x.30 Ability of a System to Maintain its Level of Performance Under 

a Variety of Circumstances 
x.31 Minimizing Potential Harms to People if it is Operating in an 

Unexpected Setting 
x.32 Responsible Design, Development, and Deployment Practices 
x.33 Clear Information to Deployers on Responsible Use of the 

System 
x.34 Responsible Decision-Making by Deployers and End Users 
x.35 Explanations and Documentation of Risks Based on Empirical 

Evidence of Incidents 
x.36 Ability to Shut Down, Modify, or Have Human Intervention into 

Systems that Deviate from Intended or Expected Functionality 
x.37 Human Roles and Responsibilities in Decision Making and 

Overseeing AI Systems Need to be Clearly Defined and 
Differentiated 

x.38 AI Systems May Require More Frequent Maintenance and 
Triggers for Conducting Corrective Maintenance Due to Data, 
Model, or Concept Drift 

x.39 Managing Risks from Lack of Explainability by Describing How 
AI Systems Functions Considering Users' Role, Knowledge, and 
Skill Level 

x.40 Communicating a Description of Why an AI System Made a 
Particular Prediction or Recommendation 

x.41 Securing Individual Privacy, Anonymity, and Confidentiality 
x.42 De-Identification and Aggregation for Certain Model Outputs 
x.43 Strengthened Engagement with Interested Parties and Relevant 

AI Actors 
x.i Others 

TABLE IV 
EMERGENT CONDITIONS USED TO CREATE SETS OF SCENARIOS FOR THE 

BIASED AI IN CARDIAC SARCOIDOSIS DIAGNOSIS, FROM VARIOUS SOURCES 
THAT ARE IDENTIFIED IN THE NARRATIVE [8], [39], [43], [44]. 

Index Emergent Condition 
e.01 Using Non-Important Features in Sarcoidosis Diagnostics as the 

Input 
e.02 Improperly Labeling the Data in Surgery-Specific Patient 

Registries 
e.03 Misidentification of Variables Used in Surgery-Specific Patient 

Registries 
e.04 Misunderstanding AI 
e.05 Limited Generalizability 
e.06 Limitation in Types and Accuracy of Available Data 
e.07 Expensive Data Collection 
e.08 Time Consuming Data Collection 
e.09 Policy and Regulation Changes 
e.10 Difficult and Complex AI Algorithms Interpretability 
e.11 Lack of AI Determination of Casual Relationships in Data at 

Clinical Implementation Level 
e.12 Inability of AI in Providing an Automated Clinical Interpretation 

of its Analysis 
e.13 Human Errors in Measurements 
e.14 Abuse or Misuse of the Model or Data 
e.15 Challenges with Training Data to be Subject to Copyright 
e.16 Complicate Risk Measurement by Third Party Software, 

Hardware, and Data 
e.17 Model Fails to Generalize  
e.18 Lack of Consensus on Robust and Verifiable Measurement 

Methods for AI Trustworthiness 
e.19 Misidentification of Different Risk Perspective in Early or Late 

Stages of AI Lifecycle 
e.20 Difference Between Controlled Environment vs. Uncontrollable 

and Real-World Settings 
e.21 Inscrutable Nature of AI Systems in Risk Measurements 
e.22 Systematic Biases in Clinical Data Collection 
e.23 Risk Tolerance Influence by Legal or Regulatory Requirements 

Changes 
e.24 Unrealistic Expectations About Risk to Misallocate Resources 
e.25 Residual Risk or Risk Remaining After Risk Treatment Directly 

Impacts End Users 
e.26 Privacy Concerns Related to the Use of Underlying Data to Train 

AI Systems 
e.27 The Energy and Environmental Implications Associated with 

Resource-Heavy Computing Demands 
e.28 Security Concerns Related to the Confidentiality, Integrity, and 

Availability of the System and its Training and Output Data 
e.29 General Security of the Underlying Software and Hardware for AI 

Systems 
e.30 One-Size-Fits-All Requirements AI Model Challenges 
e.31 Neglecting the Trustworthy AI Characteristics 
e.32 Difficult Decisions in Tradeoff and Balancing Trustworthy AI 

Characteristics by Organizations 
e.33 Subject matter experts can assist in the evaluation of TEVV 

findings and work with product and deployment teams to align 
TEVV parameters to requirements and deployment conditions. 

e.34 Different Perception of the Trustworthy AI Characteristics 
Between AI Designer than the Deployer 

e.35 Potential Risk of Serious Injury or Death Call  
e.36 Presenting AI System Information to Humans is Complex 
e.37 Data Poisoning 
e.38 Negative Risk Stem from a Lack of Ability to Make Sense of, or 

Contextualize, System Output Appropriately 
e.39 AI Allowing Inference to Identify Individuals or Previously 

Private Information About Individuals 
e.40 Privacy Intrusions 
e.41 Data Sparsity 
e.42 Fairness Perceptions Difference Among Cultures and 

Applications 
e.43 Computational and Statistical Biases Stem from Systematic Errors 

Due to Non-Representative Samples 
e.44 Human-Cognitive Biases Relates to How the Experts Perceives 

AI System Information to Make a Decision 
e.45 Lack of Access to the Ground Truth in the Dataset  
e.46 Intentional or Unintentional Changes During Training 
e.47 Increased Opacity and Concerns About Reproducibility 
e.48 Computational Costs for Developing AI Systems and Their 

Impact on the Environment and Planet 
e.49 Inability to Predict or Detect the Side Effects of AI-Based Systems 

Beyond Statistical Measures 
e.50 Over-reliance on AI 
e.i Others 

TABLE V 
EMERGENT CONDITIONS GROUPING IN BIASED AI IN DIAGNOSIS OF CARDIAC 

SARCOIDOSIS, IDENTIFYING WHICH CONDITIONS FIT IN EACH SCENARIO, 
FROM VARIOUS SOURCES THAT ARE IDENTIFIED IN THE NARRATIVE. 
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e.01  ✓      ✓   
e.02  ✓ ✓  ✓  ✓    
e.03  ✓   ✓ ✓  ✓   
e.04  ✓         
e.05 ✓    ✓  ✓ ✓ ✓ ✓ 
e.06       ✓ ✓ ✓ ✓ 
e.07 ✓      ✓ ✓ ✓ ✓ 
e.08 ✓         ✓ 
e.09      ✓     
e.10  ✓         
e.11      ✓     
e.12  ✓         
e.13  ✓      ✓   
e.14 ✓ ✓   ✓ ✓  ✓   
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e.15     ✓      
e.16  ✓         
e.17 ✓    ✓  ✓ ✓ ✓ ✓ 
e.18 ✓ ✓   ✓  ✓ ✓ ✓ ✓ 
e.19  ✓         
e.20 ✓ ✓   ✓  ✓  ✓ ✓ 
e.21  ✓         
e.22 ✓    ✓  ✓ ✓ ✓ ✓ 
e.23      ✓     
e.24  ✓     ✓ ✓ ✓ ✓ 
e.25      ✓     
e.26   ✓        
e.27         ✓  
e.28   ✓ ✓       
e.29    ✓       
e.30       ✓ ✓ ✓ ✓ 
e.31 ✓ ✓ ✓  ✓      
e.32  ✓    ✓     
e.33  ✓    ✓     
e.34 ✓ ✓   ✓   ✓   
e.35  ✓         
e.36  ✓         
e.37 ✓ ✓   ✓ ✓  ✓   
e.38  ✓         
e.39  ✓ ✓     ✓   
e.40   ✓        
e.41       ✓ ✓  ✓ 
e.42 ✓          

e.43 ✓      ✓ ✓ ✓ ✓ 
e.44     ✓      
e.45       ✓ ✓ ✓ ✓ 
e.46 ✓ ✓   ✓      
e.47       ✓ ✓ ✓ ✓ 
e.48       ✓ ✓ ✓ ✓ 
e.49  ✓         
e.50  ✓         

TABLE VI 
THE CRITERIA-INITIATIVE ASSESSMENT SHOWS HOW WELL EACH 

INITIATIVES ADDRESSES THE SUCCESS CRITERIA OF THE BIASED AI IN 
CARDIAC SARCOIDOSIS DIAGNOSIS. STRONGLY AGREE IS REPRESENTED BY A 
FILLED CIRCLE (●), AGREE IS REPRESENTED BY A HALF-FILLED CIRCLE (◐), 

SOMEWHAT AGREE IS REPRESENTED BY AN UNFILLED CIRCLE (○), AND 
NEUTRAL IS REPRESENTED BY A DASH (➖) [29]. 

 c.01 c.02 c.03 c.04 c.05 c.06 c.07 
x.01 ● ◐ ○ ○ ○ ○ ○ 
x.02 ○ ➖ ○ ➖ ➖ ◐ ◐ 
x.03 ● ➖ ○ ◐ ◐ ◐ ● 
x.04 ● ◐ ● ○ ◐ ● ● 
x.05 ● ● ● ◐ ◐ ◐ ● 
x.06 ● ● ◐ ◐ ◐ ● ● 
x.07 ○ ○ ◐ ○ ○ ○ ◐ 
x.08 ● ● ➖ ● ➖ ○ ○ 
x.09 ○ ◐ ◐ ○ ○ ● ○ 
x.10 ○ ○ ◐ ○ ○ ◐ ◐ 
x.11 ● ● ➖ ● ○ ◐ ➖ 
x.12 ○ ○ ◐ ➖ ➖ ○ ◐ 
x.13 ◐ ◐ ○ ○ ● ◐ ◐ 
x.14 ● ● ➖ ➖ ● ● ● 
x.15 ● ● ➖ ➖ ● ● ● 
x.16 ● ● ◐ ○ ● ● ● 
x.17 ○ ○ ◐ ○ ○ ◐ ◐ 
x.18 ○ ○ ○ ● ● ◐ ○ 
x.19 ○ ○ ○ ● ● ◐ ○ 
x.20 ● ● ◐ ◐ ◐ ● ● 
x.21 ○ ○ ◐ ○ ○ ◐ ◐ 
x.22 ◐ ◐ ● ○ ○ ● ● 
x.23 ◐ ◐ ◐ ◐ ◐ ◐ ◐ 
x.24 ● ● ● ◐ ● ● ● 
x.25 ● ● ◐ ◐ ◐ ● ● 
x.26 ● ● ● ○ ○ ● ● 
x.27 ● ● ◐ ◐ ◐ ● ● 
x.28 ● ● ● ◐ ◐ ● ● 
x.29 ◐ ● ● ◐ ◐ ● ● 
x.30 ● ● ● ➖ ➖ ● ● 
x.31 ● ● ◐ ➖ ● ● ● 
x.32 ● ● ● ◐ ○ ● ● 
x.33 ○ ● ● ○ ○ ● ● 
x.34 ◐ ◐ ● ○ ○ ◐ ● 
x.35 ○ ◐ ◐ ○ ○ ● ○ 
x.36 ● ● ● ○ ○ ● ◐ 

x.37 ● ● ● ○ ○ ● ◐ 
x.38 ◐ ● ● ○ ○ ○ ◐ 
x.39 ● ● ● ➖ ➖ ● ● 
x.40 ● ● ● ➖ ➖ ● ● 
x.41 ➖ ➖ ➖ ● ➖ ➖ ➖ 
x.42 ○ ○ ● ○ ➖ ○ ○ 
x.43 ○ ◐ ● ○ ○ ◐ ◐ 

TABLE VII 
THE CRITERIA-SCENARIO RELEVANCE SHOWS HOW WELL EACH SCENARIO 

FITS THE SUCCESS CRITERION FOR CARDIAC SARCOIDOSIS DIAGNOSIS IN THE 
RISK ANALYSIS OF BIASED AI IN CARDIAC SARCOIDOSIS DIAGNOSIS. 

DECREASE SOMEWHAT = DS, DECREASE = D, SOMEWHAT INCREASE = SI, 
INCREASE = I [29]. 

 s.01 s.02 s.03 s.04 s.05 s.06 s.07 s.08 s.09 s.10 

c.01 DS D D D DS DS DS DS - DS 

c.02 DS D D D DS DS DS DS - DS 

c.03 DS - - - - - - DS - - 

c.04 - D D D - D - - - - 

c.05 D DS - DS D DS D D DS D 

c.06 D DS DS DS DS DS DS D DS DS 

c.07 D D DS D D DS D D DS D 

 
Fig.  2. Disruption of system order for medical diagnosis across ten 
scenarios that each involve the risk of bias of AI algorithms. The textured 
bars indicate highest disruption scenarios.  
 

 
Fig.  3. For each of the forty-three initiatives of computational 
intelligence of medical diagnosis, the color red indicates a decrease in 
system order while blue indicates an increase in system order, across ten 
scenarios involving bias of AI algorithms.  
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IV. DISCUSSION AND CONCLUSIONS 
The paper focuses on R&D priorities for risk 

management of biased AI in health applications specifically 
in diagnosis of cardiac sarcoidosis. The method identifies 
success criteria, initiatives, emergent conditions of the AI 
applications at diagnosis level. The framework is 
generalizable beyond diagnosis of sarcoidosis and could be 
applying to any medical diagnosis [1]. In the paper, success 
criteria, initiatives, emergent conditions, and scenarios have 
been identified for the systems. Ultimately, most and least 
disruptive scenarios were identified with respect to 
preferences of the experts of the systems. Based on the 
results, experts will decide where the value of information is 
on the scenarios, one the other hand, which scenarios of AI 
applications need more investigation in an urgent timing and 
which scenarios of AI applications can be investigated later. 
The innovation of this paper is to show which scenarios are 
most and least disruptive to the system order [37]. This 
framework is considering adding bias through the scenarios 
or identifying and accounting additional biases in the 
scenarios in the case study. Scenarios are a form of biases that 
were identified in Fig. 2.  

The effort described in this paper has the potential to 
assist with communicating and addressing the risks of AI in 
healthcare applications across a variety of experts. Next steps 
include to be explicit about the practitioners and patients who 
benefit from the methods. This step should acknowledge 
biases of individuals and communities, whose perspectives 
can in part be represented as the scenarios of AI factors. Table 
VIII shows that scenarios s.01 - Historical Human Biases, 
s.02 - Misclassification or Measurement Error, s.04 – Cyber 
Security Threats, s.06 - Lack of Ethical Considerations and 
Oversight Policies, and s.08 - Sample Size and Missing Data 
have the highest disruption among other scenarios in 
obtaining an ethical and un-biased AI models in the realistic 
case study of diagnosis of cardiac sarcoidosis. The system 
disruption likelihood of these five scenarios is similar and at 
the highest comparison scale among other scenarios. On the 
other hand, s.09 - Global Crisis and Immigrations has the 
lowest system disruption likelihood among other scenarios. 
The scenarios explore variations of the weights across the 
experts. There are some tools available to reduce the bias in 
the data by creating weights or assessing them such as 
Balance python library introduced by researchers from Meta 
AI [45], AI open source library AI fairness 360 (AIF360), 
CausalSim, a causal framework for unbiased trace-driven 
simulation, that was introduced by MIT researchers [46], and 
more. The methods of the paper are a way to increase 
transparency, and by engaging patients and care partners, it is 
a way to reduce risk of bias and risk of unintended adverse 
consequences of AI applications in healthcare systems. The 
initiatives and emergent conditions will be expanded with 
more findings and are not limited to the lists above. Future 
work will address additional levels of the health systems and 
to apply bias reduction tools on cardiac sarcoidosis dataset. 
Then the results will be compared with cardiac sarcoidosis 
detecting using machine learning study that was performed 
previously [19]. This paper was mainly focusing on 
socioeconomic status explicitly, but other characteristics 
which are demographic in nature and which are associated 
with health disparities, such as race/ethnicity, sexual 

orientation, geographic location, and disability status will be 
addressed in the future efforts [47]. Also, interviews will also 
explicitly include patients, care partners, and community-
based organizations working with health disparity 
populations. This investigation delimits its focus to medical 
practitioners specializing in the diagnosing cardiac 
sarcoidosis. It is pertinent to acknowledge that within the 
realm of healthcare, individuals encompassing patients, 
caregiving partners, and community-affiliated establishments 
are progressively assuming roles of expertise. Specifically, 
these entities are regarded as proficient authorities in virtue 
of their personal encounters, a facet of knowledge that is 
presently garnering equitable recognition within numerous 
overarching national entities. Thus, these individuals must be 
involved throughout the process, including from the initial 
conceptualization of the goal of the AI application in 
healthcare. This framework has the potential for not just 
transitioning the findings to the healthcare systems 
worldwide, also to other applications such as transportation, 
finance, design, and more. 

TABLE VIII 
THE FIVE SCENARIOS OF AI BIAS THAT ARE MOST DISRUPTIVE TO SYSTEM 

ORDER OF TECHNOLOGIES FOR COMPUTATIONAL INTELLIGENCE IN MEDICAL 
DIAGNOSIS. 

s.01 - Historical Human Biases 
s.02 - Misclassification or Measurement Error 

s.04 - Cyber Security Threats 
s.06 - Lack of Ethical Considerations and Oversight Policies 

s.08 - Sample Size and Missing Data 
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