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Abstract—Analysing human motions is a core topic of interest
for many disciplines, from Human-Computer Interaction, to
entertainment, Virtual Reality and healthcare. Deep learning
has achieved impressive results in capturing human pose in
real-time. Acquiring human motion datasets is highly time-
consuming, challenging, and expensive. Hence, human motion
synthesis is a crucial research problem within deep learning and
computer vision. We present a novel method for controllable
human motion synthesis by applying attention-based probabilistic
deep adversarial models with end-to-end training. We show that
we can generate synthetic human motion over both short- and
long-time horizons through the use of adversarial attention.

Index Terms—human motion synthesis, attention, classifica-
tion, adversarial

I. INTRODUCTION

Synthesising human motions is an active research problem
with many cross-disciplinary applications. Popular research
areas often focus on generating human motions for Human-
Computer Interaction (HCI) and entertainment applications.
These vary from generating gesture motions from speech [1]
to creating realistic virtual avatars [2] to animating video
game characters in real-time from ambiguous control sig-
nals sent from a video game controller [3]–[5]. Synthetic
motions can also be used for modelling realistic human-to-
human interactions to improve the realism of Virtual Reality
(VR) applications [6]. Furthermore, human motions are highly
sought after in more niche applications such as simulating
crowd movements [7] or predicting pedestrian motions [8],
which are necessary for urban planning, traffic engineering,
and self-driving vehicles.

Previous techniques have applied deterministic methods,
such as recurrent Long Short-Term Memory (LSTM) models
[9], [10], transformers [11], phased-functioned models [3],
and Mixture-of-experts models [5]. However, deterministic
recurrent models often suffer from averaging poses, where
the network’s output eventually collapses into a mean pose.
Typically, LSTM models incorporate a non-linear encoder,
followed by recurrent layers (LSTM) and a non-linear decoder
[12]. Therefore, this approach fails in long-term human mo-
tion prediction. On the other hand, transformers have been
introduced as a way to improve recurrent neural networks
by enabling attention mechanisms that are able to capture
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long-range dependencies [11]. Nevertheless, they require large
datasets to overcome inductive biases and their ability to
efficiently encode local temporal information is limited. On
the other hand, phase-functioned networks can generate both
short- and long-term motions without error accumulation.
However, they require manually designed phase functions that
make assumptions about the nature of the motion making them
difficult to apply in generalised scenarios.

We propose a novel probabilistic deep adversarial architec-
ture for learning both short- and long-term motion synthesis.
We use an Attention-based Wasserstein Generative Adversarial
Network with Gradient Penalty that we call the Attention
WGAN-GP. Our model takes into advantage convolutional
GANs and self-attention to efficiently model both local and
long-range spatiotemporal dependencies and thus the under-
lying model is able to learn with limited human motion
data. Furthermore, our model makes no assumptions about
the underlying motion data or the control signals, which
we show by training our model to generate various action
motions. Through the use of attention and autoregression, we
also show that our model can continuously generate realistic
motions over both long- and short-time horizons. Our approach
outperforms commonly used LSTM models in human motion
synthesis that are based on an Encoder-Recurrent Layers-
Decoder architecture [12].

II. METHODS

To generate synthetic motions, we propose a novel on-
line generative adversarial probabilistic model. Specifically,
we exploit a Wasserstein Generative Adversarial Network
(WGAN) [13] with Gradient Penalty (WGAN-GP) [14] and
Self-Attention [15] modules for improved synthetic motion
accuracy, in combination with a classifier network [16] for
controlling the motion generation. We refer the model as the
Attention WGAN-GP.

Many adversarial motion synthesis models generate data
from random noise vectors. However, the generation process
needs to be controllable for synthetic motions to supplement
existing datasets. For controllable adversarial motion gener-
ation, we need to turn to models such as Conditional GANs
[17] or ControlGANs [16]. A Conditional GAN conditions the
disciminator on the real or fake label alongside a class label.
Here we adapted a ControlGAN approach, which separates the
prediction of each label into individual networks.
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A. Self-Attention

Attention mechanisms are applied in GANs through a self-
attention module [15] to guide the model to relate distant
data sections, such as distant poses in a motion. Although
attention has been recently explored within motion synthesis
applications [18], [19], to our knowledge, it has not yet
been used within an adversarial scenario. Since the task of
generating motions inherently relies on the spatio-temporal
relation of past and future motions, we can leverage attention
mechanisms to reduce error accumulation in autoregressive
models [19] for more accurate short- and long-term motion
prediction.

Self-attention works by extending the convolutional layer
of the GAN with an additional term, the attention map, which
is added to the output. The attention map acts as a mask that
determines the contribution that a particular section of the data
sample has on the generation of another section. Initially, the
model will explore only the local area of each section as it
performs the convolution, just as a typical convolutional GAN.
However, over time, it can learn how different output regions
relate to each other and condition the generated output on
related areas. Self-attention is applied to both the generator
and critic networks, allowing both to learn distant spatial
relationships in the data, resulting in more realistic motion
synthesis.

According to the original definition for the Self-Attention
GAN module [15], the features from the previous layer x ∈
RC×N (C being the number of channels and N the number
of feature locations) are transformed into two feature spaces
f , g with corresponding weight matrices W to calculate the
attention, where f(x) = Wfx, g(x) = W gx

βj,i =
exp (sij)∑N
i=1 exp (sij)

, where sij = f (xi)
T
g (xj) (1)

The attention map βj,i creates a mapping between the ith

and jth regions, which is the amount the model attributes to
the ith region, when generating jth region. Thus, the output of
the attention layer is o = (o1,o2, . . . ,oj , . . . ,oN ) ∈ RC×N ,
where oj is defined as follows:

oj = v

(
N∑
i=1

βj,ih (xi)

)
,h (xi) = W hxi,v (xi) = W vxi

(2)
and W g ∈ RC̄×C ,W f ∈ RC̄×C , W h ∈ RC̄×C ,

W v ∈ RC×C̄ are the weight matrices learned through 1x1
convolutions as seen in Figure ??. Finally, the attention map
is then added back onto the input feature map multiplied by the
scalar parameter γ, giving the final output of the self-attention
module yi.

yi = γoi + xi (3)

The scalar parameter γ is initialised to 0 and is used to
control the impact of the attention map over time. It allows

the mode to begin learning through the exploration of features
within the local space, just as a traditional convolutional GAN,
and gradually over time learn to give more weight to the non-
local features.

B. Autoregression

A core component of our training architecture is the iterative
autoregressive training of the generator to enable it to per-
form long-term motion generation. The generative model was
trained to generate motion data for one second time intervals.
In contrast, for the motion classification task, we need full-
length motions that can be used to supplement our existing
motion dataset (detailed in section III-A). Furthermore, since
the motions in our dataset are 3-4 seconds long, the model
needs to accurately predict more than just the next second of
motion without compromising its online ability to generalise
to varying lengths of motion. Hence, we introduce the multiple
critic iterations into the training algorithm.

C. Model Formulation

Given a motion M2T , of temporal length 2T , we can
define the motion as a sequence of poses M2T = m0:2T =
[m0, ...,m2T ], where each pose mt ∈ R3J , is a skeleton with
J being the number of joints, each specified by (xcî, ycĵ, zck̂)
cartesian coordinates, and can be defined as a probability
distribution conditioned on the τ previous poses:

p(m0:2T ) =

2T∏
t=τ

p(mt|mt−τ :t−1) (4)

To make the sampling of poses controllable we also con-
dition the pose probability distribution on an additional pa-
rameter Y that acts as a control signal to confine to set of
possible poses at each time frame yt ∈ RY , similar to other
probabilistic motion models [20]. This gives us a probability
distribution for each pose conditioned on the set of previous
poses and a control vector y:

p(m|y) =
2T∏
t=τ

p(mt|mt−τ :t−1, yt−τ :t) (5)

Splitting the motions into two sequences of length T we
can define a set of prior motions P (also referred to as seed
motions) and a set of future poses F , where x = m0:T−1,
z = mT :2T and (x ∈ P ), (z ∈ F ).

Our aim to create an architecture where we can model the
underlying probability distribution that maps a sequence of
prior poses to a sequence of future poses. Towards this end
a generator G is trained to generate synthetic sequences of
future poses from sequences of prior poses, z̃ = G(x).

By recursively feeding the generated poses back into the
generator network we can continuously generate motions
autoregressively, given we have an initial seed motion.
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D. Loss Functions

To train our model, we use five different objective functions.
A critic loss function based on the gradient penalty Wasser-
stein critic loss [14] (Lcritic), a cross-entropy classifier loss
(Lclass), and a combination of three loss functions for the
generator (Lgen). Lgen consists of a generator Wasserstein
loss [13], a skeleton loss to constrain the size of the skeleton
(Lskel) and a blending loss (Lblend) to improve continuity
between prior and future motions.

1) Critic Gradient Penalty Loss: The critic uses the im-
proved gradient penalty Wasserstein loss [21]. The Wasserstein
loss requires a Lipschitz constraint on the critic, and the
original loss achieves this by applying weight clipping on the
critic [13]. We found in our training that enforcing a compact
space on the weights of the critic network results in a generator
network that is unable to output a human pose. Applying a
penalty on the gradient norm rather than clipping the weights
solves this issue.

Given a real prior motion x, a corresponding real future
motion z, and a generated future motion z̃ = G(x). We can
define a real motion as r = (x, z), and a fake motion as
f = (x, z̃). We define the critic loss as:

Lcritic = E[D(r)]− E[D(f)] + λLgp. (6)

To calculate the gradient penalty we need to interpolate
between the real and fake motions. As such, with random
number sampled from a uniform distribution ϵ ∼ U [0, 1], the
interpolated motion is defined as m̂ = ϵr + (1 − ϵ)f̃ . Using
the interpolated motion, the gradient penalty is given by:

Lgp = E
[
(∥∇m̂D(m̂)∥2 − 1)

2
]
. (7)

2) Generator Loss: For the generator loss we make use of
the original generator Wasserstein loss function [13], which is
the negative of the critic output for the fake generated motions.

Lgen = −E[D(f))] + Lskel + Lblend + Lclass (8)

We also extend the generator loss with a skeleton loss, a
blend loss and a classification loss.

3) Skeleton Loss: A skeleton loss enforces a physics con-
straint on the shape of the skeleton to avoid it changing shape
during the generated motion. Without constraining the size
of the skeleton, the bone lengths in the skeleton would often
vary throughout the motion, something that is not physically
possible [10], [22], [23]. To constrain the bone-length of
the skeleton and keep it consistent between prior and future
motions, we take the first frame of the prior motion and use its
pose as a reference skeleton. Then the skeleton loss is defined
as the squared distance between the reference skeleton and
the current time frame for a set of joint pairs that define the
skeletal bones.

Given a set of joint pair definitions S that describe a given
skeleton. A bone is defined as s = {i, j}, (s ∈ S), where
i and j are joints defined by (x, y, z), then ms

t = mj
t − mi

t

describes a bone vector of pose m at time t. Using the first

pose of the prior motion x0 as a reference skeleton, we define
the skeleton loss of the generated future motion ẑ as:

Lskel =
1

T

∑
s∈S

T∑
t=0

∥

xs
0 − ẑs

t (9)
4) Blending Loss: Another issue observed with only using

the Wasserstein loss functions is that the resulting future mo-
tions would not continue from past seed motions. As a result,
when combining past and future motions, the person would
appear to teleport mid-motion. Furthermore, this discontinuity
would also results in positional error accumulation in long-
term motion generation. Although combining the past and
future frames before passing them to the critic alleviated some
of these problems, it did not solve them as we had anticipated.
We hoped that by giving the critic information from both
the past and future motions, it would be able to discern fake
motions based on the lack of continuity; however, in practice,
this did not seem to be the case.

We found that it was necessary to enforce an additional
constraint on the generation to ensure continuity in the mo-
tions, the so called blending loss. We calculate the loss to
be the distance between the last input motion frame and the
resulting first generated motion frame to ensure the generated
motions blend with the input motion. This constraint results in
synthetic motion that correctly preserve the continuity between
past and future motions.

Given a prior motion (x ∈ PT ) and a generated future
motion (ẑ ∈ FT ), of length T , we define the blend loss as
the mean square distance between the last prior pose and the
first future pose:

Lblend = E
[
(∥xT − ẑ0∥)2

]
(10)

5) Classification Loss: For the classifier in our model we
use a cross-entropy loss function. We encode the control input
as a one-hot encoded vector and use it as the target label for
the classifier network.

Lclass = − 1

m

m∑
i=1

yi · log (ŷi) (11)

The classifier is only ever updated based on the real data
during its update. However, during the generator update the
classifier weights are frozen and the classification loss is
calculated on the fake generated motion. The classification
loss is used as part of the generator loss to encourage the
generator to produce motions that respect the control signal.

E. Training

Much like a typical WGAN [13], the training of our model
is split into multiple stages. Furthermore, we introduce a clas-
sifier update stage in addition to the critic and generator update
stages. Firstly for the critic update, the generator is given
a ’fake’ seed motion from which it generates a fake future
motion. Similarly, a ’real’ seed motion and the ground truth
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future motions are concatenated to generate a real motion. A
seed motion in this scenario results from the concatenation of a
prior motion with the corresponding control vector. The critic
loss is then calculated based on how well it scored motions.
Furthermore, the critic scores motions randomly interpolated
between the real and fake data. The score of which is then
used to calculate the gradient penalty (Lgp), thus giving us
the critic loss from Equation 6.

The generator loss (Eq. 8), the skeleton (Eq. 9), blending
(Eq. 10), and classification (Eq. 11) losses are calculated on
the generated future motion, and this process is repeated for
ngenerator iterations. It is important to note that although all
the models are involved in calculating the generator loss, the
model weights are only ever updated in their respective update
steps. In every other step, the weights of the networks are
frozen.

III. EVALUATION METHODOLOGY AND RESULTS

A. Dataset

To train and test our models, we use a publicly available
motion capture library [24]. The dataset contains a set of
motion captured movements of 27 non-professional subjects
(13 male, 14 female, mean age 22, ranging from 17 to
29 years) performing various motions such as walking or
throwing, labelled based on their identity, gender and emotion.
The motions were captured using retroreflective markers and
a state-of-the-art motion capture system.

B. Preprocessing

For preprocessing the data, we centre-mean unit-variance
normalise the dataset and remove the effects of global dis-
placement and rotation from the data, similarly to our previous
work [25]. This improves the convergence of the model during
training. Since the original motion data involves the subjects
moving around a room as they perform the actions, the effects
of global displacement way out-weight any motion effects. Es-
pecially after centre-mean and unit-variance normalisation, the
magnitude of the joint movements caused by the action being
performed ends up far out-weighed by the extent of the global
displacement in the (x,y,z) axes. This makes it challenging
for classification models to predict the required motion labels.
Therefore, we found much better convergence when training
the models by normalising the global displacement.

C. Results

We train our model to generate various types of motions by
using the action labels as control inputs. For the evaluation,
we want to determine the quality of the generated motions.
We compare a baseline LSTM model with our Attention
WGAN-GP model, using the same input and output data. The
baseline LSTM model is inspired by previous work [26] and
it consists from just one single layer to avoid overfitting. It is
trained by directly minimising the mean square error (MSE)
between the real future motions and the generated fake future
motions. For each motion in the training dataset we generate
a corresponding synthetic motion, thus doubling the training

data. We present both qualitative results of continuous gait
motion as well as quantitative results based on the synthetic
motions generated.

Qualitative results are shown in Figure 1 with sequences of
generated poses over 10 and 30 second intervals, respectively.
We evaluate the contribution of each feature of the Attention
WGAN-GP model by quantifying the quality of the synthetic
motions, comparing them to the ground truth data within
angular space. We evaluate motions generated by the WGAN-
GP model without attention but with both the skeleton loss
(Lskel) and the blending loss (Lblend). We also evaluate
WGAN-GP models with attention but without the skeleton
and blending losses. Finally, we evaluate the quality of the
generated motions of the Attention WGAN-GP model against
a baseline LSTM model. The results show clearly that only the
proposed Attention WGAN-GP model is capable of realistic
synthetic motion generation over long time horizons. We also
note how the quality of the motions degrades over time as
different components such as attention or the blend/skeleton
losses are removed from the model.

These results are also supported by estimating the angle-
space representation, which is a common approach in eval-
uating synthetic motions [27], [28]. In this case, motions
are expressed in a scale and rotation invariant notation by
calculating joint angles. This allows a rough quantitative
comparison of different approaches with relation to the ground
truth. Figure 2 shows the mean angle in the motion data over
time for just over 2 seconds of generated motion (motions
are recorded at 30 frames per second). We see a significant
improvement in the accuracy of the generated motions over
time with the addition of attention to the WGAN-GP model.
We observe that although the LSTM starts very close to the
ground truth data, it quickly collapses into a mean pose, and
the mean angles decrease over time.

Similarly to Figure 1, the mean angular estimation in Figure
2 shows the impact of the blend loss (Lblend) and the skeleton
loss Lskeleton in the Attention WGAN-GP model. We observe
that with the skeleton loss and without the blend loss, the
motion begins close to the ground truth, but it quickly diverges.
We have observed that without the blend loss the model
does not respect the continuity between the prior and future
motions. For example, this may result in the model producing
motions that are out of sync by a few frames, and at other
times it may jump from walking forward with the left leg
to walking forward with the right leg instead. Hence over
time, the motions generated from the model without the blend
loss quickly deviate from the ground truth motions. On the
other hand, without the skeleton loss, the model does not
have the intrinsic correlation between different joints moving
together, and as a result, the accuracy of the generated motions
dramatically suffers.

IV. DISCUSSION AND CONCLUSIONS

We have presented a novel autoregressive probabilistic
and adversarial deep learning model based on end-to-end-
training capable of both short- and long-term motion predic-
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Fig. 1. A sequence of poses from a 10 and 30 seconds generated motion, respectively. Ground truth motion is compared tothe proposed architecture
(Attention WGAN-GP) as well as WGAN-GP and LSTM. Furthermore, we demonstrate the effectiveness of incorporating a blend loss and a skeleton
loss. The Attention WGAN-GP model is the only model capable of generating realistic motions over long time sequences.

tion through the use of attention. We have shown that this
model outperforms existing recurrent LSTM commonly used
models in the task of human motion synthesis, especially in
generating plausible motions over long time horizons.

This model can be also extended to incorporate a multi-
modal control input. Although we use the control input rea-
sonably simply for conditioning the motion class, we adopted
an architecture design to allow incorporating more complex
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Fig. 2. Mean angle error over the generation of 70 frames (2.33 seconds)
of action motions. The motions generated through our proposed method
Attention WGAN-GP most closely resemble the average mean angles in the
ground truth data, and have the lowest deviation from the ground truth over
time.

signals, such as sound and music. For example, this would
allow generating complex motions, such as dancing driven
by musical context. Nevertheless, to accomplish this would
require expanding the architecture with additional encoding
modules such that the model can incorporate information from
the different modalities. Furthermore, it would require to adopt
the attention layer accordingly.
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