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Abstract—Image parsing is among the core tasks in the field
of image processing and computer vision having wide-ranging
applications in the areas of autonomous driving, image inter-
pretation, medical analysis, and remote sensing. The modern
techniques despite performing the labeling tasks accurately face
several challenges. Among these challenges, the computation of
contextual information and the selection of optimized parame-
ters are of prime importance in pixel-wise segmentation tasks.
We propose a novel context adaptive image parsing framework
that utilizes a unique parameter selection strategy to produce
final pixel labels. The automatic parameter selection minimizes
the computational overhead, reduces the time complexity, and
improves upon the segmentation labels produced. The proposed
framework is evaluated on Wuhan Dense Labelling Dataset
(WHDLD). In addition, a comprehensive comparison with state-
of-the-art image segmentation techniques is presented. Finally,
the analysis supporting the dominance of proposed architecture
is presented in collation with existing techniques.

Index Terms—image parsing, deep learning, remote sensing,
neural networks

I. INTRODUCTION

The field of computer vision has observed an immense
surge since the inception of deep convolutional neural net-
works. Numerous tasks, such as image classification, object
recognition, object localization, pose estimation, and seman-
tic segmentation have perceived state-of-the-art results [1]–
[3]. Image parsing is among the core tasks in computer vision
applications and assists the improvement in the areas of
autonomous driving [4], interpretation of visual scenarios [5]
and pixel-wise segmentation for remote sensing applications
[6].

The advent of Convolutional Neural Networks (CNN) is
the fundamental step towards the modern image segmentation
architectures. The CNNs compute richer feature represen-
tations in contrast to the traditional hand-crafted features.
Modern CNN architecture such as AlexNet [7], VGGNet [8],
ResNet [9], MobileNet [10], and EfficientNet [11] adopt the
path of decreasing spatial size of feature representations from
a high resolution input image to low level feature maps. It
is very difficult to leave the performances of these neural
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network unnoticed. On the other hand, the expensive convo-
lutional computations and the lack of integrated contextual
information within such architecture requires attention as
well.

The assimilation of machine learning within computer
vision application have assisted the revolution of object
detection [12], image classification [13], and pixel-wise seg-
mentation [14]. Over the years, research community has
consistently been trying to investigate the fusion of contextual
properties with such architecture. This research investigates
the relation-aware context information and the automated op-
timization of parameters in the context of image parsing. The
study presents a deep layered network enriched with context
information, and the evaluation of proposed architecture on
the remote sensing data. The contribution of the manuscript
can be summarized as follows:

1) A unique parameter optimization algorithm that opts
the most efficient set of parameters exploring particle
swarm optimization to improve upon the pixel-wise
labelling.

2) A deep layered architecture of image parsing, that
maneuvers the adjacent and spatial context information
along with proposed parameter optimization to produce
state-of-the-art segmentation results.

3) A comprehensive comparison and extensive analysis
with the state-of-the-art architecture, demonstrating the
superior performance on remote sensing data.

The rest of the paper is organized as follows. The back-
ground of the pixel-wise segmentation approaches is pre-
sented in Section II. The proposed automated parameter
optimization and image parsing architectures are described in
section III. Section IV describes the experimental setup and
results achieved in comparison to the previous approaches.
The conclusion is presented in Section V.

II. LITERATURE REVIEW

The primary research using the deep CNNs paved the way
for research conducted over the years. Many of the image
parsing techniques were proposed exploring the convolutional
neural network for such tasks.
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Several classification networks make use of the traditional
fully convolutional network techniques [15], [16] by hav-
ing their fully connected layers abolished. These networks
explore convolutional and pooling layers reducing size of
feature maps. Ultimately leading towards fine spatial acti-
vations categorized as low-level feature representation. The
researchers worked on ways to up-sample the feature rep-
resentations. The pixel-wise segmentation frameworks were
developed recovering the representations in dual ways, the
initial being the symmetric reconstruction while the other as
asymmetric recovering of feature maps.

The segmentation networks including ERFNet [17] and
ESPNet [18] are known for computation of semantic infor-
mation by employing convolutional layers, and these archi-
tectures produce dense feature predictions using the repre-
sentation computed. On the other hand, the segmentation
networks such as U-Net [19], SegNet [20], DeconvNet [21]
Encoder-Decoder [22], are formed in shape of the encoder-
decoder networks, the aim of these networks is just as similar,
the computation of pixel-wise class labels for the input
images. RefineNet [23] is very popular example segmentation
architecture that is formed with asymmetric reconstructed
architecture. Some of other research works also make us
of the light up-sampling by employing dilated convolutions,
recombinator architectures and the improvements in skip
connections.

The segmentation architecture can generate high level fea-
ture representations to be computed and maintained through-
out the network, e.g., interlinked CNNs [24] , GridNet
[25], and the DenseNet [26]. The initial work lacks the
capability to determine the initiation point for start of parallel
stream and the ability to intelligently exchange information
in the parallel streams. These architectures do not use the
residual connection and normalization, ultimately resulting
in poor performances. UNet [19] , and SegNet [20] diffuse
the low-level features (high-to-low down-sampling process)
and the high level features for same resolution (low-to-high
up-sampling process). DeepLabv2-v3 [27] architecture also
has the fusion process, that combines the pyramid features
computed using pyramid pooling and atrous spatial pyramid
pooling (ASPP).

The optimal selection of hyperparameters in neural net-
works is challenging issue [28]. While researchers have
investigated the optimization problem over the years, the au-
tomatic and optimal selection of parameters for segmentation
architecture is still an arduous problem . The research estab-
lishes that the optimum selection of hyperparameters lead
to better performance of the segmentation architecture. The
selection ultimately proves of significant importance in model
building process. The idea of choosing relevant features have
been explored in the literature over the years [9]–[11], [20].
The selection of features provides optimal number of features
by removing redundancy among the set. The architecture
proposed in the literature for segmentation tasks lack the
ability to consider the context and neighbour information
within an image. While, each pixel is correlated with other
pixels in the images, so the pixel-wise segmentation tasks can

be considered to adapt contextual information among pixels. .
The primary research using the deep CNNs paved the way for
research conducted over the years. Many of the image parsing
techniques were proposed exploring the convolutional neural
network for such tasks.

III. PROPOSED FRAMEWORK

The image parsing framework is illustrated in figure 1.
Initially, the superpixel representations are obtained from the
input image by SLIC [29] algorithm. For each image in the
dataset, the superpixels are also used to compute the con-
textual information in parallel to the visual representations.
The architecture exploits the rich contextual information at
multiple levels, the context representations are computed
using the adjacent superpixel information and the block-
wise information of superpixel occurrences. Furthermore, the
dataset specific contextual information is used to compute the
superpixel-wise probability of specific class label. Finally, the
output of the visual classifier, adjacent superpixel occurrence,
and spatially block-wise occurrence are fed to another mul-
tilayer perceptron to decide the final superpixel label.

A. The Particle Swarm Optimization

Particle swarm optimization is a population based stochas-
tic optimization method, which was inspired by the social
behavior of bird flocking. Such social behavior can be
observed in a social group, the behavior of the individual
is not only dependent the past experiences and cognition but
it heavily relies on the pattern of overall social behavior.

So, the technique must choose best among a population
of probable solutions also referred to as candidate solutions.
The individual solutions exhibit movement based on the best
individual standing position and the best position of the
whole population. Consider the image parsing function

fImageParsing(X) = f(x1, x2, x3, ..., xn) (1)

where xi is the search variable in terms of parameters,
representing the set of free variables of the given function.
The aim is to find the value of such that the function f(X)is
minimum in the search space.

In the global best PSO, the position of individual particle
is affected by the best-fit particle in the entire swarm.
The global best PSO makes use of the star social network
topology, in which the social information is acquired from
every particle in the whole swarm. In this method, the
distinctive particles iε[1, ..., n] have a prevalent position in
search space xi, a prevalent velocity vi, and a individual-level
best position Pbest,i in search space. The individual-level best
Pbest,i position represents the position in search space where
particle i had the smallest value as estimated by the objective
function f , considering a minimization problem.

Generally, In the minimization problems the individual-
level best position Pbest,i at the next time step t+ 1, where
tε[0, ..., N ] can be estimated as

P t+1
best,i =

{
P t
best,i iff(xt+1

i > P t
best,i)

xt+1
i iff(xit+ 1 ≤ P t

best,i)

}
(2)
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Fig. 1. A - Image Parsing Framework: The Visual Probability Estimation-this layer takes a subset of optimum super pixel visual features,The Contextual
Probability Estimation-this layer estimates the probabilities for pixel labels using adjacent and spatial contextual modules. B - Optimization Algorithm -
this helps find the most suitable number of parameters for the architecture. (Best Viewed in Color)

where f : Rn → R is the fitness function, The global best
position Gbest at time step tis calculated as:

Gbest = min{P t
best,i} (3)

where iϵ[1, ..., n] and n > 1 This, it becomes essential
to note that the values obtained from individual-level best is
the best position that the individual particle has visited since
beginning of time steps. While the global best position is the
optimum position discovered by the particles in the entire
swarm.

For the global PSO method the velocity of particle is
calculated as

vt+1
ij = vtij + c1r

t
1j [P

i
best,i − xt

ij ] + c2r
t
2j [G

i
best,i − xt

ij ] (4)

where vtij is velocity vector, xt
ij is position vector, P t

best,iis
personal best position,Gt

best,i is the global best position,c1
and c2 are positive acceleration constants, rt1j and rt2j are
random numbers at time t.

B. The Visual Probability Estimation

The raw images form the training dataset along with
corresponding ground truth information are fed to the net-
work. Initially, the superpixels are computed to extract the
visual features from, these superpixels are computed using
Simple Linear Iterative Clustering (SLIC) [30] algorithm. For
the sake of these experiments, we generate 512 superpixels
uniformly. These superpixels provide the baseline for the
computation of visual features. Visual features include the
color variation, geometric differences, and texture informa-
tion. The standard deviation, mean, histograms of textons and
masks are computed using these superpixels. Additionally,
the computation of SIFT descriptors make the feature vector
a bit lengthy. Towards this end, the proposed particle swarm
optimization provides the optimal number of features to
training the visual multilayer perceptron MLPvis. The aim

of training this classifier is to assign every pixel of the image
to class label.

C. The Contextual Probability Estimation

In parallel to the visual probability estimation, the pro-
posed network also makes use of the superpixel information
to learn about occurrences of objects. The contextual proba-
bility estimation refers to the idea of using the information
present in training dataset to suggest the probability of class
labels occurring concurrently. The contextual information
is estimated in two parts, the initial being the adjacent
occurrence of the class labels, while the other being the
occurrence of class labels in block of superpixels.

The adjacent contextual module and the spatial contextual
modules vote towards the other class label. The superpixels
vote towards the adjacent superpixel labels and towards the
superpixel labels in a spatial block. So, the class label of
each superpixel is produced by majority votes of labels. The
adjacent superpixel information is referred to as local con-
textual information and the spatial superpixel information as
global contextual information. The local and global votes are
normalized to probability values as to match the probability
of class labels using MLPvis.

D. Final Class-wise Label Prediction

The probability values estimated from the contextual prob-
ability estimation layer and the visual probability estimation
layer are combined to compute final class-wise labels for
every superpixel.

IV. EXPERIMENTAL EVALUATION

A. Benchmark and Evaluation Metrics

1) Wuhan Dense Labelling Dataset (WHDLD): The
Wuhan Dense Labelling Dataset (WHDLD) contains 4940
RGB images cropped out of remote sensing images of
Wuhan city. The images are of 256 x 256 pixels in size
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with a resolution of 2m. These images are labelled into six
categories as bare soil, road, building, vegetation, pavement
and water. An overview of the dataset and the percentage
breakdown of pixel labels in the dataset is provided in figure
2.

Fig. 2. The overview of the Wuhan Dense Labelling Dataset (WHDLD) used
in the study. Left : Visual samples with labels, Right: Percentage breakdown
by category.

2) Evaluation Metrics: The performance of the proposed
network is evaluated on the basis of Pixel Accuracy (PA),
Mean Pixel Accuracy (MPA), and the mean Intersection
Over Union (mIoU). The pixel accuracy generally has higher
tendency of being insensitive towards class with less oc-
currences, while the mIoU exhibits super-sensitivity towards
minority object categories. To overcome this hurdle we make
use of the F1 scores (F1). The PA, MPA, mIoU and F1 are
computed as:

PixelAccuracy =

∑n
l=0 probll∑n

l=0

∑n
m=0 problm

MeanPixelAccuracy =
1

l + 1

n∑
l=0

probll∑n
m=0 problm

mIoU =
1

l + 1

n∑
l=0

probll∑n
m=0 problm +

∑n
m=0 probml − prob′ll

F1Score = 2× precision× recall

precision+ recall

3) Implementation Details: The proposed architecture ex-
plores a range of parameters to opt for the best combination
using PSO algorihtm.The details for the parametric specifica-
tion are provided in the Table I. The three variable features
include number of optimal visual-level features selected,
number of hidden neurons in the visual probability estimation
layer, and the number of neuron in the final layer. The
maximum iteration, swarm size, ranges for the variables and
initialization parameters for PSO are provided in the table as
well.

1Fi, is number of selected features,Nvis is number of neurons to compute
visual probability, and Ncl is number of neurons to compute final class label

TABLE I
THE PARAMETRIC SPECIFICATIONS TO INITIALIZE THE PARTICLE SWARM

OPTIMIZATION TO FIND THE BEST SOLUTION FOR IMAGE PARSING
FRAMEWORK (IN TERMS OF SELECTED FEATURES AND NUMBER OF

HIDDEN NEURONS)

Parameter Specifications for PSO
Variables Fi, Nvis, Ncl

1

Maximum Iterations 1000
Swarm Size 25

Rang Fi 50 - 100
Range Nvis 16 – 64
Range Ncl 16 – 32

Inertia Weight 1
Inertia Weight Damping Ratio 0.99
Personal Learning Coefficient 1.5

Global Learning Coefficient 2

4) Experimental Setup: The proposed architecture is im-
plemented on MATLAB 2021a, various additional toolboxes
have been used that include Machine Learning Toolbox
and Deep Learning Toolbox. The experiments are conducted
using the High-Performance Computing (HPC) clusters.

B. Comparison with Stat of the Art

The Table II presents the performance analysis of proposed
architecture. The individual class-wise pixel accuracies are
presented to describe the better and enhanced performance
of the architecture. The per-class metric assists to verify
the better performance of the architecture The proposed
architecture achieved higher accuracies for classes build-
ing, bare soil, pavement, vegetation, and water. Table III
presents the comparison of proposed architecture in terms
of pixel accuracy, mean pixel accuracy, mean intersection
over union, and f1-score. The proposed technique achieved
slightly improved pixel accuracy value of 84.67%, better
mean pixel accuracy value of 77.08%, mIoU value of 61.84%
and F1 score of 73.91%. The results achieved are better in
comparison to the segmentation approaches proposed over
the years and evaluated on the WHDLD dataset.The WHDLD
comprises of diverse scenarios representing combinations of
pixels of water, vegetation, road, pavement, building, and
bare soil. The adjacent and spatial context information assist
the computation of final pixel labels.

C. Ablation Study

The ablation studies present the refinement using the
context modules and the optimization process. The im-
provements in segmentation accuracies using the contextual
exploration and optimization process are presented through
the ablation studies. The comparison is carried out within the
architecture on the WHDLD dataset. The global context in-
formation and the local context information are used to show
the enhanced results. The results are also quantified based
on various stages of the optimization, based on the optimal
parameters the segmentation accuracies are presented. Table
IV highlights the impact of adjacent context information and
spatial context information on the overall architecture. The
results are compared between the accuracy values obtained
from the multilayer-perceptron (prior to the inclusion of
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TABLE II
RESULTS ON THE WHDLD DATASET IN TERMS OF CLASS-WISE ACCURACY IN COMPARISON WITH THE STATE-OF-THE-ART SEGMENTATION

TECHNIQUES.

Technique / Label Building BareSoil Pavement Vegetation Road Water
Proposed Technique 84.72 76.36 80.62 93.42 77.21 95.73
Segnet [20] 47.68 63.25 51.47 54.65 86.47 95.65
Tiramisu [31] 50.31 68.92 53.58 70.05 88.21 96.6
U-Net [19] 43.1 70.75 52.61 58.67 89.19 97.09
U-NetAtt [32] 47.97 72.74 48.94 60.58 90.00 97.51
FGC [33] 50.28 72.64 53.84 57.93 89.65 97.29
MSFCN [34] 52.18 74.50 55.18 68.8 90.02 97.51

TABLE III
RESULTS ON THE WHDLD DATASET IN TERMS OF PIXEL ACCURACY, MEAN PIXEL ACCURACY, MEAN INTERSECTION OVER UNION, AND F1 SCORE IN

COMPARISON WITH THE STATE-OF-THE-ART SEGMENTATION TECHNIQUES.

Pixel Accuracy Mean Pixel Accuracy mIoU F1
Proposed Technique 84.67 77.08 61.84 73.91
Segnet [20] 80.29 63.78 52.94 66.53
Tiramisu [31] 82.19 70.71 58.17 71.28
U-Net [19] 81.83 67.72 55.7 68.57
U-NetAtt [32] 82.6 69.74 56.91 69.62
FGC [33] 82.98 68.86 57.36 70.27
MSFCN [34] 84.16 72.08 60.36 73.03

context adaptive modules) and the overall proposed optimized
architecture. The class-wise scores improved 34%, 65%,
30%, 4%, 47%, 8% respectively for building, bare soil,
pavement, vegetation, road, and water. The overall pixel
accuracy improved from 53% to 84%, mean pixel accuracy
from 50% 77%, mIoU 45% to 61%, and F1 score from
51% to 74%. The overall improvement are notable using the
context adaptive modules.

The Table V presents the comparative analysis at three
different stages of optimizations, the initial being first no-
table improvement, the second being the middle of overall
iterations and the final stage is defined by final best solution
of particle swarm optimization (PSO) algorithm. The archi-
tecture improved from 53%-pixel accuracy to 68%, 76% and
84% for all the three stages of optimization. The mean pixel
accuracy scores were improved to 77% at the final optimized
stage as compared to the initial 50%. The mIoU scores
improved 27% using the proposed optimized architecture.
The F1-scores were also improved from 51% to 74%. The
results establish the efficacy of the proposed approach, and it
also shows the improvements in scores using the optimization
algorithm. It can be argued that the proposed architecture
has established capability of adapting to datasets using the
adjacent and spatial context information.

D. The Effectiveness of the Optimization

The proposed architecture exhibits notable enhancement
for class-wise segmentation. The architecture explores vari-
ous combination of features, hidden layer neurons in visual
layer, hidden layer neuron in final layer, ultimately resulting
in improved segmentation scores. The optimization improves
the pixel accuracy from 53% in visual layer to 84% in
final layer for WHDLD dataset. The comparison in Table V
supports the argument that optimization module incorporated
in the architecture improves the overall architecture.The im-

TABLE IV
ABLATION STUDY ON WHDLD DATASET CONSIDERING THE

ADDITIONAL CONTEXTUAL INFORMATION.

MLPvis

Adjacent
Context
Information

Spatial
Context
Information

Proposed
Optimized
Architecture

Building 50.22 84.72
Bare Soil 11.37 76.36
Pavement 50.31 80.62
Vegetation 89.9 93.42
Road 30.52 77.21
Water 87.69 95.73
PA 53.33 84.67
MPA 50.52 77.08
mIoU 45.90 61.84
F1 Score 51.31 73.91

TABLE V
COMPARATIVE ANALYSIS OF RESULTS IN TERMS OF ACCURACY USING

THE PARTICLE SWARM OPTIMIZATION FOR PARAMETER SELECTION.

MLPvis Optimization
Stage 1

Optimization
Stage 2

Proposed
Optimized

Architecture
Building 50.22 74.41 73.24 84.72
Bare Soil 11.37 56.65 61.42 76.36
Pavement 50.31 57.67 71.67 80.62
Vegetation 89.90 84.23 91.23 93.42
Road 30.52 53.38 63.42 77.21
Water 87.69 86.17 91.28 95.73
PA 53.33 68.75 76.24 84.67
MPA 50.52 61.53 70.56 77.08
mIoU 45.90 55.43 58.32 61.84
F1 Score 51.31 58.91 61.38 73.91

provements in pixel accuracy and evaluation scores establish
the effectiveness of the proposed optimization algorithm.
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V. CONCLUSION

The paper presents a novel parameter selection-based
image parsing framework that explores additional contextual
information to produce final labels. The notable novelties
include the optimization of parameters, and the compu-
tation of contextual information. The paper demonstrates
the improved pixel accuracy, mean pixel accuracy, mean
intersection over union and f1-scores using the proposed
image parsing architecture. The architecture achieves 84%-
pixel accuracy, 77% mean pixel accuracy, mIoU 61% and F1-
score of 73% on WHDLD dataset. In comparison to the state-
of-the-art techniques the proposed approach achieves better
scores. The incorporation of optimization algorithm and the
additional context information improves the segmentation ac-
curacies. In our future research, the aim will be to investigate
the proposed architecture on a number of real-world image
parsing datasets.
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