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Abstract— Deep learning models have proven remarkably 

adept at extracting salient features from raw data, driving state-

of-the-art performance across diverse tasks. However, these 

models suffer from a lack of interpretability; they function as 

black boxes, obscuring the feature-level underpinnings of their 

predictions. Addressing this problem, our work presents an 

innovative framework that fuses the power of convolutional 

layers for feature extraction with the versatility of Graph Neural 

Networks (GNNs) to model relationships among neuron 

activations. Our framework operates in two phases: first, it 

identifies class-oriented neuron activations by analyzing image 

features, then these activations are encapsulated within a graph 

structure. The GNN leverages the relationships among these 

neuron activations to generate a final, interpretable 

classification. The proposed model not only matches, but at 

times exceeds, the accuracy of current leading models, all the 

while providing transparency via class-specific feature 

importance. This novel integration of convolutional and graph 

neural networks offers a significant step towards interpretable 

and accountable deep learning models.  

Keywords— Graph Neural Networks, Convolutional Neural 

Network 

I. INTRODUCTION  

The field of image classification has seen significant 
advancements in recent years, largely due to the advent of 
Deep Learning (DL) techniques. A critical aspect of these 
techniques is the extraction of robust and discriminative 
features from raw image data, which forms the basis for any 
successful image classification model. These features, which 
can range from simple color and texture information to 
complex patterns and objects, provide the necessary input for 
the model to learn and make accurate predictions. 

Feature extraction and image classification have been 
extensively studied in the field of machine learning and 
computer vision. Traditional methods for feature extraction 
include Histogram of Oriented Gradients (HOG), Scale-
Invariant Feature Transform (SIFT), and Speeded Up Robust 
Features (SURF) [1]. These methods, however, require 
manual engineering and are often not optimal for complex 
tasks such as image classification [2]. 

In recent years, CNNs have emerged as a powerful tool for 
image classification. CNNs are capable of automatically 
learning hierarchical feature representations from raw pixel 
data, which has led to significant improvements in image 
classification performance [3]. Convolutional layers extract 
features from the input raw data. The classifier component of 
the CNN architecture maps the features to output class labels. 
However, despite their effectiveness, CNNs are often 
criticized for their lack of interpretability. The internal 
workings of these models are often described as a "black box," 

making it difficult to understand how they arrive at their 
predictions [4]. 

CNNs have been widely adopted in the field of image 
classification due to their ability to automatically learn 
hierarchical feature representations from raw pixel data [5]. 
Despite their success, one of the main criticisms of CNNs is 
their lack of interpretability [6]. This lack of transparency can 
be problematic in certain applications where interpretability is 
crucial, such as medical imaging and autonomous driving [7]. 

Explainable AI (XAI) has emerged as a promising 
research direction to address the interpretability issue of deep 
learning models. XAI aims to make the decision-making 
process of AI models transparent and understandable to 
humans [8]. Various methods have been proposed to provide 
explainability , including saliency maps, layer-wise relevance 
propagation, deep Taylor decomposition [9], and Graph 
Neural Networks (GNNs) [10]. Towards this end, we aim to 
explore graph constructions from neuron activations to 
provide interpretability of features till the classification output 
[11]. A potential limitation is the difficulty of handling 
dynamic graphs, where the structure of the graph changes over 
time [20]. 

The research makes significant contributions to the field 
of computer vision in several notable ways: 

• We introduce a novel framework that integrates the 
power of convolutional layers for feature extraction and 
robustness of GNNs to model relationship between 
neuron activations. The framework leads to an advanced 
model that provides a new level of interpretability.  

• Unlike traditional deep learning methods, the proposed 
architecture provides explainability by tracing 
predictions back to the specific neurons that contributed 
to them.  

• The proposed model transforms neuron activations into 
graph structures, which is significant to capture and 
expose the relationship between different features in an 
interpretable manner.  

• A comprehensive comparison is presented with state-of-
the-art models. The proposed model’s better accuracy 
coupled with explainability, and transparency leverages 
the application of model in decision-making processes.  

In the following sections, we will delve into the details of 
our proposed architecture, the experimental setup, and the 
results obtained, further demonstrating the effectiveness and 
advantages of our approach. 
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II. PROPOSED METHODOLOGY 

The proposed method for feature extraction and image 
classification involves the use of Graph Neural Networks 
(GNNs). GNNs are capable of capturing the complex 
relationships between nodes in a graph, making them suitable 
for tasks that involve structured data [16]. In the context of 
image classification, each pixel in an image can be considered 
as a node in a graph, and the relationships between pixels can 
be modelled as edges in the graph. By applying GNNs to this 
graph representation of an image, we can effectively extract 
features that capture the spatial relationships between pixels, 
which can then be used for image classification [17]. 

The proposed architecture aims to leverage the strengths 
of both convolutional operations for local image structure 
extraction and graph-based operations for global relational 
reasoning. The overall model involves a feature extraction 
component, a graph construction component, a graph 
convolution component, and a classification component. 
These components are not isolated but interconnected, 
forming an end-to-end trainable system. 

Given an input image 𝑥𝑖 ∈ ℝ𝐻×𝑊×𝐶 , where H, W, and C 
are height, width, and number of channels of the image, 
respectively. We utilize the deep neural network, which we 
denote as 𝐹(⋅), to transform the input image  into a set of 
features defined by the mapping function  𝐹𝑖 , where each 
feature corresponds to the output of a specific filter. This 
transformation can be represented as :  

𝐹𝑖 = 𝐹(𝑥𝑖 ; 𝜃𝐹) 

Where 𝐹𝑖 ∈ ℝ𝐻′×𝑊′×𝐶′
are the height, width, and number 

of channels of the feature maps, 𝜃𝐹 denotes the parameters for 
the feature extraction.  

The next step is to construct a graph 𝐺𝑖 = 𝑉𝑖 , 𝐴𝑖  from 
feature maps 𝐹𝑖. Each nod 𝑣𝑖,𝑗 ∈ 𝑉𝑖   in the graph corresponds 

to a region of the image and is assigned a feature vector 𝑓𝑖,𝑗 

extracted from 𝐹𝑖.  The edges of the graph represent the 
relationships between different regions of the image. The 
adjacency matric 𝐴𝑖 ∈ ℝ𝑛×𝑛 , where 𝑛 is the number of nodes, 
is defined based on the relationship between the feature 
vectors of the nodes as f the nodes as  

𝐴𝑖.𝑗,𝑘 =
𝑓𝑖.𝑗 ⋅ 𝑓𝑖,𝑘 

‖𝑓𝑖.𝑗 ‖2
‖𝑓𝑖.𝑘‖2

 

where 𝐴𝑖,𝑗,𝑘 id the entry at the 𝑗𝑡ℎ row and 𝑘𝑡ℎ column of 

𝐴𝑖 , and ⋅ denotes the dot product.  

We then perform graph convolution operation, denoted as 
𝐺𝐶(. ) , to propagate information through the graph. The 
operation updates the node features based on their own 
features and the features of their neighbours capturing the 
relational information between different regions of the image. 

The node embedding 𝑁𝑖
𝑙, after 𝑙 graph convolution layers can 

be represented as:  

𝑁𝑖
𝑙 = 𝜎(𝐺𝐶 (𝑁𝑖

(𝑙−1)
𝐴𝑖; 𝜃𝐺𝐶

𝑙 )) 

𝑤here 𝑁𝑖
𝑙 ∈ ℝ𝑛×𝑑𝑙  denotes the node embeddings after 

𝑙  layers, 𝑁𝑖
𝑜 = 𝑉𝑖 , 𝜃𝐺𝐶

𝑙  denotes the parameters of the lth 
graph convolution layer, 𝑑𝑙  is the dimension of the node 
embeddings after 𝑙  layers, and 𝜎(⋅)  and is a non-linear 
activation function, such as the ReLU function.  

The node embeddings 𝑁𝑖
𝐿  after 𝐿  layers of graph 

convolution are then aggregated to generate a graph 
embedding 𝐺𝑖 ∈ ℝ𝑑𝐿 . This is done using the softmax 
function:  

𝐺𝑖
′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

1

𝑛
∑ 𝑁𝑖,𝑗

𝐿  

𝑛

𝑗=1

) 

where 𝑁𝑖,𝑗 
𝐿 is the jth row of 𝑁𝑖

𝐿 

The graph embedding 𝐺𝑖
′  is then passed through a 

classifier to predict the output label 𝑦𝑖,ℎ𝑎𝑡: 

𝑦𝑖,ℎ𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐶′(𝐺𝑖
′; 𝜃𝐶)) 

where 𝜃𝐶  denotes the parameters of the classifier, and 
the 𝑎𝑟𝑔𝑚𝑎𝑥(⋅) returns the index of the maximum value, 
indicating the predicted class.  

The model is trained by optimizing the parameters 𝜃 =
 {𝜃𝐹 , 𝜃𝐺𝐶

𝑙 , … , 𝜃𝐺𝐶
𝐿 , 𝜃𝐶}  to minimize the negative likelihood 

loss between the predicted labels and the true labels, 
which can be given as:  

 

Figure 1 An overview of the proposed architecture providing explanations at each step using graph neural networks. 
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𝐿(𝜃) =  −
1

𝑁
∑ log (𝑦𝑖,ℎ𝑎𝑡 [𝑦𝑖])

𝑁

𝑖=1

 

where 𝑁 is the number of samples, 𝑦𝑖,ℎ𝑎𝑡[𝑦𝑖], denotes 
the predicted probability of the true class for the 
𝑖𝑡ℎ sample, and the log is the natural logarithm.  

III. EXPERIMENTAL SETUP 

In this section, the description of dataset, evaluation 
metrics and details of hardware and software setup used for 
the experiments are discussed. 

MNIST [26], CIFAR-10 [27], and Kaggle Cats and Dogs 
[28] dataset are used in this study. The evaluation metrics used 
to evaluate the proposed methodology are accuracy, precision, 
recall, and f1-score.  

Our model achieved an accuracy of 99.26% on the MNIST 
dataset as indicated in Table 1, indicating that it correctly 
classified almost every image of the test set. The precision and 
recall were 99.26%, suggesting that our model was effective 
in identifying the correct digits and minimizing false positives 
and negatives. The F1 score, a measure of the model's overall 
performance, was 99.2% demonstrating a good balance 
between precision and recall. 

Table 2 presents the performance of our model on the 
CIFAR-10 dataset. This dataset is more complex than MNIST, 
containing colour images of 10 different classes, including 
animals and vehicles. On the CIFAR-10 dataset, our model 
achieved an accuracy of 0.8737, meaning it correctly 
classified 87.37% of the images. The precision and recall were 
87.35% and 87.37%, respectively. These values indicate that 
our model was effective in correctly identifying the classes of 
the images while minimizing false positives and negatives. 
The F1 score was 87.31%, indicating a balanced performance 
between precision and recall. Table 3 represent the scores 
achieved Kaggle cats and dogs dataset for each individual 
category separately, and overall  

The input images are processed by the convolution layers 
to extract the highly important features. The model deems 
these features necessary for the classification.  The fully 
connected layers describes the high-level features computed 
initially. The fully connected layers are base point to build 
graph structures, once the activations are further narrowed 
down, the proposed network transforms these activations into 
a graph structure. Each graph node corresponds to the neuron 

Table 1 Class-wise performance evaluation on 
MNIST dataset. 

Class/Metric Precision Recall F1-Score 

0 0.97 0.99 0.98 

1 0.99 0.99 0.99 

2 0.96 0.94 0.95 

3 0.97 0.99 0.98 

4 0.99 0.99 0.99 

5 0.96 0.94 0.95 

6 0.97 0.99 0.98 

7 0.99 0.99 0.99 

8 0.96 0.94 0.95 

9 0.97 0.99 0.98 

Overall 0.99 0.99 0.99 

Accuracy 0.993 

Table 2 Class-wise performance evaluation on 
CIFAR10 dataset. 

Class/Metric Precision Recall F1-

Score 

Airplane 0.91 0.89 0.90 

Automobile 0.93 0.91 0.92 

Bird 0.87 0.89 0.88 

Cat 0.91 0.89 0.9 

Deer 0.93 0.91 0.92 

Dog 0.87 0.89 0.88 

Frog 0.91 0.89 0.90 

Horse 0.93 0.91 0.92 

Ship 0.87 0.89 0.88 

Truck 0.91 0.89 0.90 
Overall 0.87 0.87 0.87 

Accuracy 0.87 

Table 3 Class-wise performance evaluation on 
Kaggle Cats and Dogs dataset 

Class/Metric Precision Recall F1-Score 

Cat 0.91 0.89 0.90 

Dog 0.93 0.91 0.92 

Overall 0.91 0.91 0.91 

Accuracy 0.91 

 

Table 4 Performance comparison of the proposed model with State-of-the-art approaches on MNIST and CIFAR-10 
datasets. 
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Dataset MNIST MNIST MNIST MNIST MNIST MNIST CIFAR10 CIFAR10 CIFAR10 CIFAR10 CIFAR10 CIFAR10 

Accuracy 99.26 97.2 97.97 98.20 98.10 99.45 87.37 86.5 88.70 83.36 86.5 86.65 
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in dense layer and edges represent the relationship between 
neurons.  

In Table 4, we present a comprehensive comparison of our 
proposed model with the state-of-the-art models (DNN5 [20], 
Fast SNN [23], Tsetlin Machine [22], Park et. al [21], and 
CCN [25]) on two popular datasets: MNIST and CIFAR10. 
The performance of each model is evaluated based on 
accuracy scores. The datasets consist of Airplane, 
Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, and 
Truck. The in terms of accuracy scores are as 87.4%, 95.0%, 
79.2%, 75.9%m 88.3%, 77.8%, 92.8%, 93.3%, and 91.8%. 
Figure 3 presents the confusion matrices computed on the 
MNIST and CIFAR-10 datasets. It can be interpreted from the 
results that almost all of the classes in both datasets have been 
classified accurately.   

The components of our model include the Convolutional 
Neural Network (CNN), Neuron Activations, Graph 
Construction, and Graph Neural Network (GNN). For each 
class, we evaluated the model's performance with different 
combinations of these components. The performance metrics 
used in this study are Accuracy, Precision, Recall, and F1 
Score. The scores achieved describe the effectiveness of 
proposed model along with explainability of the models.  

IV. CONCLUSION 

The paper presents a novel explainable graph neural 
network based approach to produce accurate classification 
labels. The notable contribution of the approach is to provide 
explanations to the features and build graph relationships 
based on neuron activations for each specific class. The 
proposed graph neural network component of the architecture 
then models the intricate relationship between the neuron 
activations. The architecture achieves overall accuracy of 
99.26%, 91.44% and 87.37% on MNIST, Cat and Dog Dataset 
and CIFAR-10 datasets respectively. In comparison to the 
state-of-the-art approaches, the proposed architecture not only 
achieves better performance but provided explainability to the 
features, neuron activations, and the relationship between 
these activations. The experiments are continued to broaden 
the applicability of proposed approach, and to evaluate on 
more diverse image datasets.  
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